| //===-- Single-precision sinpif function ----------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/sinpif.h" |
| #include "sincosf_utils.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/PolyEval.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/common.h" |
| #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| |
| namespace LIBC_NAMESPACE { |
| |
| LLVM_LIBC_FUNCTION(float, sinpif, (float x)) { |
| using FPBits = typename fputil::FPBits<float>; |
| FPBits xbits(x); |
| |
| uint32_t x_u = xbits.uintval(); |
| uint32_t x_abs = x_u & 0x7fff'ffffU; |
| double xd = static_cast<double>(x); |
| |
| // Range reduction: |
| // For |x| > pi/32, we perform range reduction as follows: |
| // Find k and y such that: |
| // x = (k + y) * 1/32 |
| // k is an integer |
| // |y| < 0.5 |
| // For small range (|x| < 2^45 when FMA instructions are available, 2^22 |
| // otherwise), this is done by performing: |
| // k = round(x * 32) |
| // y = x * 32 - k |
| // |
| // Once k and y are computed, we then deduce the answer by the sine of sum |
| // formula: |
| // sin(x * pi) = sin((k + y)*pi/32) |
| // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32) |
| // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..31 are precomputed |
| // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are |
| // computed using degree-7 and degree-6 minimax polynomials generated by |
| // Sollya respectively. |
| |
| // |x| <= 1/16 |
| if (LIBC_UNLIKELY(x_abs <= 0x3d80'0000U)) { |
| |
| if (LIBC_UNLIKELY(x_abs < 0x33CD'01D7U)) { |
| if (LIBC_UNLIKELY(x_abs == 0U)) { |
| // For signed zeros. |
| return x; |
| } |
| |
| // For very small values we can approximate sinpi(x) with x * pi |
| // An exhaustive test shows that this is accurate for |x| < 9.546391 × |
| // 10-8 |
| double xdpi = xd * 0x1.921fb54442d18p1; |
| return static_cast<float>(xdpi); |
| } |
| |
| // |x| < 1/16. |
| double xsq = xd * xd; |
| |
| // Degree-9 polynomial approximation: |
| // sinpi(x) ~ x + a_3 x^3 + a_5 x^5 + a_7 x^7 + a_9 x^9 |
| // = x (1 + a_3 x^2 + ... + a_9 x^8) |
| // = x * P(x^2) |
| // generated by Sollya with the following commands: |
| // > display = hexadecimal; |
| // > Q = fpminimax(sin(pi * x)/x, [|0, 2, 4, 6, 8|], [|D...|], [0, 1/16]); |
| double result = fputil::polyeval( |
| xsq, 0x1.921fb54442d18p1, -0x1.4abbce625bbf2p2, 0x1.466bc675e116ap1, |
| -0x1.32d2c0b62d41cp-1, 0x1.501ec4497cb7dp-4); |
| return static_cast<float>(xd * result); |
| } |
| |
| // Numbers greater or equal to 2^23 are always integers or NaN |
| if (LIBC_UNLIKELY(x_abs >= 0x4B00'0000)) { |
| |
| // check for NaN values |
| if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) { |
| if (x_abs == 0x7f80'0000U) { |
| fputil::set_errno_if_required(EDOM); |
| fputil::raise_except_if_required(FE_INVALID); |
| } |
| |
| return x + FPBits::quiet_nan().get_val(); |
| } |
| |
| return FPBits::zero(xbits.sign()).get_val(); |
| } |
| |
| // Combine the results with the sine of sum formula: |
| // sin(x * pi) = sin((k + y)*pi/32) |
| // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32) |
| // = sin_y * cos_k + (1 + cosm1_y) * sin_k |
| // = sin_y * cos_k + (cosm1_y * sin_k + sin_k) |
| double sin_k, cos_k, sin_y, cosm1_y; |
| sincospif_eval(xd, sin_k, cos_k, sin_y, cosm1_y); |
| |
| if (LIBC_UNLIKELY(sin_y == 0 && sin_k == 0)) |
| return FPBits::zero(xbits.sign()).get_val(); |
| |
| return static_cast<float>(fputil::multiply_add( |
| sin_y, cos_k, fputil::multiply_add(cosm1_y, sin_k, sin_k))); |
| } |
| |
| } // namespace LIBC_NAMESPACE |