| //===-- Benchmark function --------------------------------------*- C++ -*-===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // This file mainly defines a `Benchmark` function. | 
 | // | 
 | // The benchmarking process is as follows: | 
 | // - We start by measuring the time it takes to run the function | 
 | // `InitialIterations` times. This is called a Sample. From this we can derive | 
 | // the time it took to run a single iteration. | 
 | // | 
 | // - We repeat the previous step with a greater number of iterations to lower | 
 | // the impact of the measurement. We can derive a more precise estimation of the | 
 | // runtime for a single iteration. | 
 | // | 
 | // - Each sample gives a more accurate estimation of the runtime for a single | 
 | // iteration but also takes more time to run. We stop the process when: | 
 | //   * The measure stabilize under a certain precision (Epsilon), | 
 | //   * The overall benchmarking time is greater than MaxDuration, | 
 | //   * The overall sample count is greater than MaxSamples, | 
 | //   * The last sample used more than MaxIterations iterations. | 
 | // | 
 | // - We also makes sure that the benchmark doesn't run for a too short period of | 
 | // time by defining MinDuration and MinSamples. | 
 |  | 
 | #ifndef LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H | 
 | #define LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H | 
 |  | 
 | #include "benchmark/benchmark.h" | 
 | #include "llvm/ADT/ArrayRef.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include <array> | 
 | #include <chrono> | 
 | #include <cmath> | 
 | #include <cstdint> | 
 | #include <optional> | 
 |  | 
 | namespace llvm { | 
 | namespace libc_benchmarks { | 
 |  | 
 | using Duration = std::chrono::duration<double>; | 
 |  | 
 | enum class BenchmarkLog { | 
 |   None, // Don't keep the internal state of the benchmark. | 
 |   Last, // Keep only the last batch. | 
 |   Full  // Keep all iterations states, useful for testing or debugging. | 
 | }; | 
 |  | 
 | // An object to configure the benchmark stopping conditions. | 
 | // See documentation at the beginning of the file for the overall algorithm and | 
 | // meaning of each field. | 
 | struct BenchmarkOptions { | 
 |   // The minimum time for which the benchmark is running. | 
 |   Duration MinDuration = std::chrono::seconds(0); | 
 |   // The maximum time for which the benchmark is running. | 
 |   Duration MaxDuration = std::chrono::seconds(10); | 
 |   // The number of iterations in the first sample. | 
 |   uint32_t InitialIterations = 1; | 
 |   // The maximum number of iterations for any given sample. | 
 |   uint32_t MaxIterations = 10000000; | 
 |   // The minimum number of samples. | 
 |   uint32_t MinSamples = 4; | 
 |   // The maximum number of samples. | 
 |   uint32_t MaxSamples = 1000; | 
 |   // The benchmark will stop if the relative difference between the current and | 
 |   // the last estimation is less than epsilon. This is 1% by default. | 
 |   double Epsilon = 0.01; | 
 |   // The number of iterations grows exponentially between each sample. | 
 |   // Must be greater or equal to 1. | 
 |   double ScalingFactor = 1.4; | 
 |   BenchmarkLog Log = BenchmarkLog::None; | 
 | }; | 
 |  | 
 | // The state of a benchmark. | 
 | enum class BenchmarkStatus { | 
 |   Running, | 
 |   MaxDurationReached, | 
 |   MaxIterationsReached, | 
 |   MaxSamplesReached, | 
 |   PrecisionReached, | 
 | }; | 
 |  | 
 | // The internal state of the benchmark, useful to debug, test or report | 
 | // statistics. | 
 | struct BenchmarkState { | 
 |   size_t LastSampleIterations; | 
 |   Duration LastBatchElapsed; | 
 |   BenchmarkStatus CurrentStatus; | 
 |   Duration CurrentBestGuess; // The time estimation for a single run of `foo`. | 
 |   double ChangeRatio; // The change in time estimation between previous and | 
 |                       // current samples. | 
 | }; | 
 |  | 
 | // A lightweight result for a benchmark. | 
 | struct BenchmarkResult { | 
 |   BenchmarkStatus TerminationStatus = BenchmarkStatus::Running; | 
 |   Duration BestGuess = {}; | 
 |   std::optional<llvm::SmallVector<BenchmarkState, 16>> MaybeBenchmarkLog; | 
 | }; | 
 |  | 
 | // Stores information about a cache in the host memory system. | 
 | struct CacheInfo { | 
 |   std::string Type; //  e.g. "Instruction", "Data", "Unified". | 
 |   int Level;        // 0 is closest to processing unit. | 
 |   int Size;         // In bytes. | 
 |   int NumSharing;   // The number of processing units (Hyper-Threading Thread) | 
 |                     // with which this cache is shared. | 
 | }; | 
 |  | 
 | // Stores information about the host. | 
 | struct HostState { | 
 |   std::string CpuName; // returns a string compatible with the -march option. | 
 |   double CpuFrequency; // in Hertz. | 
 |   std::vector<CacheInfo> Caches; | 
 |  | 
 |   static HostState get(); | 
 | }; | 
 |  | 
 | namespace internal { | 
 |  | 
 | struct Measurement { | 
 |   size_t Iterations = 0; | 
 |   Duration Elapsed = {}; | 
 | }; | 
 |  | 
 | // Updates the estimation of the elapsed time for a single iteration. | 
 | class RefinableRuntimeEstimation { | 
 |   Duration TotalTime = {}; | 
 |   size_t TotalIterations = 0; | 
 |  | 
 | public: | 
 |   Duration update(const Measurement &M) { | 
 |     assert(M.Iterations > 0); | 
 |     // Duration is encoded as a double (see definition). | 
 |     // `TotalTime` and `M.Elapsed` are of the same magnitude so we don't expect | 
 |     // loss of precision due to radically different scales. | 
 |     TotalTime += M.Elapsed; | 
 |     TotalIterations += M.Iterations; | 
 |     return TotalTime / TotalIterations; | 
 |   } | 
 | }; | 
 |  | 
 | // This class tracks the progression of the runtime estimation. | 
 | class RuntimeEstimationProgression { | 
 |   RefinableRuntimeEstimation RRE; | 
 |  | 
 | public: | 
 |   Duration CurrentEstimation = {}; | 
 |  | 
 |   // Returns the change ratio between our best guess so far and the one from the | 
 |   // new measurement. | 
 |   double computeImprovement(const Measurement &M) { | 
 |     const Duration NewEstimation = RRE.update(M); | 
 |     const double Ratio = fabs(((CurrentEstimation / NewEstimation) - 1.0)); | 
 |     CurrentEstimation = NewEstimation; | 
 |     return Ratio; | 
 |   } | 
 | }; | 
 |  | 
 | } // namespace internal | 
 |  | 
 | // Measures the runtime of `foo` until conditions defined by `Options` are met. | 
 | // | 
 | // To avoid measurement's imprecisions we measure batches of `foo`. | 
 | // The batch size is growing by `ScalingFactor` to minimize the effect of | 
 | // measuring. | 
 | // | 
 | // Note: The benchmark is not responsible for serializing the executions of | 
 | // `foo`. It is not suitable for measuring, very small & side effect free | 
 | // functions, as the processor is free to execute several executions in | 
 | // parallel. | 
 | // | 
 | // - Options: A set of parameters controlling the stopping conditions for the | 
 | //     benchmark. | 
 | // - foo: The function under test. It takes one value and returns one value. | 
 | //     The input value is used to randomize the execution of `foo` as part of a | 
 | //     batch to mitigate the effect of the branch predictor. Signature: | 
 | //     `ProductType foo(ParameterProvider::value_type value);` | 
 | //     The output value is a product of the execution of `foo` and prevents the | 
 | //     compiler from optimizing out foo's body. | 
 | // - ParameterProvider: An object responsible for providing a range of | 
 | //     `Iterations` values to use as input for `foo`. The `value_type` of the | 
 | //     returned container has to be compatible with `foo` argument. | 
 | //     Must implement one of: | 
 | //     `Container<ParameterType> generateBatch(size_t Iterations);` | 
 | //     `const Container<ParameterType>& generateBatch(size_t Iterations);` | 
 | // - Clock: An object providing the current time. Must implement: | 
 | //     `std::chrono::time_point now();` | 
 | template <typename Function, typename ParameterProvider, | 
 |           typename BenchmarkClock = const std::chrono::high_resolution_clock> | 
 | BenchmarkResult benchmark(const BenchmarkOptions &Options, | 
 |                           ParameterProvider &PP, Function foo, | 
 |                           BenchmarkClock &Clock = BenchmarkClock()) { | 
 |   BenchmarkResult Result; | 
 |   internal::RuntimeEstimationProgression REP; | 
 |   Duration TotalBenchmarkDuration = {}; | 
 |   size_t Iterations = std::max(Options.InitialIterations, uint32_t(1)); | 
 |   size_t Samples = 0; | 
 |   if (Options.ScalingFactor < 1.0) | 
 |     report_fatal_error("ScalingFactor should be >= 1"); | 
 |   if (Options.Log != BenchmarkLog::None) | 
 |     Result.MaybeBenchmarkLog.emplace(); | 
 |   for (;;) { | 
 |     // Request a new Batch of size `Iterations`. | 
 |     const auto &Batch = PP.generateBatch(Iterations); | 
 |  | 
 |     // Measuring this Batch. | 
 |     const auto StartTime = Clock.now(); | 
 |     for (const auto Parameter : Batch) { | 
 |       auto Production = foo(Parameter); | 
 |       benchmark::DoNotOptimize(Production); | 
 |     } | 
 |     const auto EndTime = Clock.now(); | 
 |     const Duration Elapsed = EndTime - StartTime; | 
 |  | 
 |     // Updating statistics. | 
 |     ++Samples; | 
 |     TotalBenchmarkDuration += Elapsed; | 
 |     const double ChangeRatio = REP.computeImprovement({Iterations, Elapsed}); | 
 |     Result.BestGuess = REP.CurrentEstimation; | 
 |  | 
 |     // Stopping condition. | 
 |     if (TotalBenchmarkDuration >= Options.MinDuration && | 
 |         Samples >= Options.MinSamples && ChangeRatio < Options.Epsilon) | 
 |       Result.TerminationStatus = BenchmarkStatus::PrecisionReached; | 
 |     else if (Samples >= Options.MaxSamples) | 
 |       Result.TerminationStatus = BenchmarkStatus::MaxSamplesReached; | 
 |     else if (TotalBenchmarkDuration >= Options.MaxDuration) | 
 |       Result.TerminationStatus = BenchmarkStatus::MaxDurationReached; | 
 |     else if (Iterations >= Options.MaxIterations) | 
 |       Result.TerminationStatus = BenchmarkStatus::MaxIterationsReached; | 
 |  | 
 |     if (Result.MaybeBenchmarkLog) { | 
 |       auto &BenchmarkLog = *Result.MaybeBenchmarkLog; | 
 |       if (Options.Log == BenchmarkLog::Last && !BenchmarkLog.empty()) | 
 |         BenchmarkLog.pop_back(); | 
 |       BenchmarkState BS; | 
 |       BS.LastSampleIterations = Iterations; | 
 |       BS.LastBatchElapsed = Elapsed; | 
 |       BS.CurrentStatus = Result.TerminationStatus; | 
 |       BS.CurrentBestGuess = Result.BestGuess; | 
 |       BS.ChangeRatio = ChangeRatio; | 
 |       BenchmarkLog.push_back(BS); | 
 |     } | 
 |  | 
 |     if (Result.TerminationStatus != BenchmarkStatus::Running) | 
 |       return Result; | 
 |  | 
 |     if (Options.ScalingFactor > 1 && | 
 |         Iterations * Options.ScalingFactor == Iterations) | 
 |       report_fatal_error( | 
 |           "`Iterations *= ScalingFactor` is idempotent, increase ScalingFactor " | 
 |           "or InitialIterations."); | 
 |  | 
 |     Iterations *= Options.ScalingFactor; | 
 |   } | 
 | } | 
 |  | 
 | // Interprets `Array` as a circular buffer of `Size` elements. | 
 | template <typename T> class CircularArrayRef { | 
 |   llvm::ArrayRef<T> Array; | 
 |   size_t Size; | 
 |  | 
 | public: | 
 |   using value_type = T; | 
 |   using reference = T &; | 
 |   using const_reference = const T &; | 
 |   using difference_type = ssize_t; | 
 |   using size_type = size_t; | 
 |  | 
 |   class const_iterator { | 
 |     using iterator_category = std::input_iterator_tag; | 
 |     llvm::ArrayRef<T> Array; | 
 |     size_t Index; | 
 |     size_t Offset; | 
 |  | 
 |   public: | 
 |     explicit const_iterator(llvm::ArrayRef<T> Array, size_t Index = 0) | 
 |         : Array(Array), Index(Index), Offset(Index % Array.size()) {} | 
 |     const_iterator &operator++() { | 
 |       ++Index; | 
 |       ++Offset; | 
 |       if (Offset == Array.size()) | 
 |         Offset = 0; | 
 |       return *this; | 
 |     } | 
 |     bool operator==(const_iterator Other) const { return Index == Other.Index; } | 
 |     bool operator!=(const_iterator Other) const { return !(*this == Other); } | 
 |     const T &operator*() const { return Array[Offset]; } | 
 |   }; | 
 |  | 
 |   CircularArrayRef(llvm::ArrayRef<T> Array, size_t Size) | 
 |       : Array(Array), Size(Size) { | 
 |     assert(Array.size() > 0); | 
 |   } | 
 |  | 
 |   const_iterator begin() const { return const_iterator(Array); } | 
 |   const_iterator end() const { return const_iterator(Array, Size); } | 
 | }; | 
 |  | 
 | // A convenient helper to produce a CircularArrayRef from an ArrayRef. | 
 | template <typename T> | 
 | CircularArrayRef<T> cycle(llvm::ArrayRef<T> Array, size_t Size) { | 
 |   return {Array, Size}; | 
 | } | 
 |  | 
 | // Creates an std::array which storage size is constrained under `Bytes`. | 
 | template <typename T, size_t Bytes> | 
 | using ByteConstrainedArray = std::array<T, Bytes / sizeof(T)>; | 
 |  | 
 | // A convenient helper to produce a CircularArrayRef from a | 
 | // ByteConstrainedArray. | 
 | template <typename T, size_t N> | 
 | CircularArrayRef<T> cycle(const std::array<T, N> &Container, size_t Size) { | 
 |   return {llvm::ArrayRef<T>(Container.cbegin(), Container.cend()), Size}; | 
 | } | 
 |  | 
 | // Makes sure the binary was compiled in release mode and that frequency | 
 | // governor is set on performance. | 
 | void checkRequirements(); | 
 |  | 
 | } // namespace libc_benchmarks | 
 | } // namespace llvm | 
 |  | 
 | #endif // LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H |