| //===-- Calculate square root of fixed point numbers. -----*- C++ -*-=========// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIBC_SRC___SUPPORT_FIXEDPOINT_SQRT_H |
| #define LLVM_LIBC_SRC___SUPPORT_FIXEDPOINT_SQRT_H |
| |
| #include "include/llvm-libc-macros/stdfix-macros.h" |
| #include "src/__support/CPP/bit.h" |
| #include "src/__support/CPP/limits.h" // CHAR_BIT |
| #include "src/__support/CPP/type_traits.h" |
| #include "src/__support/macros/attributes.h" // LIBC_INLINE |
| #include "src/__support/macros/config.h" |
| #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| |
| #include "fx_rep.h" |
| |
| #ifdef LIBC_COMPILER_HAS_FIXED_POINT |
| |
| namespace LIBC_NAMESPACE_DECL { |
| namespace fixed_point { |
| |
| namespace internal { |
| |
| template <typename T> struct SqrtConfig; |
| |
| template <> struct SqrtConfig<unsigned short fract> { |
| using Type = unsigned short fract; |
| static constexpr int EXTRA_STEPS = 0; |
| |
| // Linear approximation for the initial values, with errors bounded by: |
| // max(1.5 * 2^-11, eps) |
| // Generated with Sollya: |
| // > for i from 4 to 15 do { |
| // P = fpminimax(sqrt(x), 1, [|8, 8|], [i * 2^-4, (i + 1)*2^-4], |
| // fixed, absolute); |
| // print("{", coeff(P, 1), "uhr,", coeff(P, 0), "uhr},"); |
| // }; |
| static constexpr Type FIRST_APPROX[12][2] = { |
| {0x1.e8p-1uhr, 0x1.0cp-2uhr}, {0x1.bap-1uhr, 0x1.28p-2uhr}, |
| {0x1.94p-1uhr, 0x1.44p-2uhr}, {0x1.74p-1uhr, 0x1.6p-2uhr}, |
| {0x1.6p-1uhr, 0x1.74p-2uhr}, {0x1.4ep-1uhr, 0x1.88p-2uhr}, |
| {0x1.3ep-1uhr, 0x1.9cp-2uhr}, {0x1.32p-1uhr, 0x1.acp-2uhr}, |
| {0x1.22p-1uhr, 0x1.c4p-2uhr}, {0x1.18p-1uhr, 0x1.d4p-2uhr}, |
| {0x1.08p-1uhr, 0x1.fp-2uhr}, {0x1.04p-1uhr, 0x1.f8p-2uhr}, |
| }; |
| }; |
| |
| template <> struct SqrtConfig<unsigned fract> { |
| using Type = unsigned fract; |
| static constexpr int EXTRA_STEPS = 1; |
| |
| // Linear approximation for the initial values, with errors bounded by: |
| // max(1.5 * 2^-11, eps) |
| // Generated with Sollya: |
| // > for i from 4 to 14 do { |
| // P = fpminimax(sqrt(x), 1, [|16, 16|], [i * 2^-4, (i + 1)*2^-4], |
| // fixed, absolute); |
| // print("{", coeff(P, 1), "ur,", coeff(P, 0), "ur},"); |
| // }; |
| // For the last interval [15/16, 1), we choose the linear function Q such that |
| // Q(1) = 1 and Q(15/16) = P(15/16), |
| // where P is the polynomial generated by Sollya above for [14/16, 15/16]. |
| // This is to prevent overflow in the last interval [15/16, 1). |
| static constexpr Type FIRST_APPROX[12][2] = { |
| {0x1.e378p-1ur, 0x1.0ebp-2ur}, {0x1.b512p-1ur, 0x1.2b94p-2ur}, |
| {0x1.91fp-1ur, 0x1.45dcp-2ur}, {0x1.7622p-1ur, 0x1.5e24p-2ur}, |
| {0x1.5f5ap-1ur, 0x1.74e4p-2ur}, {0x1.4c58p-1ur, 0x1.8a4p-2ur}, |
| {0x1.3c1ep-1ur, 0x1.9e84p-2ur}, {0x1.2e0cp-1ur, 0x1.b1d8p-2ur}, |
| {0x1.21aap-1ur, 0x1.c468p-2ur}, {0x1.16bap-1ur, 0x1.d62cp-2ur}, |
| {0x1.0cfp-1ur, 0x1.e74cp-2ur}, {0x1.039p-1ur, 0x1.f8ep-2ur}, |
| }; |
| }; |
| |
| template <> struct SqrtConfig<unsigned long fract> { |
| using Type = unsigned long fract; |
| static constexpr int EXTRA_STEPS = 2; |
| |
| // Linear approximation for the initial values, with errors bounded by: |
| // max(1.5 * 2^-11, eps) |
| // Generated with Sollya: |
| // > for i from 4 to 14 do { |
| // P = fpminimax(sqrt(x), 1, [|32, 32|], [i * 2^-4, (i + 1)*2^-4], |
| // fixed, absolute); |
| // print("{", coeff(P, 1), "ulr,", coeff(P, 0), "ulr},"); |
| // }; |
| // For the last interval [15/16, 1), we choose the linear function Q such that |
| // Q(1) = 1 and Q(15/16) = P(15/16), |
| // where P is the polynomial generated by Sollya above for [14/16, 15/16]. |
| // This is to prevent overflow in the last interval [15/16, 1). |
| static constexpr Type FIRST_APPROX[12][2] = { |
| {0x1.e3779b98p-1ulr, 0x1.0eaff788p-2ulr}, |
| {0x1.b5167872p-1ulr, 0x1.2b908ad4p-2ulr}, |
| {0x1.91f195cap-1ulr, 0x1.45da800cp-2ulr}, |
| {0x1.761ebcb4p-1ulr, 0x1.5e27004cp-2ulr}, |
| {0x1.5f619986p-1ulr, 0x1.74db933cp-2ulr}, |
| {0x1.4c583adep-1ulr, 0x1.8a3fbfccp-2ulr}, |
| {0x1.3c1a591cp-1ulr, 0x1.9e88373cp-2ulr}, |
| {0x1.2e08545ap-1ulr, 0x1.b1dd2534p-2ulr}, |
| {0x1.21b05c0ap-1ulr, 0x1.c45e023p-2ulr}, |
| {0x1.16becd02p-1ulr, 0x1.d624031p-2ulr}, |
| {0x1.0cf49fep-1ulr, 0x1.e743b844p-2ulr}, |
| {0x1.038cdfcp-1ulr, 0x1.f8e6408p-2ulr}, |
| }; |
| }; |
| |
| template <> |
| struct SqrtConfig<unsigned short accum> : SqrtConfig<unsigned fract> {}; |
| |
| template <> |
| struct SqrtConfig<unsigned accum> : SqrtConfig<unsigned long fract> {}; |
| |
| // Integer square root |
| template <> struct SqrtConfig<unsigned short> { |
| using OutType = unsigned short accum; |
| using FracType = unsigned fract; |
| // For fast-but-less-accurate version |
| using FastFracType = unsigned short fract; |
| using HalfType = unsigned char; |
| }; |
| |
| template <> struct SqrtConfig<unsigned int> { |
| using OutType = unsigned accum; |
| using FracType = unsigned long fract; |
| // For fast-but-less-accurate version |
| using FastFracType = unsigned fract; |
| using HalfType = unsigned short; |
| }; |
| |
| // TODO: unsigned long accum type is 64-bit, and will need 64-bit fract type. |
| // Probably we will use DyadicFloat<64> for intermediate computations instead. |
| |
| } // namespace internal |
| |
| // Core computation for sqrt with normalized inputs (0.25 <= x < 1). |
| template <typename Config> |
| LIBC_INLINE constexpr typename Config::Type |
| sqrt_core(typename Config::Type x_frac) { |
| using FracType = typename Config::Type; |
| using FXRep = FXRep<FracType>; |
| using StorageType = typename FXRep::StorageType; |
| // Exact case: |
| if (x_frac == FXRep::ONE_FOURTH()) |
| return FXRep::ONE_HALF(); |
| |
| // Use use Newton method to approximate sqrt(a): |
| // x_{n + 1} = 1/2 (x_n + a / x_n) |
| // For the initial values, we choose x_0 |
| |
| // Use the leading 4 bits to do look up for sqrt(x). |
| // After normalization, 0.25 <= x_frac < 1, so the leading 4 bits of x_frac |
| // are between 0b0100 and 0b1111. Hence the lookup table only needs 12 |
| // entries, and we can get the index by subtracting the leading 4 bits of |
| // x_frac by 4 = 0b0100. |
| StorageType x_bit = cpp::bit_cast<StorageType>(x_frac); |
| int index = (static_cast<int>(x_bit >> (FXRep::TOTAL_LEN - 4))) - 4; |
| FracType a = Config::FIRST_APPROX[index][0]; |
| FracType b = Config::FIRST_APPROX[index][1]; |
| |
| // Initial approximation step. |
| // Estimated error bounds: | r - sqrt(x_frac) | < max(1.5 * 2^-11, eps). |
| FracType r = a * x_frac + b; |
| |
| // Further Newton-method iterations for square-root: |
| // x_{n + 1} = 0.5 * (x_n + a / x_n) |
| // We distribute and do the multiplication by 0.5 first to avoid overflow. |
| // TODO: Investigate the performance and accuracy of using division-free |
| // iterations from: |
| // Blanchard, J. D. and Chamberland, M., "Newton's Method Without Division", |
| // The American Mathematical Monthly (2023). |
| // https://chamberland.math.grinnell.edu/papers/newton.pdf |
| for (int i = 0; i < Config::EXTRA_STEPS; ++i) |
| r = (r >> 1) + (x_frac >> 1) / r; |
| |
| return r; |
| } |
| |
| template <typename T> |
| LIBC_INLINE constexpr cpp::enable_if_t<cpp::is_fixed_point_v<T>, T> sqrt(T x) { |
| using BitType = typename FXRep<T>::StorageType; |
| BitType x_bit = cpp::bit_cast<BitType>(x); |
| |
| if (LIBC_UNLIKELY(x_bit == 0)) |
| return FXRep<T>::ZERO(); |
| |
| int leading_zeros = cpp::countl_zero(x_bit); |
| constexpr int STORAGE_LENGTH = sizeof(BitType) * CHAR_BIT; |
| constexpr int EXP_ADJUSTMENT = STORAGE_LENGTH - FXRep<T>::FRACTION_LEN - 1; |
| // x_exp is the real exponent of the leading bit of x. |
| int x_exp = EXP_ADJUSTMENT - leading_zeros; |
| int shift = EXP_ADJUSTMENT - 1 - (x_exp & (~1)); |
| // Normalize. |
| x_bit <<= shift; |
| using FracType = typename internal::SqrtConfig<T>::Type; |
| FracType x_frac = cpp::bit_cast<FracType>(x_bit); |
| |
| // Compute sqrt(x_frac) using Newton-method. |
| FracType r = sqrt_core<internal::SqrtConfig<T>>(x_frac); |
| |
| // Re-scaling |
| r >>= EXP_ADJUSTMENT - (x_exp >> 1); |
| |
| // Return result. |
| return cpp::bit_cast<T>(r); |
| } |
| |
| // Integer square root - Accurate version: |
| // Absolute errors < 2^(-fraction length). |
| template <typename T> |
| LIBC_INLINE constexpr typename internal::SqrtConfig<T>::OutType isqrt(T x) { |
| using OutType = typename internal::SqrtConfig<T>::OutType; |
| using FracType = typename internal::SqrtConfig<T>::FracType; |
| |
| if (x == 0) |
| return FXRep<OutType>::ZERO(); |
| |
| // Normalize the leading bits to the first two bits. |
| // Shift and then Bit cast x to x_frac gives us: |
| // x = 2^(FRACTION_LEN + 1 - shift) * x_frac; |
| int leading_zeros = cpp::countl_zero(x); |
| int shift = ((leading_zeros >> 1) << 1); |
| x <<= shift; |
| // Convert to frac type and compute square root. |
| FracType x_frac = cpp::bit_cast<FracType>(x); |
| FracType r = sqrt_core<internal::SqrtConfig<FracType>>(x_frac); |
| // To rescale back to the OutType (Accum) |
| r >>= (shift >> 1); |
| |
| return cpp::bit_cast<OutType>(r); |
| } |
| |
| // Integer square root - Fast but less accurate version: |
| // Relative errors < 2^(-fraction length). |
| template <typename T> |
| LIBC_INLINE constexpr typename internal::SqrtConfig<T>::OutType |
| isqrt_fast(T x) { |
| using OutType = typename internal::SqrtConfig<T>::OutType; |
| using FracType = typename internal::SqrtConfig<T>::FastFracType; |
| using StorageType = typename FXRep<FracType>::StorageType; |
| |
| if (x == 0) |
| return FXRep<OutType>::ZERO(); |
| |
| // Normalize the leading bits to the first two bits. |
| // Shift and then Bit cast x to x_frac gives us: |
| // x = 2^(FRACTION_LEN + 1 - shift) * x_frac; |
| int leading_zeros = cpp::countl_zero(x); |
| int shift = (leading_zeros & (~1)); |
| x <<= shift; |
| // Convert to frac type and compute square root. |
| FracType x_frac = cpp::bit_cast<FracType>( |
| static_cast<StorageType>(x >> FXRep<FracType>::FRACTION_LEN)); |
| OutType r = |
| static_cast<OutType>(sqrt_core<internal::SqrtConfig<FracType>>(x_frac)); |
| // To rescale back to the OutType (Accum) |
| r <<= (FXRep<OutType>::INTEGRAL_LEN - (shift >> 1)); |
| return cpp::bit_cast<OutType>(r); |
| } |
| |
| } // namespace fixed_point |
| } // namespace LIBC_NAMESPACE_DECL |
| |
| #endif // LIBC_COMPILER_HAS_FIXED_POINT |
| |
| #endif // LLVM_LIBC_SRC___SUPPORT_FIXEDPOINT_SQRT_H |