blob: 66fca7cf74bddbc6620980d0854152191e1ff3e3 [file] [log] [blame]
//===--- Core.cpp - Core ORC APIs (MaterializationUnit, JITDylib, etc.) ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/Orc/Core.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/ExecutionEngine/Orc/DebugUtils.h"
#include "llvm/ExecutionEngine/Orc/Shared/OrcError.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MSVCErrorWorkarounds.h"
#include "llvm/Support/raw_ostream.h"
#include <condition_variable>
#include <future>
#include <optional>
#define DEBUG_TYPE "orc"
namespace llvm {
namespace orc {
char ResourceTrackerDefunct::ID = 0;
char FailedToMaterialize::ID = 0;
char SymbolsNotFound::ID = 0;
char SymbolsCouldNotBeRemoved::ID = 0;
char MissingSymbolDefinitions::ID = 0;
char UnexpectedSymbolDefinitions::ID = 0;
char UnsatisfiedSymbolDependencies::ID = 0;
char MaterializationTask::ID = 0;
char LookupTask::ID = 0;
RegisterDependenciesFunction NoDependenciesToRegister =
RegisterDependenciesFunction();
void MaterializationUnit::anchor() {}
ResourceTracker::ResourceTracker(JITDylibSP JD) {
assert((reinterpret_cast<uintptr_t>(JD.get()) & 0x1) == 0 &&
"JITDylib must be two byte aligned");
JD->Retain();
JDAndFlag.store(reinterpret_cast<uintptr_t>(JD.get()));
}
ResourceTracker::~ResourceTracker() {
getJITDylib().getExecutionSession().destroyResourceTracker(*this);
getJITDylib().Release();
}
Error ResourceTracker::remove() {
return getJITDylib().getExecutionSession().removeResourceTracker(*this);
}
void ResourceTracker::transferTo(ResourceTracker &DstRT) {
getJITDylib().getExecutionSession().transferResourceTracker(DstRT, *this);
}
void ResourceTracker::makeDefunct() {
uintptr_t Val = JDAndFlag.load();
Val |= 0x1U;
JDAndFlag.store(Val);
}
ResourceManager::~ResourceManager() = default;
ResourceTrackerDefunct::ResourceTrackerDefunct(ResourceTrackerSP RT)
: RT(std::move(RT)) {}
std::error_code ResourceTrackerDefunct::convertToErrorCode() const {
return orcError(OrcErrorCode::UnknownORCError);
}
void ResourceTrackerDefunct::log(raw_ostream &OS) const {
OS << "Resource tracker " << (void *)RT.get() << " became defunct";
}
FailedToMaterialize::FailedToMaterialize(
std::shared_ptr<SymbolStringPool> SSP,
std::shared_ptr<SymbolDependenceMap> Symbols)
: SSP(std::move(SSP)), Symbols(std::move(Symbols)) {
assert(this->SSP && "String pool cannot be null");
assert(!this->Symbols->empty() && "Can not fail to resolve an empty set");
// FIXME: Use a new dep-map type for FailedToMaterialize errors so that we
// don't have to manually retain/release.
for (auto &[JD, Syms] : *this->Symbols)
JD->Retain();
}
FailedToMaterialize::~FailedToMaterialize() {
for (auto &[JD, Syms] : *Symbols)
JD->Release();
}
std::error_code FailedToMaterialize::convertToErrorCode() const {
return orcError(OrcErrorCode::UnknownORCError);
}
void FailedToMaterialize::log(raw_ostream &OS) const {
OS << "Failed to materialize symbols: " << *Symbols;
}
UnsatisfiedSymbolDependencies::UnsatisfiedSymbolDependencies(
std::shared_ptr<SymbolStringPool> SSP, JITDylibSP JD,
SymbolNameSet FailedSymbols, SymbolDependenceMap BadDeps,
std::string Explanation)
: SSP(std::move(SSP)), JD(std::move(JD)),
FailedSymbols(std::move(FailedSymbols)), BadDeps(std::move(BadDeps)),
Explanation(std::move(Explanation)) {}
std::error_code UnsatisfiedSymbolDependencies::convertToErrorCode() const {
return orcError(OrcErrorCode::UnknownORCError);
}
void UnsatisfiedSymbolDependencies::log(raw_ostream &OS) const {
OS << "In " << JD->getName() << ", failed to materialize " << FailedSymbols
<< ", due to unsatisfied dependencies " << BadDeps;
if (!Explanation.empty())
OS << " (" << Explanation << ")";
}
SymbolsNotFound::SymbolsNotFound(std::shared_ptr<SymbolStringPool> SSP,
SymbolNameSet Symbols)
: SSP(std::move(SSP)) {
llvm::append_range(this->Symbols, Symbols);
assert(!this->Symbols.empty() && "Can not fail to resolve an empty set");
}
SymbolsNotFound::SymbolsNotFound(std::shared_ptr<SymbolStringPool> SSP,
SymbolNameVector Symbols)
: SSP(std::move(SSP)), Symbols(std::move(Symbols)) {
assert(!this->Symbols.empty() && "Can not fail to resolve an empty set");
}
std::error_code SymbolsNotFound::convertToErrorCode() const {
return orcError(OrcErrorCode::UnknownORCError);
}
void SymbolsNotFound::log(raw_ostream &OS) const {
OS << "Symbols not found: " << Symbols;
}
SymbolsCouldNotBeRemoved::SymbolsCouldNotBeRemoved(
std::shared_ptr<SymbolStringPool> SSP, SymbolNameSet Symbols)
: SSP(std::move(SSP)), Symbols(std::move(Symbols)) {
assert(!this->Symbols.empty() && "Can not fail to resolve an empty set");
}
std::error_code SymbolsCouldNotBeRemoved::convertToErrorCode() const {
return orcError(OrcErrorCode::UnknownORCError);
}
void SymbolsCouldNotBeRemoved::log(raw_ostream &OS) const {
OS << "Symbols could not be removed: " << Symbols;
}
std::error_code MissingSymbolDefinitions::convertToErrorCode() const {
return orcError(OrcErrorCode::MissingSymbolDefinitions);
}
void MissingSymbolDefinitions::log(raw_ostream &OS) const {
OS << "Missing definitions in module " << ModuleName
<< ": " << Symbols;
}
std::error_code UnexpectedSymbolDefinitions::convertToErrorCode() const {
return orcError(OrcErrorCode::UnexpectedSymbolDefinitions);
}
void UnexpectedSymbolDefinitions::log(raw_ostream &OS) const {
OS << "Unexpected definitions in module " << ModuleName
<< ": " << Symbols;
}
void SymbolInstance::lookupAsync(LookupAsyncOnCompleteFn OnComplete) const {
JD->getExecutionSession().lookup(
LookupKind::Static, {{JD.get(), JITDylibLookupFlags::MatchAllSymbols}},
SymbolLookupSet(Name), SymbolState::Ready,
[OnComplete = std::move(OnComplete)
#ifndef NDEBUG
,
Name = this->Name // Captured for the assert below only.
#endif // NDEBUG
](Expected<SymbolMap> Result) mutable {
if (Result) {
assert(Result->size() == 1 && "Unexpected number of results");
assert(Result->count(Name) &&
"Result does not contain expected symbol");
OnComplete(Result->begin()->second);
} else
OnComplete(Result.takeError());
},
NoDependenciesToRegister);
}
AsynchronousSymbolQuery::AsynchronousSymbolQuery(
const SymbolLookupSet &Symbols, SymbolState RequiredState,
SymbolsResolvedCallback NotifyComplete)
: NotifyComplete(std::move(NotifyComplete)), RequiredState(RequiredState) {
assert(RequiredState >= SymbolState::Resolved &&
"Cannot query for a symbols that have not reached the resolve state "
"yet");
OutstandingSymbolsCount = Symbols.size();
for (auto &[Name, Flags] : Symbols)
ResolvedSymbols[Name] = ExecutorSymbolDef();
}
void AsynchronousSymbolQuery::notifySymbolMetRequiredState(
const SymbolStringPtr &Name, ExecutorSymbolDef Sym) {
auto I = ResolvedSymbols.find(Name);
assert(I != ResolvedSymbols.end() &&
"Resolving symbol outside the requested set");
assert(I->second == ExecutorSymbolDef() &&
"Redundantly resolving symbol Name");
// If this is a materialization-side-effects-only symbol then drop it,
// otherwise update its map entry with its resolved address.
if (Sym.getFlags().hasMaterializationSideEffectsOnly())
ResolvedSymbols.erase(I);
else
I->second = std::move(Sym);
--OutstandingSymbolsCount;
}
void AsynchronousSymbolQuery::handleComplete(ExecutionSession &ES) {
assert(OutstandingSymbolsCount == 0 &&
"Symbols remain, handleComplete called prematurely");
class RunQueryCompleteTask : public Task {
public:
RunQueryCompleteTask(SymbolMap ResolvedSymbols,
SymbolsResolvedCallback NotifyComplete)
: ResolvedSymbols(std::move(ResolvedSymbols)),
NotifyComplete(std::move(NotifyComplete)) {}
void printDescription(raw_ostream &OS) override {
OS << "Execute query complete callback for " << ResolvedSymbols;
}
void run() override { NotifyComplete(std::move(ResolvedSymbols)); }
private:
SymbolMap ResolvedSymbols;
SymbolsResolvedCallback NotifyComplete;
};
auto T = std::make_unique<RunQueryCompleteTask>(std::move(ResolvedSymbols),
std::move(NotifyComplete));
NotifyComplete = SymbolsResolvedCallback();
ES.dispatchTask(std::move(T));
}
void AsynchronousSymbolQuery::handleFailed(Error Err) {
assert(QueryRegistrations.empty() && ResolvedSymbols.empty() &&
OutstandingSymbolsCount == 0 &&
"Query should already have been abandoned");
NotifyComplete(std::move(Err));
NotifyComplete = SymbolsResolvedCallback();
}
void AsynchronousSymbolQuery::addQueryDependence(JITDylib &JD,
SymbolStringPtr Name) {
bool Added = QueryRegistrations[&JD].insert(std::move(Name)).second;
(void)Added;
assert(Added && "Duplicate dependence notification?");
}
void AsynchronousSymbolQuery::removeQueryDependence(
JITDylib &JD, const SymbolStringPtr &Name) {
auto QRI = QueryRegistrations.find(&JD);
assert(QRI != QueryRegistrations.end() &&
"No dependencies registered for JD");
assert(QRI->second.count(Name) && "No dependency on Name in JD");
QRI->second.erase(Name);
if (QRI->second.empty())
QueryRegistrations.erase(QRI);
}
void AsynchronousSymbolQuery::dropSymbol(const SymbolStringPtr &Name) {
auto I = ResolvedSymbols.find(Name);
assert(I != ResolvedSymbols.end() &&
"Redundant removal of weakly-referenced symbol");
ResolvedSymbols.erase(I);
--OutstandingSymbolsCount;
}
void AsynchronousSymbolQuery::detach() {
ResolvedSymbols.clear();
OutstandingSymbolsCount = 0;
for (auto &[JD, Syms] : QueryRegistrations)
JD->detachQueryHelper(*this, Syms);
QueryRegistrations.clear();
}
ReExportsMaterializationUnit::ReExportsMaterializationUnit(
JITDylib *SourceJD, JITDylibLookupFlags SourceJDLookupFlags,
SymbolAliasMap Aliases)
: MaterializationUnit(extractFlags(Aliases)), SourceJD(SourceJD),
SourceJDLookupFlags(SourceJDLookupFlags), Aliases(std::move(Aliases)) {}
StringRef ReExportsMaterializationUnit::getName() const {
return "<Reexports>";
}
void ReExportsMaterializationUnit::materialize(
std::unique_ptr<MaterializationResponsibility> R) {
auto &ES = R->getTargetJITDylib().getExecutionSession();
JITDylib &TgtJD = R->getTargetJITDylib();
JITDylib &SrcJD = SourceJD ? *SourceJD : TgtJD;
// Find the set of requested aliases and aliasees. Return any unrequested
// aliases back to the JITDylib so as to not prematurely materialize any
// aliasees.
auto RequestedSymbols = R->getRequestedSymbols();
SymbolAliasMap RequestedAliases;
for (auto &Name : RequestedSymbols) {
auto I = Aliases.find(Name);
assert(I != Aliases.end() && "Symbol not found in aliases map?");
RequestedAliases[Name] = std::move(I->second);
Aliases.erase(I);
}
LLVM_DEBUG({
ES.runSessionLocked([&]() {
dbgs() << "materializing reexports: target = " << TgtJD.getName()
<< ", source = " << SrcJD.getName() << " " << RequestedAliases
<< "\n";
});
});
if (!Aliases.empty()) {
auto Err = SourceJD ? R->replace(reexports(*SourceJD, std::move(Aliases),
SourceJDLookupFlags))
: R->replace(symbolAliases(std::move(Aliases)));
if (Err) {
// FIXME: Should this be reported / treated as failure to materialize?
// Or should this be treated as a sanctioned bailing-out?
ES.reportError(std::move(Err));
R->failMaterialization();
return;
}
}
// The OnResolveInfo struct will hold the aliases and responsibility for each
// query in the list.
struct OnResolveInfo {
OnResolveInfo(std::unique_ptr<MaterializationResponsibility> R,
SymbolAliasMap Aliases)
: R(std::move(R)), Aliases(std::move(Aliases)) {}
std::unique_ptr<MaterializationResponsibility> R;
SymbolAliasMap Aliases;
std::vector<SymbolDependenceGroup> SDGs;
};
// Build a list of queries to issue. In each round we build a query for the
// largest set of aliases that we can resolve without encountering a chain of
// aliases (e.g. Foo -> Bar, Bar -> Baz). Such a chain would deadlock as the
// query would be waiting on a symbol that it itself had to resolve. Creating
// a new query for each link in such a chain eliminates the possibility of
// deadlock. In practice chains are likely to be rare, and this algorithm will
// usually result in a single query to issue.
std::vector<std::pair<SymbolLookupSet, std::shared_ptr<OnResolveInfo>>>
QueryInfos;
while (!RequestedAliases.empty()) {
SymbolNameSet ResponsibilitySymbols;
SymbolLookupSet QuerySymbols;
SymbolAliasMap QueryAliases;
// Collect as many aliases as we can without including a chain.
for (auto &KV : RequestedAliases) {
// Chain detected. Skip this symbol for this round.
if (&SrcJD == &TgtJD && (QueryAliases.count(KV.second.Aliasee) ||
RequestedAliases.count(KV.second.Aliasee)))
continue;
ResponsibilitySymbols.insert(KV.first);
QuerySymbols.add(KV.second.Aliasee,
KV.second.AliasFlags.hasMaterializationSideEffectsOnly()
? SymbolLookupFlags::WeaklyReferencedSymbol
: SymbolLookupFlags::RequiredSymbol);
QueryAliases[KV.first] = std::move(KV.second);
}
// Remove the aliases collected this round from the RequestedAliases map.
for (auto &KV : QueryAliases)
RequestedAliases.erase(KV.first);
assert(!QuerySymbols.empty() && "Alias cycle detected!");
auto NewR = R->delegate(ResponsibilitySymbols);
if (!NewR) {
ES.reportError(NewR.takeError());
R->failMaterialization();
return;
}
auto QueryInfo = std::make_shared<OnResolveInfo>(std::move(*NewR),
std::move(QueryAliases));
QueryInfos.push_back(
make_pair(std::move(QuerySymbols), std::move(QueryInfo)));
}
// Issue the queries.
while (!QueryInfos.empty()) {
auto QuerySymbols = std::move(QueryInfos.back().first);
auto QueryInfo = std::move(QueryInfos.back().second);
QueryInfos.pop_back();
auto RegisterDependencies = [QueryInfo,
&SrcJD](const SymbolDependenceMap &Deps) {
// If there were no materializing symbols, just bail out.
if (Deps.empty())
return;
// Otherwise the only deps should be on SrcJD.
assert(Deps.size() == 1 && Deps.count(&SrcJD) &&
"Unexpected dependencies for reexports");
auto &SrcJDDeps = Deps.find(&SrcJD)->second;
for (auto &[Alias, AliasInfo] : QueryInfo->Aliases)
if (SrcJDDeps.count(AliasInfo.Aliasee))
QueryInfo->SDGs.push_back({{Alias}, {{&SrcJD, {AliasInfo.Aliasee}}}});
};
auto OnComplete = [QueryInfo](Expected<SymbolMap> Result) {
auto &ES = QueryInfo->R->getTargetJITDylib().getExecutionSession();
if (Result) {
SymbolMap ResolutionMap;
for (auto &KV : QueryInfo->Aliases) {
assert((KV.second.AliasFlags.hasMaterializationSideEffectsOnly() ||
Result->count(KV.second.Aliasee)) &&
"Result map missing entry?");
// Don't try to resolve materialization-side-effects-only symbols.
if (KV.second.AliasFlags.hasMaterializationSideEffectsOnly())
continue;
ResolutionMap[KV.first] = {(*Result)[KV.second.Aliasee].getAddress(),
KV.second.AliasFlags};
}
if (auto Err = QueryInfo->R->notifyResolved(ResolutionMap)) {
ES.reportError(std::move(Err));
QueryInfo->R->failMaterialization();
return;
}
if (auto Err = QueryInfo->R->notifyEmitted(QueryInfo->SDGs)) {
ES.reportError(std::move(Err));
QueryInfo->R->failMaterialization();
return;
}
} else {
ES.reportError(Result.takeError());
QueryInfo->R->failMaterialization();
}
};
ES.lookup(LookupKind::Static,
JITDylibSearchOrder({{&SrcJD, SourceJDLookupFlags}}),
QuerySymbols, SymbolState::Resolved, std::move(OnComplete),
std::move(RegisterDependencies));
}
}
void ReExportsMaterializationUnit::discard(const JITDylib &JD,
const SymbolStringPtr &Name) {
assert(Aliases.count(Name) &&
"Symbol not covered by this MaterializationUnit");
Aliases.erase(Name);
}
MaterializationUnit::Interface
ReExportsMaterializationUnit::extractFlags(const SymbolAliasMap &Aliases) {
SymbolFlagsMap SymbolFlags;
for (auto &KV : Aliases)
SymbolFlags[KV.first] = KV.second.AliasFlags;
return MaterializationUnit::Interface(std::move(SymbolFlags), nullptr);
}
Expected<SymbolAliasMap> buildSimpleReexportsAliasMap(JITDylib &SourceJD,
SymbolNameSet Symbols) {
SymbolLookupSet LookupSet(Symbols);
auto Flags = SourceJD.getExecutionSession().lookupFlags(
LookupKind::Static, {{&SourceJD, JITDylibLookupFlags::MatchAllSymbols}},
SymbolLookupSet(std::move(Symbols)));
if (!Flags)
return Flags.takeError();
SymbolAliasMap Result;
for (auto &Name : Symbols) {
assert(Flags->count(Name) && "Missing entry in flags map");
Result[Name] = SymbolAliasMapEntry(Name, (*Flags)[Name]);
}
return Result;
}
class InProgressLookupState {
public:
// FIXME: Reduce the number of SymbolStringPtrs here. See
// https://github.com/llvm/llvm-project/issues/55576.
InProgressLookupState(LookupKind K, JITDylibSearchOrder SearchOrder,
SymbolLookupSet LookupSet, SymbolState RequiredState)
: K(K), SearchOrder(std::move(SearchOrder)),
LookupSet(std::move(LookupSet)), RequiredState(RequiredState) {
DefGeneratorCandidates = this->LookupSet;
}
virtual ~InProgressLookupState() = default;
virtual void complete(std::unique_ptr<InProgressLookupState> IPLS) = 0;
virtual void fail(Error Err) = 0;
LookupKind K;
JITDylibSearchOrder SearchOrder;
SymbolLookupSet LookupSet;
SymbolState RequiredState;
size_t CurSearchOrderIndex = 0;
bool NewJITDylib = true;
SymbolLookupSet DefGeneratorCandidates;
SymbolLookupSet DefGeneratorNonCandidates;
enum {
NotInGenerator, // Not currently using a generator.
ResumedForGenerator, // Resumed after being auto-suspended before generator.
InGenerator // Currently using generator.
} GenState = NotInGenerator;
std::vector<std::weak_ptr<DefinitionGenerator>> CurDefGeneratorStack;
};
class InProgressLookupFlagsState : public InProgressLookupState {
public:
InProgressLookupFlagsState(
LookupKind K, JITDylibSearchOrder SearchOrder, SymbolLookupSet LookupSet,
unique_function<void(Expected<SymbolFlagsMap>)> OnComplete)
: InProgressLookupState(K, std::move(SearchOrder), std::move(LookupSet),
SymbolState::NeverSearched),
OnComplete(std::move(OnComplete)) {}
void complete(std::unique_ptr<InProgressLookupState> IPLS) override {
auto &ES = SearchOrder.front().first->getExecutionSession();
ES.OL_completeLookupFlags(std::move(IPLS), std::move(OnComplete));
}
void fail(Error Err) override { OnComplete(std::move(Err)); }
private:
unique_function<void(Expected<SymbolFlagsMap>)> OnComplete;
};
class InProgressFullLookupState : public InProgressLookupState {
public:
InProgressFullLookupState(LookupKind K, JITDylibSearchOrder SearchOrder,
SymbolLookupSet LookupSet,
SymbolState RequiredState,
std::shared_ptr<AsynchronousSymbolQuery> Q,
RegisterDependenciesFunction RegisterDependencies)
: InProgressLookupState(K, std::move(SearchOrder), std::move(LookupSet),
RequiredState),
Q(std::move(Q)), RegisterDependencies(std::move(RegisterDependencies)) {
}
void complete(std::unique_ptr<InProgressLookupState> IPLS) override {
auto &ES = SearchOrder.front().first->getExecutionSession();
ES.OL_completeLookup(std::move(IPLS), std::move(Q),
std::move(RegisterDependencies));
}
void fail(Error Err) override {
Q->detach();
Q->handleFailed(std::move(Err));
}
private:
std::shared_ptr<AsynchronousSymbolQuery> Q;
RegisterDependenciesFunction RegisterDependencies;
};
ReexportsGenerator::ReexportsGenerator(JITDylib &SourceJD,
JITDylibLookupFlags SourceJDLookupFlags,
SymbolPredicate Allow)
: SourceJD(SourceJD), SourceJDLookupFlags(SourceJDLookupFlags),
Allow(std::move(Allow)) {}
Error ReexportsGenerator::tryToGenerate(LookupState &LS, LookupKind K,
JITDylib &JD,
JITDylibLookupFlags JDLookupFlags,
const SymbolLookupSet &LookupSet) {
assert(&JD != &SourceJD && "Cannot re-export from the same dylib");
// Use lookupFlags to find the subset of symbols that match our lookup.
auto Flags = JD.getExecutionSession().lookupFlags(
K, {{&SourceJD, JDLookupFlags}}, LookupSet);
if (!Flags)
return Flags.takeError();
// Create an alias map.
orc::SymbolAliasMap AliasMap;
for (auto &KV : *Flags)
if (!Allow || Allow(KV.first))
AliasMap[KV.first] = SymbolAliasMapEntry(KV.first, KV.second);
if (AliasMap.empty())
return Error::success();
// Define the re-exports.
return JD.define(reexports(SourceJD, AliasMap, SourceJDLookupFlags));
}
LookupState::LookupState(std::unique_ptr<InProgressLookupState> IPLS)
: IPLS(std::move(IPLS)) {}
void LookupState::reset(InProgressLookupState *IPLS) { this->IPLS.reset(IPLS); }
LookupState::LookupState() = default;
LookupState::LookupState(LookupState &&) = default;
LookupState &LookupState::operator=(LookupState &&) = default;
LookupState::~LookupState() = default;
void LookupState::continueLookup(Error Err) {
assert(IPLS && "Cannot call continueLookup on empty LookupState");
auto &ES = IPLS->SearchOrder.begin()->first->getExecutionSession();
ES.OL_applyQueryPhase1(std::move(IPLS), std::move(Err));
}
DefinitionGenerator::~DefinitionGenerator() {
std::deque<LookupState> LookupsToFail;
{
std::lock_guard<std::mutex> Lock(M);
std::swap(PendingLookups, LookupsToFail);
InUse = false;
}
for (auto &LS : LookupsToFail)
LS.continueLookup(make_error<StringError>(
"Query waiting on DefinitionGenerator that was destroyed",
inconvertibleErrorCode()));
}
JITDylib::~JITDylib() {
LLVM_DEBUG(dbgs() << "Destroying JITDylib " << getName() << "\n");
}
Error JITDylib::clear() {
std::vector<ResourceTrackerSP> TrackersToRemove;
ES.runSessionLocked([&]() {
assert(State != Closed && "JD is defunct");
for (auto &KV : TrackerSymbols)
TrackersToRemove.push_back(KV.first);
TrackersToRemove.push_back(getDefaultResourceTracker());
});
Error Err = Error::success();
for (auto &RT : TrackersToRemove)
Err = joinErrors(std::move(Err), RT->remove());
return Err;
}
ResourceTrackerSP JITDylib::getDefaultResourceTracker() {
return ES.runSessionLocked([this] {
assert(State != Closed && "JD is defunct");
if (!DefaultTracker)
DefaultTracker = new ResourceTracker(this);
return DefaultTracker;
});
}
ResourceTrackerSP JITDylib::createResourceTracker() {
return ES.runSessionLocked([this] {
assert(State == Open && "JD is defunct");
ResourceTrackerSP RT = new ResourceTracker(this);
return RT;
});
}
void JITDylib::removeGenerator(DefinitionGenerator &G) {
// DefGenerator moved into TmpDG to ensure that it's destroyed outside the
// session lock (since it may have to send errors to pending queries).
std::shared_ptr<DefinitionGenerator> TmpDG;
ES.runSessionLocked([&] {
assert(State == Open && "JD is defunct");
auto I = llvm::find_if(DefGenerators,
[&](const std::shared_ptr<DefinitionGenerator> &H) {
return H.get() == &G;
});
assert(I != DefGenerators.end() && "Generator not found");
TmpDG = std::move(*I);
DefGenerators.erase(I);
});
}
Expected<SymbolFlagsMap>
JITDylib::defineMaterializing(MaterializationResponsibility &FromMR,
SymbolFlagsMap SymbolFlags) {
return ES.runSessionLocked([&]() -> Expected<SymbolFlagsMap> {
if (FromMR.RT->isDefunct())
return make_error<ResourceTrackerDefunct>(FromMR.RT);
std::vector<NonOwningSymbolStringPtr> AddedSyms;
std::vector<NonOwningSymbolStringPtr> RejectedWeakDefs;
for (auto SFItr = SymbolFlags.begin(), SFEnd = SymbolFlags.end();
SFItr != SFEnd; ++SFItr) {
auto &Name = SFItr->first;
auto &Flags = SFItr->second;
auto EntryItr = Symbols.find(Name);
// If the entry already exists...
if (EntryItr != Symbols.end()) {
// If this is a strong definition then error out.
if (!Flags.isWeak()) {
// Remove any symbols already added.
for (auto &S : AddedSyms)
Symbols.erase(Symbols.find_as(S));
// FIXME: Return all duplicates.
return make_error<DuplicateDefinition>(std::string(*Name));
}
// Otherwise just make a note to discard this symbol after the loop.
RejectedWeakDefs.push_back(NonOwningSymbolStringPtr(Name));
continue;
} else
EntryItr =
Symbols.insert(std::make_pair(Name, SymbolTableEntry(Flags))).first;
AddedSyms.push_back(NonOwningSymbolStringPtr(Name));
EntryItr->second.setState(SymbolState::Materializing);
}
// Remove any rejected weak definitions from the SymbolFlags map.
while (!RejectedWeakDefs.empty()) {
SymbolFlags.erase(SymbolFlags.find_as(RejectedWeakDefs.back()));
RejectedWeakDefs.pop_back();
}
return SymbolFlags;
});
}
Error JITDylib::replace(MaterializationResponsibility &FromMR,
std::unique_ptr<MaterializationUnit> MU) {
assert(MU != nullptr && "Can not replace with a null MaterializationUnit");
std::unique_ptr<MaterializationUnit> MustRunMU;
std::unique_ptr<MaterializationResponsibility> MustRunMR;
auto Err =
ES.runSessionLocked([&, this]() -> Error {
if (FromMR.RT->isDefunct())
return make_error<ResourceTrackerDefunct>(std::move(FromMR.RT));
#ifndef NDEBUG
for (auto &KV : MU->getSymbols()) {
auto SymI = Symbols.find(KV.first);
assert(SymI != Symbols.end() && "Replacing unknown symbol");
assert(SymI->second.getState() == SymbolState::Materializing &&
"Can not replace a symbol that ha is not materializing");
assert(!SymI->second.hasMaterializerAttached() &&
"Symbol should not have materializer attached already");
assert(UnmaterializedInfos.count(KV.first) == 0 &&
"Symbol being replaced should have no UnmaterializedInfo");
}
#endif // NDEBUG
// If the tracker is defunct we need to bail out immediately.
// If any symbol has pending queries against it then we need to
// materialize MU immediately.
for (auto &KV : MU->getSymbols()) {
auto MII = MaterializingInfos.find(KV.first);
if (MII != MaterializingInfos.end()) {
if (MII->second.hasQueriesPending()) {
MustRunMR = ES.createMaterializationResponsibility(
*FromMR.RT, std::move(MU->SymbolFlags),
std::move(MU->InitSymbol));
MustRunMU = std::move(MU);
return Error::success();
}
}
}
// Otherwise, make MU responsible for all the symbols.
auto UMI = std::make_shared<UnmaterializedInfo>(std::move(MU),
FromMR.RT.get());
for (auto &KV : UMI->MU->getSymbols()) {
auto SymI = Symbols.find(KV.first);
assert(SymI->second.getState() == SymbolState::Materializing &&
"Can not replace a symbol that is not materializing");
assert(!SymI->second.hasMaterializerAttached() &&
"Can not replace a symbol that has a materializer attached");
assert(UnmaterializedInfos.count(KV.first) == 0 &&
"Unexpected materializer entry in map");
SymI->second.setAddress(SymI->second.getAddress());
SymI->second.setMaterializerAttached(true);
auto &UMIEntry = UnmaterializedInfos[KV.first];
assert((!UMIEntry || !UMIEntry->MU) &&
"Replacing symbol with materializer still attached");
UMIEntry = UMI;
}
return Error::success();
});
if (Err)
return Err;
if (MustRunMU) {
assert(MustRunMR && "MustRunMU set implies MustRunMR set");
ES.dispatchTask(std::make_unique<MaterializationTask>(
std::move(MustRunMU), std::move(MustRunMR)));
} else {
assert(!MustRunMR && "MustRunMU unset implies MustRunMR unset");
}
return Error::success();
}
Expected<std::unique_ptr<MaterializationResponsibility>>
JITDylib::delegate(MaterializationResponsibility &FromMR,
SymbolFlagsMap SymbolFlags, SymbolStringPtr InitSymbol) {
return ES.runSessionLocked(
[&]() -> Expected<std::unique_ptr<MaterializationResponsibility>> {
if (FromMR.RT->isDefunct())
return make_error<ResourceTrackerDefunct>(std::move(FromMR.RT));
return ES.createMaterializationResponsibility(
*FromMR.RT, std::move(SymbolFlags), std::move(InitSymbol));
});
}
SymbolNameSet
JITDylib::getRequestedSymbols(const SymbolFlagsMap &SymbolFlags) const {
return ES.runSessionLocked([&]() {
SymbolNameSet RequestedSymbols;
for (auto &KV : SymbolFlags) {
assert(Symbols.count(KV.first) && "JITDylib does not cover this symbol?");
assert(Symbols.find(KV.first)->second.getState() !=
SymbolState::NeverSearched &&
Symbols.find(KV.first)->second.getState() != SymbolState::Ready &&
"getRequestedSymbols can only be called for symbols that have "
"started materializing");
auto I = MaterializingInfos.find(KV.first);
if (I == MaterializingInfos.end())
continue;
if (I->second.hasQueriesPending())
RequestedSymbols.insert(KV.first);
}
return RequestedSymbols;
});
}
Error JITDylib::resolve(MaterializationResponsibility &MR,
const SymbolMap &Resolved) {
AsynchronousSymbolQuerySet CompletedQueries;
if (auto Err = ES.runSessionLocked([&, this]() -> Error {
if (MR.RT->isDefunct())
return make_error<ResourceTrackerDefunct>(MR.RT);
if (State != Open)
return make_error<StringError>("JITDylib " + getName() +
" is defunct",
inconvertibleErrorCode());
struct WorklistEntry {
SymbolTable::iterator SymI;
ExecutorSymbolDef ResolvedSym;
};
SymbolNameSet SymbolsInErrorState;
std::vector<WorklistEntry> Worklist;
Worklist.reserve(Resolved.size());
// Build worklist and check for any symbols in the error state.
for (const auto &KV : Resolved) {
assert(!KV.second.getFlags().hasError() &&
"Resolution result can not have error flag set");
auto SymI = Symbols.find(KV.first);
assert(SymI != Symbols.end() && "Symbol not found");
assert(!SymI->second.hasMaterializerAttached() &&
"Resolving symbol with materializer attached?");
assert(SymI->second.getState() == SymbolState::Materializing &&
"Symbol should be materializing");
assert(SymI->second.getAddress() == ExecutorAddr() &&
"Symbol has already been resolved");
if (SymI->second.getFlags().hasError())
SymbolsInErrorState.insert(KV.first);
else {
if (SymI->second.getFlags() & JITSymbolFlags::Common) {
[[maybe_unused]] auto WeakOrCommon =
JITSymbolFlags::Weak | JITSymbolFlags::Common;
assert((KV.second.getFlags() & WeakOrCommon) &&
"Common symbols must be resolved as common or weak");
assert((KV.second.getFlags() & ~WeakOrCommon) ==
(SymI->second.getFlags() & ~JITSymbolFlags::Common) &&
"Resolving symbol with incorrect flags");
} else
assert(KV.second.getFlags() == SymI->second.getFlags() &&
"Resolved flags should match the declared flags");
Worklist.push_back(
{SymI, {KV.second.getAddress(), SymI->second.getFlags()}});
}
}
// If any symbols were in the error state then bail out.
if (!SymbolsInErrorState.empty()) {
auto FailedSymbolsDepMap = std::make_shared<SymbolDependenceMap>();
(*FailedSymbolsDepMap)[this] = std::move(SymbolsInErrorState);
return make_error<FailedToMaterialize>(
getExecutionSession().getSymbolStringPool(),
std::move(FailedSymbolsDepMap));
}
while (!Worklist.empty()) {
auto SymI = Worklist.back().SymI;
auto ResolvedSym = Worklist.back().ResolvedSym;
Worklist.pop_back();
auto &Name = SymI->first;
// Resolved symbols can not be weak: discard the weak flag.
JITSymbolFlags ResolvedFlags = ResolvedSym.getFlags();
SymI->second.setAddress(ResolvedSym.getAddress());
SymI->second.setFlags(ResolvedFlags);
SymI->second.setState(SymbolState::Resolved);
auto MII = MaterializingInfos.find(Name);
if (MII == MaterializingInfos.end())
continue;
auto &MI = MII->second;
for (auto &Q : MI.takeQueriesMeeting(SymbolState::Resolved)) {
Q->notifySymbolMetRequiredState(Name, ResolvedSym);
if (Q->isComplete())
CompletedQueries.insert(std::move(Q));
}
}
return Error::success();
}))
return Err;
// Otherwise notify all the completed queries.
for (auto &Q : CompletedQueries) {
assert(Q->isComplete() && "Q not completed");
Q->handleComplete(ES);
}
return Error::success();
}
void JITDylib::unlinkMaterializationResponsibility(
MaterializationResponsibility &MR) {
ES.runSessionLocked([&]() {
auto I = TrackerMRs.find(MR.RT.get());
assert(I != TrackerMRs.end() && "No MRs in TrackerMRs list for RT");
assert(I->second.count(&MR) && "MR not in TrackerMRs list for RT");
I->second.erase(&MR);
if (I->second.empty())
TrackerMRs.erase(MR.RT.get());
});
}
void JITDylib::shrinkMaterializationInfoMemory() {
// DenseMap::erase never shrinks its storage; use clear to heuristically free
// memory since we may have long-lived JDs after linking is done.
if (UnmaterializedInfos.empty())
UnmaterializedInfos.clear();
if (MaterializingInfos.empty())
MaterializingInfos.clear();
}
void JITDylib::setLinkOrder(JITDylibSearchOrder NewLinkOrder,
bool LinkAgainstThisJITDylibFirst) {
ES.runSessionLocked([&]() {
assert(State == Open && "JD is defunct");
if (LinkAgainstThisJITDylibFirst) {
LinkOrder.clear();
if (NewLinkOrder.empty() || NewLinkOrder.front().first != this)
LinkOrder.push_back(
std::make_pair(this, JITDylibLookupFlags::MatchAllSymbols));
llvm::append_range(LinkOrder, NewLinkOrder);
} else
LinkOrder = std::move(NewLinkOrder);
});
}
void JITDylib::addToLinkOrder(const JITDylibSearchOrder &NewLinks) {
ES.runSessionLocked([&]() {
for (auto &KV : NewLinks) {
// Skip elements of NewLinks that are already in the link order.
if (llvm::is_contained(LinkOrder, KV))
continue;
LinkOrder.push_back(std::move(KV));
}
});
}
void JITDylib::addToLinkOrder(JITDylib &JD, JITDylibLookupFlags JDLookupFlags) {
ES.runSessionLocked([&]() { LinkOrder.push_back({&JD, JDLookupFlags}); });
}
void JITDylib::replaceInLinkOrder(JITDylib &OldJD, JITDylib &NewJD,
JITDylibLookupFlags JDLookupFlags) {
ES.runSessionLocked([&]() {
assert(State == Open && "JD is defunct");
for (auto &KV : LinkOrder)
if (KV.first == &OldJD) {
KV = {&NewJD, JDLookupFlags};
break;
}
});
}
void JITDylib::removeFromLinkOrder(JITDylib &JD) {
ES.runSessionLocked([&]() {
assert(State == Open && "JD is defunct");
auto I = llvm::find_if(LinkOrder,
[&](const JITDylibSearchOrder::value_type &KV) {
return KV.first == &JD;
});
if (I != LinkOrder.end())
LinkOrder.erase(I);
});
}
Error JITDylib::remove(const SymbolNameSet &Names) {
return ES.runSessionLocked([&]() -> Error {
assert(State == Open && "JD is defunct");
using SymbolMaterializerItrPair =
std::pair<SymbolTable::iterator, UnmaterializedInfosMap::iterator>;
std::vector<SymbolMaterializerItrPair> SymbolsToRemove;
SymbolNameSet Missing;
SymbolNameSet Materializing;
for (auto &Name : Names) {
auto I = Symbols.find(Name);
// Note symbol missing.
if (I == Symbols.end()) {
Missing.insert(Name);
continue;
}
// Note symbol materializing.
if (I->second.getState() != SymbolState::NeverSearched &&
I->second.getState() != SymbolState::Ready) {
Materializing.insert(Name);
continue;
}
auto UMII = I->second.hasMaterializerAttached()
? UnmaterializedInfos.find(Name)
: UnmaterializedInfos.end();
SymbolsToRemove.push_back(std::make_pair(I, UMII));
}
// If any of the symbols are not defined, return an error.
if (!Missing.empty())
return make_error<SymbolsNotFound>(ES.getSymbolStringPool(),
std::move(Missing));
// If any of the symbols are currently materializing, return an error.
if (!Materializing.empty())
return make_error<SymbolsCouldNotBeRemoved>(ES.getSymbolStringPool(),
std::move(Materializing));
// Remove the symbols.
for (auto &SymbolMaterializerItrPair : SymbolsToRemove) {
auto UMII = SymbolMaterializerItrPair.second;
// If there is a materializer attached, call discard.
if (UMII != UnmaterializedInfos.end()) {
UMII->second->MU->doDiscard(*this, UMII->first);
UnmaterializedInfos.erase(UMII);
}
auto SymI = SymbolMaterializerItrPair.first;
Symbols.erase(SymI);
}
shrinkMaterializationInfoMemory();
return Error::success();
});
}
void JITDylib::dump(raw_ostream &OS) {
ES.runSessionLocked([&, this]() {
OS << "JITDylib \"" << getName() << "\" (ES: "
<< format("0x%016" PRIx64, reinterpret_cast<uintptr_t>(&ES))
<< ", State = ";
switch (State) {
case Open:
OS << "Open";
break;
case Closing:
OS << "Closing";
break;
case Closed:
OS << "Closed";
break;
}
OS << ")\n";
if (State == Closed)
return;
OS << "Link order: " << LinkOrder << "\n"
<< "Symbol table:\n";
// Sort symbols so we get a deterministic order and can check them in tests.
std::vector<std::pair<SymbolStringPtr, SymbolTableEntry *>> SymbolsSorted;
for (auto &KV : Symbols)
SymbolsSorted.emplace_back(KV.first, &KV.second);
llvm::sort(SymbolsSorted, [](const auto &L, const auto &R) {
return *L.first < *R.first;
});
for (auto &KV : SymbolsSorted) {
OS << " \"" << *KV.first << "\": ";
if (auto Addr = KV.second->getAddress())
OS << Addr;
else
OS << "<not resolved> ";
OS << " " << KV.second->getFlags() << " " << KV.second->getState();
if (KV.second->hasMaterializerAttached()) {
OS << " (Materializer ";
auto I = UnmaterializedInfos.find(KV.first);
assert(I != UnmaterializedInfos.end() &&
"Lazy symbol should have UnmaterializedInfo");
OS << I->second->MU.get() << ", " << I->second->MU->getName() << ")\n";
} else
OS << "\n";
}
if (!MaterializingInfos.empty())
OS << " MaterializingInfos entries:\n";
for (auto &KV : MaterializingInfos) {
OS << " \"" << *KV.first << "\":\n"
<< " " << KV.second.pendingQueries().size()
<< " pending queries: { ";
for (const auto &Q : KV.second.pendingQueries())
OS << Q.get() << " (" << Q->getRequiredState() << ") ";
OS << "}\n Defining EDU: ";
if (KV.second.DefiningEDU) {
OS << KV.second.DefiningEDU.get() << " { ";
for (auto &[Name, Flags] : KV.second.DefiningEDU->Symbols)
OS << Name << " ";
OS << "}\n";
OS << " Dependencies:\n";
if (!KV.second.DefiningEDU->Dependencies.empty()) {
for (auto &[DepJD, Deps] : KV.second.DefiningEDU->Dependencies) {
OS << " " << DepJD->getName() << ": [ ";
for (auto &Dep : Deps)
OS << Dep << " ";
OS << "]\n";
}
} else
OS << " none\n";
} else
OS << "none\n";
OS << " Dependant EDUs:\n";
if (!KV.second.DependantEDUs.empty()) {
for (auto &DependantEDU : KV.second.DependantEDUs) {
OS << " " << DependantEDU << ": "
<< DependantEDU->JD->getName() << " { ";
for (auto &[Name, Flags] : DependantEDU->Symbols)
OS << Name << " ";
OS << "}\n";
}
} else
OS << " none\n";
assert((Symbols[KV.first].getState() != SymbolState::Ready ||
(KV.second.pendingQueries().empty() && !KV.second.DefiningEDU &&
!KV.second.DependantEDUs.empty())) &&
"Stale materializing info entry");
}
});
}
void JITDylib::MaterializingInfo::addQuery(
std::shared_ptr<AsynchronousSymbolQuery> Q) {
auto I = llvm::lower_bound(
llvm::reverse(PendingQueries), Q->getRequiredState(),
[](const std::shared_ptr<AsynchronousSymbolQuery> &V, SymbolState S) {
return V->getRequiredState() <= S;
});
PendingQueries.insert(I.base(), std::move(Q));
}
void JITDylib::MaterializingInfo::removeQuery(
const AsynchronousSymbolQuery &Q) {
// FIXME: Implement 'find_as' for shared_ptr<T>/T*.
auto I = llvm::find_if(
PendingQueries, [&Q](const std::shared_ptr<AsynchronousSymbolQuery> &V) {
return V.get() == &Q;
});
if (I != PendingQueries.end())
PendingQueries.erase(I);
}
JITDylib::AsynchronousSymbolQueryList
JITDylib::MaterializingInfo::takeQueriesMeeting(SymbolState RequiredState) {
AsynchronousSymbolQueryList Result;
while (!PendingQueries.empty()) {
if (PendingQueries.back()->getRequiredState() > RequiredState)
break;
Result.push_back(std::move(PendingQueries.back()));
PendingQueries.pop_back();
}
return Result;
}
JITDylib::JITDylib(ExecutionSession &ES, std::string Name)
: JITLinkDylib(std::move(Name)), ES(ES) {
LinkOrder.push_back({this, JITDylibLookupFlags::MatchAllSymbols});
}
JITDylib::RemoveTrackerResult JITDylib::IL_removeTracker(ResourceTracker &RT) {
// Note: Should be called under the session lock.
assert(State != Closed && "JD is defunct");
SymbolNameVector SymbolsToRemove;
SymbolNameVector SymbolsToFail;
if (&RT == DefaultTracker.get()) {
SymbolNameSet TrackedSymbols;
for (auto &KV : TrackerSymbols)
TrackedSymbols.insert_range(KV.second);
for (auto &KV : Symbols) {
auto &Sym = KV.first;
if (!TrackedSymbols.count(Sym))
SymbolsToRemove.push_back(Sym);
}
DefaultTracker.reset();
} else {
/// Check for a non-default tracker.
auto I = TrackerSymbols.find(&RT);
if (I != TrackerSymbols.end()) {
SymbolsToRemove = std::move(I->second);
TrackerSymbols.erase(I);
}
// ... if not found this tracker was already defunct. Nothing to do.
}
for (auto &Sym : SymbolsToRemove) {
assert(Symbols.count(Sym) && "Symbol not in symbol table");
// If there is a MaterializingInfo then collect any queries to fail.
auto MII = MaterializingInfos.find(Sym);
if (MII != MaterializingInfos.end())
SymbolsToFail.push_back(Sym);
}
auto [QueriesToFail, FailedSymbols] =
ES.IL_failSymbols(*this, std::move(SymbolsToFail));
std::vector<std::unique_ptr<MaterializationUnit>> DefunctMUs;
// Removed symbols should be taken out of the table altogether.
for (auto &Sym : SymbolsToRemove) {
auto I = Symbols.find(Sym);
assert(I != Symbols.end() && "Symbol not present in table");
// Remove Materializer if present.
if (I->second.hasMaterializerAttached()) {
// FIXME: Should this discard the symbols?
auto J = UnmaterializedInfos.find(Sym);
assert(J != UnmaterializedInfos.end() &&
"Symbol table indicates MU present, but no UMI record");
if (J->second->MU)
DefunctMUs.push_back(std::move(J->second->MU));
UnmaterializedInfos.erase(J);
} else {
assert(!UnmaterializedInfos.count(Sym) &&
"Symbol has materializer attached");
}
Symbols.erase(I);
}
shrinkMaterializationInfoMemory();
return {std::move(QueriesToFail), std::move(FailedSymbols),
std::move(DefunctMUs)};
}
void JITDylib::transferTracker(ResourceTracker &DstRT, ResourceTracker &SrcRT) {
assert(State != Closed && "JD is defunct");
assert(&DstRT != &SrcRT && "No-op transfers shouldn't call transferTracker");
assert(&DstRT.getJITDylib() == this && "DstRT is not for this JITDylib");
assert(&SrcRT.getJITDylib() == this && "SrcRT is not for this JITDylib");
// Update trackers for any not-yet materialized units.
for (auto &KV : UnmaterializedInfos) {
if (KV.second->RT == &SrcRT)
KV.second->RT = &DstRT;
}
// Update trackers for any active materialization responsibilities.
{
auto I = TrackerMRs.find(&SrcRT);
if (I != TrackerMRs.end()) {
auto &SrcMRs = I->second;
auto &DstMRs = TrackerMRs[&DstRT];
for (auto *MR : SrcMRs)
MR->RT = &DstRT;
if (DstMRs.empty())
DstMRs = std::move(SrcMRs);
else
DstMRs.insert_range(SrcMRs);
// Erase SrcRT entry in TrackerMRs. Use &SrcRT key rather than iterator I
// for this, since I may have been invalidated by 'TrackerMRs[&DstRT]'.
TrackerMRs.erase(&SrcRT);
}
}
// If we're transfering to the default tracker we just need to delete the
// tracked symbols for the source tracker.
if (&DstRT == DefaultTracker.get()) {
TrackerSymbols.erase(&SrcRT);
return;
}
// If we're transferring from the default tracker we need to find all
// currently untracked symbols.
if (&SrcRT == DefaultTracker.get()) {
assert(!TrackerSymbols.count(&SrcRT) &&
"Default tracker should not appear in TrackerSymbols");
SymbolNameVector SymbolsToTrack;
SymbolNameSet CurrentlyTrackedSymbols;
for (auto &KV : TrackerSymbols)
CurrentlyTrackedSymbols.insert_range(KV.second);
for (auto &KV : Symbols) {
auto &Sym = KV.first;
if (!CurrentlyTrackedSymbols.count(Sym))
SymbolsToTrack.push_back(Sym);
}
TrackerSymbols[&DstRT] = std::move(SymbolsToTrack);
return;
}
auto &DstTrackedSymbols = TrackerSymbols[&DstRT];
// Finally if neither SrtRT or DstRT are the default tracker then
// just append DstRT's tracked symbols to SrtRT's.
auto SI = TrackerSymbols.find(&SrcRT);
if (SI == TrackerSymbols.end())
return;
DstTrackedSymbols.reserve(DstTrackedSymbols.size() + SI->second.size());
for (auto &Sym : SI->second)
DstTrackedSymbols.push_back(std::move(Sym));
TrackerSymbols.erase(SI);
}
Error JITDylib::defineImpl(MaterializationUnit &MU) {
LLVM_DEBUG({ dbgs() << " " << MU.getSymbols() << "\n"; });
SymbolNameSet Duplicates;
std::vector<SymbolStringPtr> ExistingDefsOverridden;
std::vector<SymbolStringPtr> MUDefsOverridden;
for (const auto &KV : MU.getSymbols()) {
auto I = Symbols.find(KV.first);
if (I != Symbols.end()) {
if (KV.second.isStrong()) {
if (I->second.getFlags().isStrong() ||
I->second.getState() > SymbolState::NeverSearched)
Duplicates.insert(KV.first);
else {
assert(I->second.getState() == SymbolState::NeverSearched &&
"Overridden existing def should be in the never-searched "
"state");
ExistingDefsOverridden.push_back(KV.first);
}
} else
MUDefsOverridden.push_back(KV.first);
}
}
// If there were any duplicate definitions then bail out.
if (!Duplicates.empty()) {
LLVM_DEBUG(
{ dbgs() << " Error: Duplicate symbols " << Duplicates << "\n"; });
return make_error<DuplicateDefinition>(std::string(**Duplicates.begin()));
}
// Discard any overridden defs in this MU.
LLVM_DEBUG({
if (!MUDefsOverridden.empty())
dbgs() << " Defs in this MU overridden: " << MUDefsOverridden << "\n";
});
for (auto &S : MUDefsOverridden)
MU.doDiscard(*this, S);
// Discard existing overridden defs.
LLVM_DEBUG({
if (!ExistingDefsOverridden.empty())
dbgs() << " Existing defs overridden by this MU: " << MUDefsOverridden
<< "\n";
});
for (auto &S : ExistingDefsOverridden) {
auto UMII = UnmaterializedInfos.find(S);
assert(UMII != UnmaterializedInfos.end() &&
"Overridden existing def should have an UnmaterializedInfo");
UMII->second->MU->doDiscard(*this, S);
}
// Finally, add the defs from this MU.
for (auto &KV : MU.getSymbols()) {
auto &SymEntry = Symbols[KV.first];
SymEntry.setFlags(KV.second);
SymEntry.setState(SymbolState::NeverSearched);
SymEntry.setMaterializerAttached(true);
}
return Error::success();
}
void JITDylib::installMaterializationUnit(
std::unique_ptr<MaterializationUnit> MU, ResourceTracker &RT) {
/// defineImpl succeeded.
if (&RT != DefaultTracker.get()) {
auto &TS = TrackerSymbols[&RT];
TS.reserve(TS.size() + MU->getSymbols().size());
for (auto &KV : MU->getSymbols())
TS.push_back(KV.first);
}
auto UMI = std::make_shared<UnmaterializedInfo>(std::move(MU), &RT);
for (auto &KV : UMI->MU->getSymbols())
UnmaterializedInfos[KV.first] = UMI;
}
void JITDylib::detachQueryHelper(AsynchronousSymbolQuery &Q,
const SymbolNameSet &QuerySymbols) {
for (auto &QuerySymbol : QuerySymbols) {
auto MII = MaterializingInfos.find(QuerySymbol);
if (MII != MaterializingInfos.end())
MII->second.removeQuery(Q);
}
}
Platform::~Platform() = default;
Expected<DenseMap<JITDylib *, SymbolMap>> Platform::lookupInitSymbols(
ExecutionSession &ES,
const DenseMap<JITDylib *, SymbolLookupSet> &InitSyms) {
DenseMap<JITDylib *, SymbolMap> CompoundResult;
Error CompoundErr = Error::success();
std::mutex LookupMutex;
std::condition_variable CV;
uint64_t Count = InitSyms.size();
LLVM_DEBUG({
dbgs() << "Issuing init-symbol lookup:\n";
for (auto &KV : InitSyms)
dbgs() << " " << KV.first->getName() << ": " << KV.second << "\n";
});
for (auto &KV : InitSyms) {
auto *JD = KV.first;
auto Names = std::move(KV.second);
ES.lookup(
LookupKind::Static,
JITDylibSearchOrder({{JD, JITDylibLookupFlags::MatchAllSymbols}}),
std::move(Names), SymbolState::Ready,
[&, JD](Expected<SymbolMap> Result) {
{
std::lock_guard<std::mutex> Lock(LookupMutex);
--Count;
if (Result) {
assert(!CompoundResult.count(JD) &&
"Duplicate JITDylib in lookup?");
CompoundResult[JD] = std::move(*Result);
} else
CompoundErr =
joinErrors(std::move(CompoundErr), Result.takeError());
}
CV.notify_one();
},
NoDependenciesToRegister);
}
std::unique_lock<std::mutex> Lock(LookupMutex);
CV.wait(Lock, [&] { return Count == 0 || CompoundErr; });
if (CompoundErr)
return std::move(CompoundErr);
return std::move(CompoundResult);
}
void Platform::lookupInitSymbolsAsync(
unique_function<void(Error)> OnComplete, ExecutionSession &ES,
const DenseMap<JITDylib *, SymbolLookupSet> &InitSyms) {
class TriggerOnComplete {
public:
using OnCompleteFn = unique_function<void(Error)>;
TriggerOnComplete(OnCompleteFn OnComplete)
: OnComplete(std::move(OnComplete)) {}
~TriggerOnComplete() { OnComplete(std::move(LookupResult)); }
void reportResult(Error Err) {
std::lock_guard<std::mutex> Lock(ResultMutex);
LookupResult = joinErrors(std::move(LookupResult), std::move(Err));
}
private:
std::mutex ResultMutex;
Error LookupResult{Error::success()};
OnCompleteFn OnComplete;
};
LLVM_DEBUG({
dbgs() << "Issuing init-symbol lookup:\n";
for (auto &KV : InitSyms)
dbgs() << " " << KV.first->getName() << ": " << KV.second << "\n";
});
auto TOC = std::make_shared<TriggerOnComplete>(std::move(OnComplete));
for (auto &KV : InitSyms) {
auto *JD = KV.first;
auto Names = std::move(KV.second);
ES.lookup(
LookupKind::Static,
JITDylibSearchOrder({{JD, JITDylibLookupFlags::MatchAllSymbols}}),
std::move(Names), SymbolState::Ready,
[TOC](Expected<SymbolMap> Result) {
TOC->reportResult(Result.takeError());
},
NoDependenciesToRegister);
}
}
MaterializationTask::~MaterializationTask() {
// If this task wasn't run then fail materialization.
if (MR)
MR->failMaterialization();
}
void MaterializationTask::printDescription(raw_ostream &OS) {
OS << "Materialization task: " << MU->getName() << " in "
<< MR->getTargetJITDylib().getName();
}
void MaterializationTask::run() {
assert(MU && "MU should not be null");
assert(MR && "MR should not be null");
MU->materialize(std::move(MR));
}
void LookupTask::printDescription(raw_ostream &OS) { OS << "Lookup task"; }
void LookupTask::run() { LS.continueLookup(Error::success()); }
ExecutionSession::ExecutionSession(std::unique_ptr<ExecutorProcessControl> EPC)
: EPC(std::move(EPC)) {
// Associated EPC and this.
this->EPC->ES = this;
}
ExecutionSession::~ExecutionSession() {
// You must call endSession prior to destroying the session.
assert(!SessionOpen &&
"Session still open. Did you forget to call endSession?");
}
Error ExecutionSession::endSession() {
LLVM_DEBUG(dbgs() << "Ending ExecutionSession " << this << "\n");
auto JDsToRemove = runSessionLocked([&] {
#ifdef EXPENSIVE_CHECKS
verifySessionState("Entering ExecutionSession::endSession");
#endif
SessionOpen = false;
return JDs;
});
std::reverse(JDsToRemove.begin(), JDsToRemove.end());
auto Err = removeJITDylibs(std::move(JDsToRemove));
Err = joinErrors(std::move(Err), EPC->disconnect());
return Err;
}
void ExecutionSession::registerResourceManager(ResourceManager &RM) {
runSessionLocked([&] { ResourceManagers.push_back(&RM); });
}
void ExecutionSession::deregisterResourceManager(ResourceManager &RM) {
runSessionLocked([&] {
assert(!ResourceManagers.empty() && "No managers registered");
if (ResourceManagers.back() == &RM)
ResourceManagers.pop_back();
else {
auto I = llvm::find(ResourceManagers, &RM);
assert(I != ResourceManagers.end() && "RM not registered");
ResourceManagers.erase(I);
}
});
}
JITDylib *ExecutionSession::getJITDylibByName(StringRef Name) {
return runSessionLocked([&, this]() -> JITDylib * {
for (auto &JD : JDs)
if (JD->getName() == Name)
return JD.get();
return nullptr;
});
}
JITDylib &ExecutionSession::createBareJITDylib(std::string Name) {
assert(!getJITDylibByName(Name) && "JITDylib with that name already exists");
return runSessionLocked([&, this]() -> JITDylib & {
assert(SessionOpen && "Cannot create JITDylib after session is closed");
JDs.push_back(new JITDylib(*this, std::move(Name)));
return *JDs.back();
});
}
Expected<JITDylib &> ExecutionSession::createJITDylib(std::string Name) {
auto &JD = createBareJITDylib(Name);
if (P)
if (auto Err = P->setupJITDylib(JD))
return std::move(Err);
return JD;
}
Error ExecutionSession::removeJITDylibs(std::vector<JITDylibSP> JDsToRemove) {
// Set JD to 'Closing' state and remove JD from the ExecutionSession.
runSessionLocked([&] {
for (auto &JD : JDsToRemove) {
assert(JD->State == JITDylib::Open && "JD already closed");
JD->State = JITDylib::Closing;
auto I = llvm::find(JDs, JD);
assert(I != JDs.end() && "JD does not appear in session JDs");
JDs.erase(I);
}
});
// Clear JITDylibs and notify the platform.
Error Err = Error::success();
for (auto JD : JDsToRemove) {
Err = joinErrors(std::move(Err), JD->clear());
if (P)
Err = joinErrors(std::move(Err), P->teardownJITDylib(*JD));
}
// Set JD to closed state. Clear remaining data structures.
runSessionLocked([&] {
for (auto &JD : JDsToRemove) {
assert(JD->State == JITDylib::Closing && "JD should be closing");
JD->State = JITDylib::Closed;
assert(JD->Symbols.empty() && "JD.Symbols is not empty after clear");
assert(JD->UnmaterializedInfos.empty() &&
"JD.UnmaterializedInfos is not empty after clear");
assert(JD->MaterializingInfos.empty() &&
"JD.MaterializingInfos is not empty after clear");
assert(JD->TrackerSymbols.empty() &&
"TrackerSymbols is not empty after clear");
JD->DefGenerators.clear();
JD->LinkOrder.clear();
}
});
return Err;
}
Expected<std::vector<JITDylibSP>>
JITDylib::getDFSLinkOrder(ArrayRef<JITDylibSP> JDs) {
if (JDs.empty())
return std::vector<JITDylibSP>();
auto &ES = JDs.front()->getExecutionSession();
return ES.runSessionLocked([&]() -> Expected<std::vector<JITDylibSP>> {
DenseSet<JITDylib *> Visited;
std::vector<JITDylibSP> Result;
for (auto &JD : JDs) {
if (JD->State != Open)
return make_error<StringError>(
"Error building link order: " + JD->getName() + " is defunct",
inconvertibleErrorCode());
if (Visited.count(JD.get()))
continue;
SmallVector<JITDylibSP, 64> WorkStack;
WorkStack.push_back(JD);
Visited.insert(JD.get());
while (!WorkStack.empty()) {
Result.push_back(std::move(WorkStack.back()));
WorkStack.pop_back();
for (auto &KV : llvm::reverse(Result.back()->LinkOrder)) {
auto &JD = *KV.first;
if (!Visited.insert(&JD).second)
continue;
WorkStack.push_back(&JD);
}
}
}
return Result;
});
}
Expected<std::vector<JITDylibSP>>
JITDylib::getReverseDFSLinkOrder(ArrayRef<JITDylibSP> JDs) {
auto Result = getDFSLinkOrder(JDs);
if (Result)
std::reverse(Result->begin(), Result->end());
return Result;
}
Expected<std::vector<JITDylibSP>> JITDylib::getDFSLinkOrder() {
return getDFSLinkOrder({this});
}
Expected<std::vector<JITDylibSP>> JITDylib::getReverseDFSLinkOrder() {
return getReverseDFSLinkOrder({this});
}
void ExecutionSession::lookupFlags(
LookupKind K, JITDylibSearchOrder SearchOrder, SymbolLookupSet LookupSet,
unique_function<void(Expected<SymbolFlagsMap>)> OnComplete) {
OL_applyQueryPhase1(std::make_unique<InProgressLookupFlagsState>(
K, std::move(SearchOrder), std::move(LookupSet),
std::move(OnComplete)),
Error::success());
}
Expected<SymbolFlagsMap>
ExecutionSession::lookupFlags(LookupKind K, JITDylibSearchOrder SearchOrder,
SymbolLookupSet LookupSet) {
std::promise<MSVCPExpected<SymbolFlagsMap>> ResultP;
OL_applyQueryPhase1(std::make_unique<InProgressLookupFlagsState>(
K, std::move(SearchOrder), std::move(LookupSet),
[&ResultP](Expected<SymbolFlagsMap> Result) {
ResultP.set_value(std::move(Result));
}),
Error::success());
auto ResultF = ResultP.get_future();
return ResultF.get();
}
void ExecutionSession::lookup(
LookupKind K, const JITDylibSearchOrder &SearchOrder,
SymbolLookupSet Symbols, SymbolState RequiredState,
SymbolsResolvedCallback NotifyComplete,
RegisterDependenciesFunction RegisterDependencies) {
LLVM_DEBUG({
runSessionLocked([&]() {
dbgs() << "Looking up " << Symbols << " in " << SearchOrder
<< " (required state: " << RequiredState << ")\n";
});
});
// lookup can be re-entered recursively if running on a single thread. Run any
// outstanding MUs in case this query depends on them, otherwise this lookup
// will starve waiting for a result from an MU that is stuck in the queue.
dispatchOutstandingMUs();
auto Unresolved = std::move(Symbols);
auto Q = std::make_shared<AsynchronousSymbolQuery>(Unresolved, RequiredState,
std::move(NotifyComplete));
auto IPLS = std::make_unique<InProgressFullLookupState>(
K, SearchOrder, std::move(Unresolved), RequiredState, std::move(Q),
std::move(RegisterDependencies));
OL_applyQueryPhase1(std::move(IPLS), Error::success());
}
Expected<SymbolMap>
ExecutionSession::lookup(const JITDylibSearchOrder &SearchOrder,
SymbolLookupSet Symbols, LookupKind K,
SymbolState RequiredState,
RegisterDependenciesFunction RegisterDependencies) {
#if LLVM_ENABLE_THREADS
// In the threaded case we use promises to return the results.
std::promise<MSVCPExpected<SymbolMap>> PromisedResult;
auto NotifyComplete = [&](Expected<SymbolMap> R) {
PromisedResult.set_value(std::move(R));
};
#else
SymbolMap Result;
Error ResolutionError = Error::success();
auto NotifyComplete = [&](Expected<SymbolMap> R) {
ErrorAsOutParameter _(ResolutionError);
if (R)
Result = std::move(*R);
else
ResolutionError = R.takeError();
};
#endif
// Perform the asynchronous lookup.
lookup(K, SearchOrder, std::move(Symbols), RequiredState,
std::move(NotifyComplete), RegisterDependencies);
#if LLVM_ENABLE_THREADS
return PromisedResult.get_future().get();
#else
if (ResolutionError)
return std::move(ResolutionError);
return Result;
#endif
}
Expected<ExecutorSymbolDef>
ExecutionSession::lookup(const JITDylibSearchOrder &SearchOrder,
SymbolStringPtr Name, SymbolState RequiredState) {
SymbolLookupSet Names({Name});
if (auto ResultMap = lookup(SearchOrder, std::move(Names), LookupKind::Static,
RequiredState, NoDependenciesToRegister)) {
assert(ResultMap->size() == 1 && "Unexpected number of results");
assert(ResultMap->count(Name) && "Missing result for symbol");
return std::move(ResultMap->begin()->second);
} else
return ResultMap.takeError();
}
Expected<ExecutorSymbolDef>
ExecutionSession::lookup(ArrayRef<JITDylib *> SearchOrder, SymbolStringPtr Name,
SymbolState RequiredState) {
return lookup(makeJITDylibSearchOrder(SearchOrder), Name, RequiredState);
}
Expected<ExecutorSymbolDef>
ExecutionSession::lookup(ArrayRef<JITDylib *> SearchOrder, StringRef Name,
SymbolState RequiredState) {
return lookup(SearchOrder, intern(Name), RequiredState);
}
Error ExecutionSession::registerJITDispatchHandlers(
JITDylib &JD, JITDispatchHandlerAssociationMap WFs) {
auto TagSyms = lookup({{&JD, JITDylibLookupFlags::MatchAllSymbols}},
SymbolLookupSet::fromMapKeys(
WFs, SymbolLookupFlags::WeaklyReferencedSymbol));
if (!TagSyms)
return TagSyms.takeError();
// Associate tag addresses with implementations.
std::lock_guard<std::mutex> Lock(JITDispatchHandlersMutex);
// Check that no tags are being overwritten.
for (auto &[TagName, TagSym] : *TagSyms) {
auto TagAddr = TagSym.getAddress();
if (JITDispatchHandlers.count(TagAddr))
return make_error<StringError>("Tag " + formatv("{0:x}", TagAddr) +
" (for " + *TagName +
") already registered",
inconvertibleErrorCode());
}
// At this point we're guaranteed to succeed. Install the handlers.
for (auto &[TagName, TagSym] : *TagSyms) {
auto TagAddr = TagSym.getAddress();
auto I = WFs.find(TagName);
assert(I != WFs.end() && I->second &&
"JITDispatchHandler implementation missing");
JITDispatchHandlers[TagAddr] =
std::make_shared<JITDispatchHandlerFunction>(std::move(I->second));
LLVM_DEBUG({
dbgs() << "Associated function tag \"" << *TagName << "\" ("
<< formatv("{0:x}", TagAddr) << ") with handler\n";
});
}
return Error::success();
}
void ExecutionSession::runJITDispatchHandler(SendResultFunction SendResult,
ExecutorAddr HandlerFnTagAddr,
ArrayRef<char> ArgBuffer) {
std::shared_ptr<JITDispatchHandlerFunction> F;
{
std::lock_guard<std::mutex> Lock(JITDispatchHandlersMutex);
auto I = JITDispatchHandlers.find(HandlerFnTagAddr);
if (I != JITDispatchHandlers.end())
F = I->second;
}
if (F)
(*F)(std::move(SendResult), ArgBuffer.data(), ArgBuffer.size());
else
SendResult(shared::WrapperFunctionResult::createOutOfBandError(
("No function registered for tag " +
formatv("{0:x16}", HandlerFnTagAddr))
.str()));
}
void ExecutionSession::dump(raw_ostream &OS) {
runSessionLocked([this, &OS]() {
for (auto &JD : JDs)
JD->dump(OS);
});
}
#ifdef EXPENSIVE_CHECKS
bool ExecutionSession::verifySessionState(Twine Phase) {
return runSessionLocked([&]() {
bool AllOk = true;
// We'll collect these and verify them later to avoid redundant checks.
DenseSet<JITDylib::EmissionDepUnit *> EDUsToCheck;
for (auto &JD : JDs) {
auto LogFailure = [&]() -> raw_fd_ostream & {
auto &Stream = errs();
if (AllOk)
Stream << "ERROR: Bad ExecutionSession state detected " << Phase
<< "\n";
Stream << " In JITDylib " << JD->getName() << ", ";
AllOk = false;
return Stream;
};
if (JD->State != JITDylib::Open) {
LogFailure()
<< "state is not Open, but JD is in ExecutionSession list.";
}
// Check symbol table.
// 1. If the entry state isn't resolved then check that no address has
// been set.
// 2. Check that if the hasMaterializerAttached flag is set then there is
// an UnmaterializedInfo entry, and vice-versa.
for (auto &[Sym, Entry] : JD->Symbols) {
// Check that unresolved symbols have null addresses.
if (Entry.getState() < SymbolState::Resolved) {
if (Entry.getAddress()) {
LogFailure() << "symbol " << Sym << " has state "
<< Entry.getState()
<< " (not-yet-resolved) but non-null address "
<< Entry.getAddress() << ".\n";
}
}
// Check that the hasMaterializerAttached flag is correct.
auto UMIItr = JD->UnmaterializedInfos.find(Sym);
if (Entry.hasMaterializerAttached()) {
if (UMIItr == JD->UnmaterializedInfos.end()) {
LogFailure() << "symbol " << Sym
<< " entry claims materializer attached, but "
"UnmaterializedInfos has no corresponding entry.\n";
}
} else if (UMIItr != JD->UnmaterializedInfos.end()) {
LogFailure()
<< "symbol " << Sym
<< " entry claims no materializer attached, but "
"UnmaterializedInfos has an unexpected entry for it.\n";
}
}
// Check that every UnmaterializedInfo entry has a corresponding entry
// in the Symbols table.
for (auto &[Sym, UMI] : JD->UnmaterializedInfos) {
auto SymItr = JD->Symbols.find(Sym);
if (SymItr == JD->Symbols.end()) {
LogFailure()
<< "symbol " << Sym
<< " has UnmaterializedInfos entry, but no Symbols entry.\n";
}
}
// Check consistency of the MaterializingInfos table.
for (auto &[Sym, MII] : JD->MaterializingInfos) {
auto SymItr = JD->Symbols.find(Sym);
if (SymItr == JD->Symbols.end()) {
// If there's no Symbols entry for this MaterializingInfos entry then
// report that.
LogFailure()
<< "symbol " << Sym
<< " has MaterializingInfos entry, but no Symbols entry.\n";
} else {
// Otherwise check consistency between Symbols and MaterializingInfos.
// Ready symbols should not have MaterializingInfos.
if (SymItr->second.getState() == SymbolState::Ready) {
LogFailure()
<< "symbol " << Sym
<< " is in Ready state, should not have MaterializingInfo.\n";
}
// Pending queries should be for subsequent states.
auto CurState = static_cast<SymbolState>(
static_cast<std::underlying_type_t<SymbolState>>(
SymItr->second.getState()) + 1);
for (auto &Q : MII.PendingQueries) {
if (Q->getRequiredState() != CurState) {
if (Q->getRequiredState() > CurState)
CurState = Q->getRequiredState();
else
LogFailure() << "symbol " << Sym
<< " has stale or misordered queries.\n";
}
}
// If there's a DefiningEDU then check that...
// 1. The JD matches.
// 2. The symbol is in the EDU's Symbols map.
// 3. The symbol table entry is in the Emitted state.
if (MII.DefiningEDU) {
EDUsToCheck.insert(MII.DefiningEDU.get());
if (MII.DefiningEDU->JD != JD.get()) {
LogFailure() << "symbol " << Sym
<< " has DefiningEDU with incorrect JD"
<< (llvm::is_contained(JDs, MII.DefiningEDU->JD)
? " (JD not currently in ExecutionSession"
: "")
<< "\n";
}
if (SymItr->second.getState() != SymbolState::Emitted) {
LogFailure()
<< "symbol " << Sym
<< " has DefiningEDU, but is not in Emitted state.\n";
}
}
// Check that JDs for any DependantEDUs are also in the session --
// that guarantees that we'll also visit them during this loop.
for (auto &DepEDU : MII.DependantEDUs) {
if (!llvm::is_contained(JDs, DepEDU->JD)) {
LogFailure() << "symbol " << Sym << " has DependantEDU "
<< (void *)DepEDU << " with JD (" << DepEDU->JD
<< ") that isn't in ExecutionSession.\n";
}
}
}
}
}
// Check EDUs.
for (auto *EDU : EDUsToCheck) {
assert(EDU->JD->State == JITDylib::Open && "EDU->JD is not Open");
auto LogFailure = [&]() -> raw_fd_ostream & {
AllOk = false;
auto &Stream = errs();
Stream << "In EDU defining " << EDU->JD->getName() << ": { ";
for (auto &[Sym, Flags] : EDU->Symbols)
Stream << Sym << " ";
Stream << "}, ";
return Stream;
};
if (EDU->Symbols.empty())
LogFailure() << "no symbols defined.\n";
else {
for (auto &[Sym, Flags] : EDU->Symbols) {
if (!Sym)
LogFailure() << "null symbol defined.\n";
else {
if (!EDU->JD->Symbols.count(SymbolStringPtr(Sym))) {
LogFailure() << "symbol " << Sym
<< " isn't present in JD's symbol table.\n";
}
}
}
}
for (auto &[DepJD, Symbols] : EDU->Dependencies) {
if (!llvm::is_contained(JDs, DepJD)) {
LogFailure() << "dependant symbols listed for JD that isn't in "
"ExecutionSession.\n";
} else {
for (auto &DepSym : Symbols) {
if (!DepJD->Symbols.count(SymbolStringPtr(DepSym))) {
LogFailure()
<< "dependant symbol " << DepSym
<< " does not appear in symbol table for dependant JD "
<< DepJD->getName() << ".\n";
}
}
}
}
}
return AllOk;
});
}
#endif // EXPENSIVE_CHECKS
void ExecutionSession::dispatchOutstandingMUs() {
LLVM_DEBUG(dbgs() << "Dispatching MaterializationUnits...\n");
while (true) {
std::optional<std::pair<std::unique_ptr<MaterializationUnit>,
std::unique_ptr<MaterializationResponsibility>>>
JMU;
{
std::lock_guard<std::recursive_mutex> Lock(OutstandingMUsMutex);
if (!OutstandingMUs.empty()) {
JMU.emplace(std::move(OutstandingMUs.back()));
OutstandingMUs.pop_back();
}
}
if (!JMU)
break;
assert(JMU->first && "No MU?");
LLVM_DEBUG(dbgs() << " Dispatching \"" << JMU->first->getName() << "\"\n");
dispatchTask(std::make_unique<MaterializationTask>(std::move(JMU->first),
std::move(JMU->second)));
}
LLVM_DEBUG(dbgs() << "Done dispatching MaterializationUnits.\n");
}
Error ExecutionSession::removeResourceTracker(ResourceTracker &RT) {
LLVM_DEBUG({
dbgs() << "In " << RT.getJITDylib().getName() << " removing tracker "
<< formatv("{0:x}", RT.getKeyUnsafe()) << "\n";
});
std::vector<ResourceManager *> CurrentResourceManagers;
JITDylib::RemoveTrackerResult R;
runSessionLocked([&] {
CurrentResourceManagers = ResourceManagers;
RT.makeDefunct();
R = RT.getJITDylib().IL_removeTracker(RT);
});
// Release any defunct MaterializationUnits.
R.DefunctMUs.clear();
Error Err = Error::success();
auto &JD = RT.getJITDylib();
for (auto *L : reverse(CurrentResourceManagers))
Err = joinErrors(std::move(Err),
L->handleRemoveResources(JD, RT.getKeyUnsafe()));
for (auto &Q : R.QueriesToFail)
Q->handleFailed(make_error<FailedToMaterialize>(getSymbolStringPool(),
R.FailedSymbols));
return Err;
}
void ExecutionSession::transferResourceTracker(ResourceTracker &DstRT,
ResourceTracker &SrcRT) {
LLVM_DEBUG({
dbgs() << "In " << SrcRT.getJITDylib().getName()
<< " transfering resources from tracker "
<< formatv("{0:x}", SrcRT.getKeyUnsafe()) << " to tracker "
<< formatv("{0:x}", DstRT.getKeyUnsafe()) << "\n";
});
// No-op transfers are allowed and do not invalidate the source.
if (&DstRT == &SrcRT)
return;
assert(&DstRT.getJITDylib() == &SrcRT.getJITDylib() &&
"Can't transfer resources between JITDylibs");
runSessionLocked([&]() {
SrcRT.makeDefunct();
auto &JD = DstRT.getJITDylib();
JD.transferTracker(DstRT, SrcRT);
for (auto *L : reverse(ResourceManagers))
L->handleTransferResources(JD, DstRT.getKeyUnsafe(),
SrcRT.getKeyUnsafe());
});
}
void ExecutionSession::destroyResourceTracker(ResourceTracker &RT) {
runSessionLocked([&]() {
LLVM_DEBUG({
dbgs() << "In " << RT.getJITDylib().getName() << " destroying tracker "
<< formatv("{0:x}", RT.getKeyUnsafe()) << "\n";
});
if (!RT.isDefunct())
transferResourceTracker(*RT.getJITDylib().getDefaultResourceTracker(),
RT);
});
}
Error ExecutionSession::IL_updateCandidatesFor(
JITDylib &JD, JITDylibLookupFlags JDLookupFlags,
SymbolLookupSet &Candidates, SymbolLookupSet *NonCandidates) {
return Candidates.forEachWithRemoval(
[&](const SymbolStringPtr &Name,
SymbolLookupFlags SymLookupFlags) -> Expected<bool> {
/// Search for the symbol. If not found then continue without
/// removal.
auto SymI = JD.Symbols.find(Name);
if (SymI == JD.Symbols.end())
return false;
// If this is a non-exported symbol and we're matching exported
// symbols only then remove this symbol from the candidates list.
//
// If we're tracking non-candidates then add this to the non-candidate
// list.
if (!SymI->second.getFlags().isExported() &&
JDLookupFlags == JITDylibLookupFlags::MatchExportedSymbolsOnly) {
if (NonCandidates)
NonCandidates->add(Name, SymLookupFlags);
return true;
}
// If we match against a materialization-side-effects only symbol
// then make sure it is weakly-referenced. Otherwise bail out with
// an error.
// FIXME: Use a "materialization-side-effects-only symbols must be
// weakly referenced" specific error here to reduce confusion.
if (SymI->second.getFlags().hasMaterializationSideEffectsOnly() &&
SymLookupFlags != SymbolLookupFlags::WeaklyReferencedSymbol)
return make_error<SymbolsNotFound>(getSymbolStringPool(),
SymbolNameVector({Name}));
// If we matched against this symbol but it is in the error state
// then bail out and treat it as a failure to materialize.
if (SymI->second.getFlags().hasError()) {
auto FailedSymbolsMap = std::make_shared<SymbolDependenceMap>();
(*FailedSymbolsMap)[&JD] = {Name};
return make_error<FailedToMaterialize>(getSymbolStringPool(),
std::move(FailedSymbolsMap));
}
// Otherwise this is a match. Remove it from the candidate set.
return true;
});
}
void ExecutionSession::OL_resumeLookupAfterGeneration(
InProgressLookupState &IPLS) {
assert(IPLS.GenState != InProgressLookupState::NotInGenerator &&
"Should not be called for not-in-generator lookups");
IPLS.GenState = InProgressLookupState::NotInGenerator;
LookupState LS;
if (auto DG = IPLS.CurDefGeneratorStack.back().lock()) {
IPLS.CurDefGeneratorStack.pop_back();
std::lock_guard<std::mutex> Lock(DG->M);
// If there are no pending lookups then mark the generator as free and
// return.
if (DG->PendingLookups.empty()) {
DG->InUse = false;
return;
}
// Otherwise resume the next lookup.
LS = std::move(DG->PendingLookups.front());
DG->PendingLookups.pop_front();
}
if (LS.IPLS) {
LS.IPLS->GenState = InProgressLookupState::ResumedForGenerator;
dispatchTask(std::make_unique<LookupTask>(std::move(LS)));
}
}
void ExecutionSession::OL_applyQueryPhase1(
std::unique_ptr<InProgressLookupState> IPLS, Error Err) {
LLVM_DEBUG({
dbgs() << "Entering OL_applyQueryPhase1:\n"
<< " Lookup kind: " << IPLS->K << "\n"
<< " Search order: " << IPLS->SearchOrder
<< ", Current index = " << IPLS->CurSearchOrderIndex
<< (IPLS->NewJITDylib ? " (entering new JITDylib)" : "") << "\n"
<< " Lookup set: " << IPLS->LookupSet << "\n"
<< " Definition generator candidates: "
<< IPLS->DefGeneratorCandidates << "\n"
<< " Definition generator non-candidates: "
<< IPLS->DefGeneratorNonCandidates << "\n";
});
if (IPLS->GenState == InProgressLookupState::InGenerator)
OL_resumeLookupAfterGeneration(*IPLS);
assert(IPLS->GenState != InProgressLookupState::InGenerator &&
"Lookup should not be in InGenerator state here");
// FIXME: We should attach the query as we go: This provides a result in a
// single pass in the common case where all symbols have already reached the
// required state. The query could be detached again in the 'fail' method on
// IPLS. Phase 2 would be reduced to collecting and dispatching the MUs.
while (IPLS->CurSearchOrderIndex != IPLS->SearchOrder.size()) {
// If we've been handed an error or received one back from a generator then
// fail the query. We don't need to unlink: At this stage the query hasn't
// actually been lodged.
if (Err)
return IPLS->fail(std::move(Err));
// Get the next JITDylib and lookup flags.
auto &KV = IPLS->SearchOrder[IPLS->CurSearchOrderIndex];
auto &JD = *KV.first;
auto JDLookupFlags = KV.second;
LLVM_DEBUG({
dbgs() << "Visiting \"" << JD.getName() << "\" (" << JDLookupFlags
<< ") with lookup set " << IPLS->LookupSet << ":\n";
});
// If we've just reached a new JITDylib then perform some setup.
if (IPLS->NewJITDylib) {
// Add any non-candidates from the last JITDylib (if any) back on to the
// list of definition candidates for this JITDylib, reset definition
// non-candidates to the empty set.
SymbolLookupSet Tmp;
std::swap(IPLS->DefGeneratorNonCandidates, Tmp);
IPLS->DefGeneratorCandidates.append(std::move(Tmp));
LLVM_DEBUG({
dbgs() << " First time visiting " << JD.getName()
<< ", resetting candidate sets and building generator stack\n";
});
// Build the definition generator stack for this JITDylib.
runSessionLocked([&] {
IPLS->CurDefGeneratorStack.reserve(JD.DefGenerators.size());
llvm::append_range(IPLS->CurDefGeneratorStack,
reverse(JD.DefGenerators));
});
// Flag that we've done our initialization.
IPLS->NewJITDylib = false;
}
// Remove any generation candidates that are already defined (and match) in
// this JITDylib.
runSessionLocked([&] {
// Update the list of candidates (and non-candidates) for definition
// generation.
LLVM_DEBUG(dbgs() << " Updating candidate set...\n");
Err = IL_updateCandidatesFor(
JD, JDLookupFlags, IPLS->DefGeneratorCandidates,
JD.DefGenerators.empty() ? nullptr
: &IPLS->DefGeneratorNonCandidates);
LLVM_DEBUG({
dbgs() << " Remaining candidates = " << IPLS->DefGeneratorCandidates
<< "\n";
});
// If this lookup was resumed after auto-suspension but all candidates
// have already been generated (by some previous call to the generator)
// treat the lookup as if it had completed generation.
if (IPLS->GenState == InProgressLookupState::ResumedForGenerator &&
IPLS->DefGeneratorCandidates.empty())
OL_resumeLookupAfterGeneration(*IPLS);
});
// If we encountered an error while filtering generation candidates then
// bail out.
if (Err)
return IPLS->fail(std::move(Err));
/// Apply any definition generators on the stack.
LLVM_DEBUG({
if (IPLS->CurDefGeneratorStack.empty())
LLVM_DEBUG(dbgs() << " No generators to run for this JITDylib.\n");
else if (IPLS->DefGeneratorCandidates.empty())
LLVM_DEBUG(dbgs() << " No candidates to generate.\n");
else
dbgs() << " Running " << IPLS->CurDefGeneratorStack.size()
<< " remaining generators for "
<< IPLS->DefGeneratorCandidates.size() << " candidates\n";
});
while (!IPLS->CurDefGeneratorStack.empty() &&
!IPLS->DefGeneratorCandidates.empty()) {
auto DG = IPLS->CurDefGeneratorStack.back().lock();
if (!DG)
return IPLS->fail(make_error<StringError>(
"DefinitionGenerator removed while lookup in progress",
inconvertibleErrorCode()));
// At this point the lookup is in either the NotInGenerator state, or in
// the ResumedForGenerator state.
// If this lookup is in the NotInGenerator state then check whether the
// generator is in use. If the generator is not in use then move the
// lookup to the InGenerator state and continue. If the generator is
// already in use then just add this lookup to the pending lookups list
// and bail out.
// If this lookup is in the ResumedForGenerator state then just move it
// to InGenerator and continue.
if (IPLS->GenState == InProgressLookupState::NotInGenerator) {
std::lock_guard<std::mutex> Lock(DG->M);
if (DG->InUse) {
DG->PendingLookups.push_back(std::move(IPLS));
return;
}
DG->InUse = true;
}
IPLS->GenState = InProgressLookupState::InGenerator;
auto K = IPLS->K;
auto &LookupSet = IPLS->DefGeneratorCandidates;
// Run the generator. If the generator takes ownership of QA then this
// will break the loop.
{
LLVM_DEBUG(dbgs() << " Attempting to generate " << LookupSet << "\n");
LookupState LS(std::move(IPLS));
Err = DG->tryToGenerate(LS, K, JD, JDLookupFlags, LookupSet);
IPLS = std::move(LS.IPLS);
}
// If the lookup returned then pop the generator stack and unblock the
// next lookup on this generator (if any).
if (IPLS)
OL_resumeLookupAfterGeneration(*IPLS);
// If there was an error then fail the query.
if (Err) {
LLVM_DEBUG({
dbgs() << " Error attempting to generate " << LookupSet << "\n";
});
assert(IPLS && "LS cannot be retained if error is returned");
return IPLS->fail(std::move(Err));
}
// Otherwise if QA was captured then break the loop.
if (!IPLS) {
LLVM_DEBUG(
{ dbgs() << " LookupState captured. Exiting phase1 for now.\n"; });
return;
}
// Otherwise if we're continuing around the loop then update candidates
// for the next round.
runSessionLocked([&] {
LLVM_DEBUG(dbgs() << " Updating candidate set post-generation\n");
Err = IL_updateCandidatesFor(
JD, JDLookupFlags, IPLS->DefGeneratorCandidates,
JD.DefGenerators.empty() ? nullptr
: &IPLS->DefGeneratorNonCandidates);
});
// If updating candidates failed then fail the query.
if (Err) {
LLVM_DEBUG(dbgs() << " Error encountered while updating candidates\n");
return IPLS->fail(std::move(Err));
}
}
if (IPLS->DefGeneratorCandidates.empty() &&
IPLS->DefGeneratorNonCandidates.empty()) {
// Early out if there are no remaining symbols.
LLVM_DEBUG(dbgs() << "All symbols matched.\n");
IPLS->CurSearchOrderIndex = IPLS->SearchOrder.size();
break;
} else {
// If we get here then we've moved on to the next JITDylib with candidates
// remaining.
LLVM_DEBUG(dbgs() << "Phase 1 moving to next JITDylib.\n");
++IPLS->CurSearchOrderIndex;
IPLS->NewJITDylib = true;
}
}
// Remove any weakly referenced candidates that could not be found/generated.
IPLS->DefGeneratorCandidates.remove_if(
[](const SymbolStringPtr &Name, SymbolLookupFlags SymLookupFlags) {
return SymLookupFlags == SymbolLookupFlags::WeaklyReferencedSymbol;
});
// If we get here then we've finished searching all JITDylibs.
// If we matched all symbols then move to phase 2, otherwise fail the query
// with a SymbolsNotFound error.
if (IPLS->DefGeneratorCandidates.empty()) {
LLVM_DEBUG(dbgs() << "Phase 1 succeeded.\n");
IPLS->complete(std::move(IPLS));
} else {
LLVM_DEBUG(dbgs() << "Phase 1 failed with unresolved symbols.\n");
IPLS->fail(make_error<SymbolsNotFound>(
getSymbolStringPool(), IPLS->DefGeneratorCandidates.getSymbolNames()));
}
}
void ExecutionSession::OL_completeLookup(
std::unique_ptr<InProgressLookupState> IPLS,
std::shared_ptr<AsynchronousSymbolQuery> Q,
RegisterDependenciesFunction RegisterDependencies) {
LLVM_DEBUG({
dbgs() << "Entering OL_completeLookup:\n"
<< " Lookup kind: " << IPLS->K << "\n"
<< " Search order: " << IPLS->SearchOrder
<< ", Current index = " << IPLS->CurSearchOrderIndex
<< (IPLS->NewJITDylib ? " (entering new JITDylib)" : "") << "\n"
<< " Lookup set: " << IPLS->LookupSet << "\n"
<< " Definition generator candidates: "
<< IPLS->DefGeneratorCandidates << "\n"
<< " Definition generator non-candidates: "
<< IPLS->DefGeneratorNonCandidates << "\n";
});
bool QueryComplete = false;
DenseMap<JITDylib *, JITDylib::UnmaterializedInfosList> CollectedUMIs;
auto LodgingErr = runSessionLocked([&]() -> Error {
for (auto &KV : IPLS->SearchOrder) {
auto &JD = *KV.first;
auto JDLookupFlags = KV.second;
LLVM_DEBUG({
dbgs() << "Visiting \"" << JD.getName() << "\" (" << JDLookupFlags
<< ") with lookup set " << IPLS->LookupSet << ":\n";
});
auto Err = IPLS->LookupSet.forEachWithRemoval(
[&](const SymbolStringPtr &Name,
SymbolLookupFlags SymLookupFlags) -> Expected<bool> {
LLVM_DEBUG({
dbgs() << " Attempting to match \"" << Name << "\" ("
<< SymLookupFlags << ")... ";
});
/// Search for the symbol. If not found then continue without
/// removal.
auto SymI = JD.Symbols.find(Name);
if (SymI == JD.Symbols.end()) {
LLVM_DEBUG(dbgs() << "skipping: not present\n");
return false;
}
// If this is a non-exported symbol and we're matching exported
// symbols only then skip this symbol without removal.
if (!SymI->second.getFlags().isExported() &&
JDLookupFlags ==
JITDylibLookupFlags::MatchExportedSymbolsOnly) {
LLVM_DEBUG(dbgs() << "skipping: not exported\n");
return false;
}
// If we match against a materialization-side-effects only symbol
// then make sure it is weakly-referenced. Otherwise bail out with
// an error.
// FIXME: Use a "materialization-side-effects-only symbols must be
// weakly referenced" specific error here to reduce confusion.
if (SymI->second.getFlags().hasMaterializationSideEffectsOnly() &&
SymLookupFlags != SymbolLookupFlags::WeaklyReferencedSymbol) {
LLVM_DEBUG({
dbgs() << "error: "
"required, but symbol is has-side-effects-only\n";
});
return make_error<SymbolsNotFound>(getSymbolStringPool(),
SymbolNameVector({Name}));
}
// If we matched against this symbol but it is in the error state
// then bail out and treat it as a failure to materialize.
if (SymI->second.getFlags().hasError()) {
LLVM_DEBUG(dbgs() << "error: symbol is in error state\n");
auto FailedSymbolsMap = std::make_shared<SymbolDependenceMap>();
(*FailedSymbolsMap)[&JD] = {Name};
return make_error<FailedToMaterialize>(
getSymbolStringPool(), std::move(FailedSymbolsMap));
}
// Otherwise this is a match.
// If this symbol is already in the required state then notify the
// query, remove the symbol and continue.
if (SymI->second.getState() >= Q->getRequiredState()) {
LLVM_DEBUG(dbgs()
<< "matched, symbol already in required state\n");
Q->notifySymbolMetRequiredState(Name, SymI->second.getSymbol());
// If this symbol is in anything other than the Ready state then
// we need to track the dependence.
if (SymI->second.getState() != SymbolState::Ready)
Q->addQueryDependence(JD, Name);
return true;
}
// Otherwise this symbol does not yet meet the required state. Check
// whether it has a materializer attached, and if so prepare to run
// it.
if (SymI->second.hasMaterializerAttached()) {
assert(SymI->second.getAddress() == ExecutorAddr() &&
"Symbol not resolved but already has address?");
auto UMII = JD.UnmaterializedInfos.find(Name);
assert(UMII != JD.UnmaterializedInfos.end() &&
"Lazy symbol should have UnmaterializedInfo");
auto UMI = UMII->second;
assert(UMI->MU && "Materializer should not be null");
assert(UMI->RT && "Tracker should not be null");
LLVM_DEBUG({
dbgs() << "matched, preparing to dispatch MU@" << UMI->MU.get()
<< " (" << UMI->MU->getName() << ")\n";
});
// Move all symbols associated with this MaterializationUnit into
// materializing state.
for (auto &KV : UMI->MU->getSymbols()) {
auto SymK = JD.Symbols.find(KV.first);
assert(SymK != JD.Symbols.end() &&
"No entry for symbol covered by MaterializationUnit");
SymK->second.setMaterializerAttached(false);
SymK->second.setState(SymbolState::Materializing);
JD.UnmaterializedInfos.erase(KV.first);
}
// Add MU to the list of MaterializationUnits to be materialized.
CollectedUMIs[&JD].push_back(std::move(UMI));
} else
LLVM_DEBUG(dbgs() << "matched, registering query");
// Add the query to the PendingQueries list and continue, deleting
// the element from the lookup set.
assert(SymI->second.getState() != SymbolState::NeverSearched &&
SymI->second.getState() != SymbolState::Ready &&
"By this line the symbol should be materializing");
auto &MI = JD.MaterializingInfos[Name];
MI.addQuery(Q);
Q->addQueryDependence(JD, Name);
return true;
});
JD.shrinkMaterializationInfoMemory();
// Handle failure.
if (Err) {
LLVM_DEBUG({
dbgs() << "Lookup failed. Detaching query and replacing MUs.\n";
});
// Detach the query.
Q->detach();
// Replace the MUs.
for (auto &KV : CollectedUMIs) {
auto &JD = *KV.first;
for (auto &UMI : KV.second)
for (auto &KV2 : UMI->MU->getSymbols()) {
assert(!JD.UnmaterializedInfos.count(KV2.first) &&
"Unexpected materializer in map");
auto SymI = JD.Symbols.find(KV2.first);
assert(SymI != JD.Symbols.end() && "Missing symbol entry");
assert(SymI->second.getState() == SymbolState::Materializing &&
"Can not replace symbol that is not materializing");
assert(!SymI->second.hasMaterializerAttached() &&
"MaterializerAttached flag should not be set");
SymI->second.setMaterializerAttached(true);
JD.UnmaterializedInfos[KV2.first] = UMI;
}
}
return Err;
}
}
LLVM_DEBUG(dbgs() << "Stripping unmatched weakly-referenced symbols\n");
IPLS->LookupSet.forEachWithRemoval(
[&](const SymbolStringPtr &Name, SymbolLookupFlags SymLookupFlags) {
if (SymLookupFlags == SymbolLookupFlags::WeaklyReferencedSymbol) {
Q->dropSymbol(Name);
return true;
} else
return false;
});
if (!IPLS->LookupSet.empty()) {
LLVM_DEBUG(dbgs() << "Failing due to unresolved symbols\n");
return make_error<SymbolsNotFound>(getSymbolStringPool(),
IPLS->LookupSet.getSymbolNames());
}
// Record whether the query completed.
QueryComplete = Q->isComplete();
LLVM_DEBUG({
dbgs() << "Query successfully "
<< (QueryComplete ? "completed" : "lodged") << "\n";
});
// Move the collected MUs to the OutstandingMUs list.
if (!CollectedUMIs.empty()) {
std::lock_guard<std::recursive_mutex> Lock(OutstandingMUsMutex);
LLVM_DEBUG(dbgs() << "Adding MUs to dispatch:\n");
for (auto &KV : CollectedUMIs) {
LLVM_DEBUG({
auto &JD = *KV.first;
dbgs() << " For " << JD.getName() << ": Adding " << KV.second.size()
<< " MUs.\n";
});
for (auto &UMI : KV.second) {
auto MR = createMaterializationResponsibility(
*UMI->RT, std::move(UMI->MU->SymbolFlags),
std::move(UMI->MU->InitSymbol));
OutstandingMUs.push_back(
std::make_pair(std::move(UMI->MU), std::move(MR)));
}
}
} else
LLVM_DEBUG(dbgs() << "No MUs to dispatch.\n");
if (RegisterDependencies && !Q->QueryRegistrations.empty()) {
LLVM_DEBUG(dbgs() << "Registering dependencies\n");
RegisterDependencies(Q->QueryRegistrations);
} else
LLVM_DEBUG(dbgs() << "No dependencies to register\n");
return Error::success();
});
if (LodgingErr) {
LLVM_DEBUG(dbgs() << "Failing query\n");
Q->detach();
Q->handleFailed(std::move(LodgingErr));
return;
}
if (QueryComplete) {
LLVM_DEBUG(dbgs() << "Completing query\n");
Q->handleComplete(*this);
}
dispatchOutstandingMUs();
}
void ExecutionSession::OL_completeLookupFlags(
std::unique_ptr<InProgressLookupState> IPLS,
unique_function<void(Expected<SymbolFlagsMap>)> OnComplete) {
auto Result = runSessionLocked([&]() -> Expected<SymbolFlagsMap> {
LLVM_DEBUG({
dbgs() << "Entering OL_completeLookupFlags:\n"
<< " Lookup kind: " << IPLS->K << "\n"
<< " Search order: " << IPLS->SearchOrder
<< ", Current index = " << IPLS->CurSearchOrderIndex
<< (IPLS->NewJITDylib ? " (entering new JITDylib)" : "") << "\n"
<< " Lookup set: " << IPLS->LookupSet << "\n"
<< " Definition generator candidates: "
<< IPLS->DefGeneratorCandidates << "\n"
<< " Definition generator non-candidates: "
<< IPLS->DefGeneratorNonCandidates << "\n";
});
SymbolFlagsMap Result;
// Attempt to find flags for each symbol.
for (auto &KV : IPLS->SearchOrder) {
auto &JD = *KV.first;
auto JDLookupFlags = KV.second;
LLVM_DEBUG({
dbgs() << "Visiting \"" << JD.getName() << "\" (" << JDLookupFlags
<< ") with lookup set " << IPLS->LookupSet << ":\n";
});
IPLS->LookupSet.forEachWithRemoval([&](const SymbolStringPtr &Name,
SymbolLookupFlags SymLookupFlags) {
LLVM_DEBUG({
dbgs() << " Attempting to match \"" << Name << "\" ("
<< SymLookupFlags << ")... ";
});
// Search for the symbol. If not found then continue without removing
// from the lookup set.
auto SymI = JD.Symbols.find(Name);
if (SymI == JD.Symbols.end()) {
LLVM_DEBUG(dbgs() << "skipping: not present\n");
return false;
}
// If this is a non-exported symbol then it doesn't match. Skip it.
if (!SymI->second.getFlags().isExported() &&
JDLookupFlags == JITDylibLookupFlags::MatchExportedSymbolsOnly) {
LLVM_DEBUG(dbgs() << "skipping: not exported\n");
return false;
}
LLVM_DEBUG({
dbgs() << "matched, \"" << Name << "\" -> " << SymI->second.getFlags()
<< "\n";
});
Result[Name] = SymI->second.getFlags();
return true;
});
}
// Remove any weakly referenced symbols that haven't been resolved.
IPLS->LookupSet.remove_if(
[](const SymbolStringPtr &Name, SymbolLookupFlags SymLookupFlags) {
return SymLookupFlags == SymbolLookupFlags::WeaklyReferencedSymbol;
});
if (!IPLS->LookupSet.empty()) {
LLVM_DEBUG(dbgs() << "Failing due to unresolved symbols\n");
return make_error<SymbolsNotFound>(getSymbolStringPool(),
IPLS->LookupSet.getSymbolNames());
}
LLVM_DEBUG(dbgs() << "Succeded, result = " << Result << "\n");
return Result;
});
// Run the callback on the result.
LLVM_DEBUG(dbgs() << "Sending result to handler.\n");
OnComplete(std::move(Result));
}
void ExecutionSession::OL_destroyMaterializationResponsibility(
MaterializationResponsibility &MR) {
assert(MR.SymbolFlags.empty() &&
"All symbols should have been explicitly materialized or failed");
MR.JD.unlinkMaterializationResponsibility(MR);
}
SymbolNameSet ExecutionSession::OL_getRequestedSymbols(
const MaterializationResponsibility &MR) {
return MR.JD.getRequestedSymbols(MR.SymbolFlags);
}
Error ExecutionSession::OL_notifyResolved(MaterializationResponsibility &MR,
const SymbolMap &Symbols) {
LLVM_DEBUG({
dbgs() << "In " << MR.JD.getName() << " resolving " << Symbols << "\n";
});
#ifndef NDEBUG
for (auto &KV : Symbols) {
auto I = MR.SymbolFlags.find(KV.first);
assert(I != MR.SymbolFlags.end() &&
"Resolving symbol outside this responsibility set");
assert(!I->second.hasMaterializationSideEffectsOnly() &&
"Can't resolve materialization-side-effects-only symbol");
if (I->second & JITSymbolFlags::Common) {
auto WeakOrCommon = JITSymbolFlags::Weak | JITSymbolFlags::Common;
assert((KV.second.getFlags() & WeakOrCommon) &&
"Common symbols must be resolved as common or weak");
assert((KV.second.getFlags() & ~WeakOrCommon) ==
(I->second & ~JITSymbolFlags::Common) &&
"Resolving symbol with incorrect flags");
} else
assert(KV.second.getFlags() == I->second &&
"Resolving symbol with incorrect flags");
}
#endif
return MR.JD.resolve(MR, Symbols);
}
template <typename HandleNewDepFn>
void ExecutionSession::propagateExtraEmitDeps(
std::deque<JITDylib::EmissionDepUnit *> Worklist, EDUInfosMap &EDUInfos,
HandleNewDepFn HandleNewDep) {
// Iterate to a fixed-point to propagate extra-emit dependencies through the
// EDU graph.
while (!Worklist.empty()) {
auto &EDU = *Worklist.front();
Worklist.pop_front();
assert(EDUInfos.count(&EDU) && "No info entry for EDU");
auto &EDUInfo = EDUInfos[&EDU];
// Propagate new dependencies to users.
for (auto *UserEDU : EDUInfo.IntraEmitUsers) {
// UserEDUInfo only present if UserEDU has its own users.
JITDylib::EmissionDepUnitInfo *UserEDUInfo = nullptr;
{
auto UserEDUInfoItr = EDUInfos.find(UserEDU);
if (UserEDUInfoItr != EDUInfos.end())
UserEDUInfo = &UserEDUInfoItr->second;
}
for (auto &[DepJD, Deps] : EDUInfo.NewDeps) {
auto &UserEDUDepsForJD = UserEDU->Dependencies[DepJD];
DenseSet<NonOwningSymbolStringPtr> *UserEDUNewDepsForJD = nullptr;
for (auto Dep : Deps) {
if (UserEDUDepsForJD.insert(Dep).second) {
HandleNewDep(*UserEDU, *DepJD, Dep);
if (UserEDUInfo) {
if (!UserEDUNewDepsForJD) {
// If UserEDU has no new deps then it's not in the worklist
// yet, so add it.
if (UserEDUInfo->NewDeps.empty())
Worklist.push_back(UserEDU);
UserEDUNewDepsForJD = &UserEDUInfo->NewDeps[DepJD];
}
// Add (DepJD, Dep) to NewDeps.
UserEDUNewDepsForJD->insert(Dep);
}
}
}
}
}
EDUInfo.NewDeps.clear();
}
}
// Note: This method modifies the emitted set.
ExecutionSession::EDUInfosMap ExecutionSession::simplifyDepGroups(
MaterializationResponsibility &MR,
ArrayRef<SymbolDependenceGroup> EmittedDeps) {
auto &TargetJD = MR.getTargetJITDylib();
// 1. Build initial EmissionDepUnit -> EmissionDepUnitInfo and
// Symbol -> EmissionDepUnit mappings.
DenseMap<JITDylib::EmissionDepUnit *, JITDylib::EmissionDepUnitInfo> EDUInfos;
EDUInfos.reserve(EmittedDeps.size());
DenseMap<NonOwningSymbolStringPtr, JITDylib::EmissionDepUnit *> EDUForSymbol;
for (auto &DG : EmittedDeps) {
assert(!DG.Symbols.empty() && "DepGroup does not cover any symbols");
// Skip empty EDUs.
if (DG.Dependencies.empty())
continue;
auto TmpEDU = std::make_shared<JITDylib::EmissionDepUnit>(TargetJD);
auto &EDUInfo = EDUInfos[TmpEDU.get()];
EDUInfo.EDU = std::move(TmpEDU);
for (const auto &Symbol : DG.Symbols) {
NonOwningSymbolStringPtr NonOwningSymbol(Symbol);
assert(!EDUForSymbol.count(NonOwningSymbol) &&
"Symbol should not appear in more than one SymbolDependenceGroup");
assert(MR.getSymbols().count(Symbol) &&
"Symbol in DepGroups not in the emitted set");
auto NewlyEmittedItr = MR.getSymbols().find(Symbol);
EDUInfo.EDU->Symbols[NonOwningSymbol] = NewlyEmittedItr->second;
EDUForSymbol[NonOwningSymbol] = EDUInfo.EDU.get();
}
}
// 2. Build a "residual" EDU to cover all symbols that have no dependencies.
{
DenseMap<NonOwningSymbolStringPtr, JITSymbolFlags> ResidualSymbolFlags;
for (auto &[Sym, Flags] : MR.getSymbols()) {
if (!EDUForSymbol.count(NonOwningSymbolStringPtr(Sym)))
ResidualSymbolFlags[NonOwningSymbolStringPtr(Sym)] = Flags;
}
if (!ResidualSymbolFlags.empty()) {
auto ResidualEDU = std::make_shared<JITDylib::EmissionDepUnit>(TargetJD);
ResidualEDU->Symbols = std::move(ResidualSymbolFlags);
auto &ResidualEDUInfo = EDUInfos[ResidualEDU.get()];
ResidualEDUInfo.EDU = std::move(ResidualEDU);
// If the residual EDU is the only one then bail out early.
if (EDUInfos.size() == 1)
return EDUInfos;
// Otherwise add the residual EDU to the EDUForSymbol map.
for (auto &[Sym, Flags] : ResidualEDUInfo.EDU->Symbols)
EDUForSymbol[Sym] = ResidualEDUInfo.EDU.get();
}
}
#ifndef NDEBUG
assert(EDUForSymbol.size() == MR.getSymbols().size() &&
"MR symbols not fully covered by EDUs?");
for (auto &[Sym, Flags] : MR.getSymbols()) {
assert(EDUForSymbol.count(NonOwningSymbolStringPtr(Sym)) &&
"Sym in MR not covered by EDU");
}
#endif // NDEBUG
// 3. Use the DepGroups array to build a graph of dependencies between
// EmissionDepUnits in this finalization. We want to remove these
// intra-finalization uses, propagating dependencies on symbols outside
// this finalization. Add EDUs to the worklist.
for (auto &DG : EmittedDeps) {
// Skip SymbolDependenceGroups with no dependencies.
if (DG.Dependencies.empty())
continue;
assert(EDUForSymbol.count(NonOwningSymbolStringPtr(*DG.Symbols.begin())) &&
"No EDU for DG");
auto &EDU =
*EDUForSymbol.find(NonOwningSymbolStringPtr(*DG.Symbols.begin()))
->second;
for (auto &[DepJD, Deps] : DG.Dependencies) {
DenseSet<NonOwningSymbolStringPtr> NewDepsForJD;
assert(!Deps.empty() && "Dependence set for DepJD is empty");
if (DepJD != &TargetJD) {
// DepJD is some other JITDylib.There can't be any intra-finalization
// edges here, so just skip.
for (auto &Dep : Deps)
NewDepsForJD.insert(NonOwningSymbolStringPtr(Dep));
} else {
// DepJD is the Target JITDylib. Check for intra-finaliztaion edges,
// skipping any and recording the intra-finalization use instead.
for (auto &Dep : Deps) {
NonOwningSymbolStringPtr NonOwningDep(Dep);
auto I = EDUForSymbol.find(NonOwningDep);
if (I == EDUForSymbol.end()) {
if (!MR.getSymbols().count(Dep))
NewDepsForJD.insert(NonOwningDep);
continue;
}
if (I->second != &EDU)
EDUInfos[I->second].IntraEmitUsers.insert(&EDU);
}
}
if (!NewDepsForJD.empty())
EDU.Dependencies[DepJD] = std::move(NewDepsForJD);
}
}
// 4. Build the worklist.
std::deque<JITDylib::EmissionDepUnit *> Worklist;
for (auto &[EDU, EDUInfo] : EDUInfos) {
// If this EDU has extra-finalization dependencies and intra-finalization
// users then add it to the worklist.
if (!EDU->Dependencies.empty()) {
auto I = EDUInfos.find(EDU);
if (I != EDUInfos.end()) {
auto &EDUInfo = I->second;
if (!EDUInfo.IntraEmitUsers.empty()) {
EDUInfo.NewDeps = EDU->Dependencies;
Worklist.push_back(EDU);
}
}
}
}
// 4. Propagate dependencies through the EDU graph.
propagateExtraEmitDeps(
Worklist, EDUInfos,
[](JITDylib::EmissionDepUnit &, JITDylib &, NonOwningSymbolStringPtr) {});
return EDUInfos;
}
void ExecutionSession::IL_makeEDUReady(
std::shared_ptr<JITDylib::EmissionDepUnit> EDU,
JITDylib::AsynchronousSymbolQuerySet &Queries) {
// The symbols for this EDU are ready.
auto &JD = *EDU->JD;
for (auto &[Sym, Flags] : EDU->Symbols) {
assert(JD.Symbols.count(SymbolStringPtr(Sym)) &&
"JD does not have an entry for Sym");
auto &Entry = JD.Symbols[SymbolStringPtr(Sym)];
assert(((Entry.getFlags().hasMaterializationSideEffectsOnly() &&
Entry.getState() == SymbolState::Materializing) ||
Entry.getState() == SymbolState::Resolved ||
Entry.getState() == SymbolState::Emitted) &&
"Emitting from state other than Resolved");
Entry.setState(SymbolState::Ready);
auto MII = JD.MaterializingInfos.find(SymbolStringPtr(Sym));
// Check for pending queries.
if (MII == JD.MaterializingInfos.end())
continue;
auto &MI = MII->second;
for (auto &Q : MI.takeQueriesMeeting(SymbolState::Ready)) {
Q->notifySymbolMetRequiredState(SymbolStringPtr(Sym), Entry.getSymbol());
if (Q->isComplete())
Queries.insert(Q);
Q->removeQueryDependence(JD, SymbolStringPtr(Sym));
}
JD.MaterializingInfos.erase(MII);
}
JD.shrinkMaterializationInfoMemory();
}
void ExecutionSession::IL_makeEDUEmitted(
std::shared_ptr<JITDylib::EmissionDepUnit> EDU,
JITDylib::AsynchronousSymbolQuerySet &Queries) {
// The symbols for this EDU are emitted, but not ready.
auto &JD = *EDU->JD;
for (auto &[Sym, Flags] : EDU->Symbols) {
assert(JD.Symbols.count(SymbolStringPtr(Sym)) &&
"JD does not have an entry for Sym");
auto &Entry = JD.Symbols[SymbolStringPtr(Sym)];
assert(((Entry.getFlags().hasMaterializationSideEffectsOnly() &&
Entry.getState() == SymbolState::Materializing) ||
Entry.getState() == SymbolState::Resolved ||
Entry.getState() == SymbolState::Emitted) &&
"Emitting from state other than Resolved");
if (Entry.getState() == SymbolState::Emitted) {
// This was already emitted, so we can skip the rest of this loop.
#ifndef NDEBUG
for (auto &[Sym, Flags] : EDU->Symbols) {
assert(JD.Symbols.count(SymbolStringPtr(Sym)) &&
"JD does not have an entry for Sym");
auto &Entry = JD.Symbols[SymbolStringPtr(Sym)];
assert(Entry.getState() == SymbolState::Emitted &&
"Symbols for EDU in inconsistent state");
assert(JD.MaterializingInfos.count(SymbolStringPtr(Sym)) &&
"Emitted symbol has no MI");
auto MI = JD.MaterializingInfos[SymbolStringPtr(Sym)];
assert(MI.takeQueriesMeeting(SymbolState::Emitted).empty() &&
"Already-emitted symbol has waiting-on-emitted queries");
}
#endif // NDEBUG
break;
}
Entry.setState(SymbolState::Emitted);
auto &MI = JD.MaterializingInfos[SymbolStringPtr(Sym)];
MI.DefiningEDU = EDU;
for (auto &Q : MI.takeQueriesMeeting(SymbolState::Emitted)) {
Q->notifySymbolMetRequiredState(SymbolStringPtr(Sym), Entry.getSymbol());
if (Q->isComplete())
Queries.insert(Q);
}
}
for (auto &[DepJD, Deps] : EDU->Dependencies) {
for (auto &Dep : Deps)
DepJD->MaterializingInfos[SymbolStringPtr(Dep)].DependantEDUs.insert(
EDU.get());
}
}
/// Removes the given dependence from EDU. If EDU's dependence set becomes
/// empty then this function adds an entry for it to the EDUInfos map.
/// Returns true if a new EDUInfosMap entry is added.
bool ExecutionSession::IL_removeEDUDependence(JITDylib::EmissionDepUnit &EDU,
JITDylib &DepJD,
NonOwningSymbolStringPtr DepSym,
EDUInfosMap &EDUInfos) {
assert(EDU.Dependencies.count(&DepJD) &&
"JD does not appear in Dependencies of DependantEDU");
assert(EDU.Dependencies[&DepJD].count(DepSym) &&
"Symbol does not appear in Dependencies of DependantEDU");
auto &JDDeps = EDU.Dependencies[&DepJD];
JDDeps.erase(DepSym);
if (JDDeps.empty()) {
EDU.Dependencies.erase(&DepJD);
if (EDU.Dependencies.empty()) {
// If the dependencies set has become empty then EDU _may_ be ready
// (we won't know for sure until we've propagated the extra-emit deps).
// Create an EDUInfo for it (if it doesn't have one already) so that
// it'll be visited after propagation.
auto &DepEDUInfo = EDUInfos[&EDU];
if (!DepEDUInfo.EDU) {
assert(EDU.JD->Symbols.count(
SymbolStringPtr(EDU.Symbols.begin()->first)) &&
"Missing symbol entry for first symbol in EDU");
auto DepEDUFirstMI = EDU.JD->MaterializingInfos.find(
SymbolStringPtr(EDU.Symbols.begin()->first));
assert(DepEDUFirstMI != EDU.JD->MaterializingInfos.end() &&
"Missing MI for first symbol in DependantEDU");
DepEDUInfo.EDU = DepEDUFirstMI->second.DefiningEDU;
return true;
}
}
}
return false;
}
Error ExecutionSession::makeJDClosedError(JITDylib::EmissionDepUnit &EDU,
JITDylib &ClosedJD) {
SymbolNameSet FailedSymbols;
for (auto &[Sym, Flags] : EDU.Symbols)
FailedSymbols.insert(SymbolStringPtr(Sym));
SymbolDependenceMap BadDeps;
for (auto &Dep : EDU.Dependencies[&ClosedJD])
BadDeps[&ClosedJD].insert(SymbolStringPtr(Dep));
return make_error<UnsatisfiedSymbolDependencies>(
ClosedJD.getExecutionSession().getSymbolStringPool(), EDU.JD,
std::move(FailedSymbols), std::move(BadDeps),
ClosedJD.getName() + " is closed");
}
Error ExecutionSession::makeUnsatisfiedDepsError(JITDylib::EmissionDepUnit &EDU,
JITDylib &BadJD,
SymbolNameSet BadDeps) {
SymbolNameSet FailedSymbols;
for (auto &[Sym, Flags] : EDU.Symbols)
FailedSymbols.insert(SymbolStringPtr(Sym));
SymbolDependenceMap BadDepsMap;
BadDepsMap[&BadJD] = std::move(BadDeps);
return make_error<UnsatisfiedSymbolDependencies>(
BadJD.getExecutionSession().getSymbolStringPool(), &BadJD,
std::move(FailedSymbols), std::move(BadDepsMap),
"dependencies removed or in error state");
}
Expected<JITDylib::AsynchronousSymbolQuerySet>
ExecutionSession::IL_emit(MaterializationResponsibility &MR,
EDUInfosMap EDUInfos) {
if (MR.RT->isDefunct())
return make_error<ResourceTrackerDefunct>(MR.RT);
auto &TargetJD = MR.getTargetJITDylib();
if (TargetJD.State != JITDylib::Open)
return make_error<StringError>("JITDylib " + TargetJD.getName() +
" is defunct",
inconvertibleErrorCode());
#ifdef EXPENSIVE_CHECKS
verifySessionState("entering ExecutionSession::IL_emit");
#endif
// Walk all EDUs:
// 1. Verifying that dependencies are available (not removed or in the error
// state.
// 2. Removing any dependencies that are already Ready.
// 3. Lifting any EDUs for Emitted symbols into the EDUInfos map.
// 4. Finding any dependant EDUs and lifting them into the EDUInfos map.
std::deque<JITDylib::EmissionDepUnit *> Worklist;
for (auto &[EDU, _] : EDUInfos)
Worklist.push_back(EDU);
for (auto *EDU : Worklist) {
auto *EDUInfo = &EDUInfos[EDU];
SmallVector<JITDylib *> DepJDsToRemove;
for (auto &[DepJD, Deps] : EDU->Dependencies) {
if (DepJD->State != JITDylib::Open)
return makeJDClosedError(*EDU, *DepJD);
SymbolNameSet BadDeps;
SmallVector<NonOwningSymbolStringPtr> DepsToRemove;
for (auto &Dep : Deps) {
auto DepEntryItr = DepJD->Symbols.find(SymbolStringPtr(Dep));
// If this dep has been removed or moved to the error state then add it
// to the bad deps set. We aggregate these bad deps for more
// comprehensive error messages.
if (DepEntryItr == DepJD->Symbols.end() ||
DepEntryItr->second.getFlags().hasError()) {
BadDeps.insert(SymbolStringPtr(Dep));
continue;
}
// If this dep isn't emitted yet then just add it to the NewDeps set to
// be propagated.
auto &DepEntry = DepEntryItr->second;
if (DepEntry.getState() < SymbolState::Emitted) {
EDUInfo->NewDeps[DepJD].insert(Dep);
continue;
}
// This dep has been emitted, so add it to the list to be removed from
// EDU.
DepsToRemove.push_back(Dep);
// If Dep is Ready then there's nothing further to do.
if (DepEntry.getState() == SymbolState::Ready) {
assert(!DepJD->MaterializingInfos.count(SymbolStringPtr(Dep)) &&
"Unexpected MaterializationInfo attached to ready symbol");
continue;
}
// If we get here then Dep is Emitted. We need to look up its defining
// EDU and add this EDU to the defining EDU's list of users (this means
// creating an EDUInfos entry if the defining EDU doesn't have one
// already).
assert(DepJD->MaterializingInfos.count(SymbolStringPtr(Dep)) &&
"Expected MaterializationInfo for emitted dependency");
auto &DepMI = DepJD->MaterializingInfos[SymbolStringPtr(Dep)];
assert(DepMI.DefiningEDU &&
"Emitted symbol does not have a defining EDU");
assert(DepMI.DependantEDUs.empty() &&
"Already-emitted symbol has dependant EDUs?");
auto &DepEDUInfo = EDUInfos[DepMI.DefiningEDU.get()];
if (!DepEDUInfo.EDU) {
// No EDUInfo yet -- build initial entry, and reset the EDUInfo
// pointer, which we will have invalidated.
EDUInfo = &EDUInfos[EDU];
DepEDUInfo.EDU = DepMI.DefiningEDU;
for (auto &[DepDepJD, DepDeps] : DepEDUInfo.EDU->Dependencies) {
if (DepDepJD == &TargetJD) {
for (auto &DepDep : DepDeps)
if (!MR.getSymbols().count(SymbolStringPtr(DepDep)))
DepEDUInfo.NewDeps[DepDepJD].insert(DepDep);
} else
DepEDUInfo.NewDeps[DepDepJD] = DepDeps;
}
}
DepEDUInfo.IntraEmitUsers.insert(EDU);
}
// Some dependencies were removed or in an error state -- error out.
if (!BadDeps.empty())
return makeUnsatisfiedDepsError(*EDU, *DepJD, std::move(BadDeps));
// Remove the emitted / ready deps from DepJD.
for (auto &Dep : DepsToRemove)
Deps.erase(Dep);
// If there are no further deps in DepJD then flag it for removal too.
if (Deps.empty())
DepJDsToRemove.push_back(DepJD);
}
// Remove any JDs whose dependence sets have become empty.
for (auto &DepJD : DepJDsToRemove) {
assert(EDU->Dependencies.count(DepJD) &&
"Trying to remove non-existent dep entries");
EDU->Dependencies.erase(DepJD);
}
// Now look for users of this EDU.
for (auto &[Sym, Flags] : EDU->Symbols) {
assert(TargetJD.Symbols.count(SymbolStringPtr(Sym)) &&
"Sym not present in symbol table");
assert((TargetJD.Symbols[SymbolStringPtr(Sym)].getState() ==
SymbolState::Resolved ||
TargetJD.Symbols[SymbolStringPtr(Sym)]
.getFlags()
.hasMaterializationSideEffectsOnly()) &&
"Emitting symbol not in the resolved state");
assert(!TargetJD.Symbols[SymbolStringPtr(Sym)].getFlags().hasError() &&
"Symbol is already in an error state");
auto MII = TargetJD.MaterializingInfos.find(SymbolStringPtr(Sym));
if (MII == TargetJD.MaterializingInfos.end() ||
MII->second.DependantEDUs.empty())
continue;
for (auto &DependantEDU : MII->second.DependantEDUs) {
if (IL_removeEDUDependence(*DependantEDU, TargetJD, Sym, EDUInfos))
EDUInfo = &EDUInfos[EDU];
EDUInfo->IntraEmitUsers.insert(DependantEDU);
}
MII->second.DependantEDUs.clear();
}
}
Worklist.clear();
for (auto &[EDU, EDUInfo] : EDUInfos) {
if (!EDUInfo.IntraEmitUsers.empty() && !EDU->Dependencies.empty()) {
if (EDUInfo.NewDeps.empty())
EDUInfo.NewDeps = EDU->Dependencies;
Worklist.push_back(EDU);
}
}
propagateExtraEmitDeps(
Worklist, EDUInfos,
[](JITDylib::EmissionDepUnit &EDU, JITDylib &JD,
NonOwningSymbolStringPtr Sym) {
JD.MaterializingInfos[SymbolStringPtr(Sym)].DependantEDUs.insert(&EDU);
});
JITDylib::AsynchronousSymbolQuerySet CompletedQueries;
// Extract completed queries and lodge not-yet-ready EDUs in the
// session.
for (auto &[EDU, EDUInfo] : EDUInfos) {
if (EDU->Dependencies.empty())
IL_makeEDUReady(std::move(EDUInfo.EDU), CompletedQueries);
else
IL_makeEDUEmitted(std::move(EDUInfo.EDU), CompletedQueries);
}
#ifdef EXPENSIVE_CHECKS
verifySessionState("exiting ExecutionSession::IL_emit");
#endif
return std::move(CompletedQueries);
}
Error ExecutionSession::OL_notifyEmitted(
MaterializationResponsibility &MR,
ArrayRef<SymbolDependenceGroup> DepGroups) {
LLVM_DEBUG({
dbgs() << "In " << MR.JD.getName() << " emitting " << MR.SymbolFlags
<< "\n";
if (!DepGroups.empty()) {
dbgs() << " Initial dependencies:\n";
for (auto &SDG : DepGroups) {
dbgs() << " Symbols: " << SDG.Symbols
<< ", Dependencies: " << SDG.Dependencies << "\n";
}
}
});
#ifndef NDEBUG
SymbolNameSet Visited;
for (auto &DG : DepGroups) {
for (auto &Sym : DG.Symbols) {
assert(MR.SymbolFlags.count(Sym) &&
"DG contains dependence for symbol outside this MR");
assert(Visited.insert(Sym).second &&
"DG contains duplicate entries for Name");
}
}
#endif // NDEBUG
auto EDUInfos = simplifyDepGroups(MR, DepGroups);
LLVM_DEBUG({
dbgs() << " Simplified dependencies:\n";
for (auto &[EDU, EDUInfo] : EDUInfos) {
dbgs() << " Symbols: { ";
for (auto &[Sym, Flags] : EDU->Symbols)
dbgs() << Sym << " ";
dbgs() << "}, Dependencies: { ";
for (auto &[DepJD, Deps] : EDU->Dependencies) {
dbgs() << "(" << DepJD->getName() << ", { ";
for (auto &Dep : Deps)
dbgs() << Dep << " ";
dbgs() << "}) ";
}
dbgs() << "}\n";
}
});
auto CompletedQueries =
runSessionLocked([&]() { return IL_emit(MR, EDUInfos); });
// On error bail out.
if (!CompletedQueries)
return CompletedQueries.takeError();
MR.SymbolFlags.clear();
// Otherwise notify all the completed queries.
for (auto &Q : *CompletedQueries) {
assert(Q->isComplete() && "Q is not complete");
Q->handleComplete(*this);
}
return Error::success();
}
Error ExecutionSession::OL_defineMaterializing(
MaterializationResponsibility &MR, SymbolFlagsMap NewSymbolFlags) {
LLVM_DEBUG({
dbgs() << "In " << MR.JD.getName() << " defining materializing symbols "
<< NewSymbolFlags << "\n";
});
if (auto AcceptedDefs =
MR.JD.defineMaterializing(MR, std::move(NewSymbolFlags))) {
// Add all newly accepted symbols to this responsibility object.
for (auto &KV : *AcceptedDefs)
MR.SymbolFlags.insert(KV);
return Error::success();
} else
return AcceptedDefs.takeError();
}
std::pair<JITDylib::AsynchronousSymbolQuerySet,
std::shared_ptr<SymbolDependenceMap>>
ExecutionSession::IL_failSymbols(JITDylib &JD,
const SymbolNameVector &SymbolsToFail) {
#ifdef EXPENSIVE_CHECKS
verifySessionState("entering ExecutionSession::IL_failSymbols");
#endif
JITDylib::AsynchronousSymbolQuerySet FailedQueries;
auto FailedSymbolsMap = std::make_shared<SymbolDependenceMap>();
auto ExtractFailedQueries = [&](JITDylib::MaterializingInfo &MI) {
JITDylib::AsynchronousSymbolQueryList ToDetach;
for (auto &Q : MI.pendingQueries()) {
// Add the query to the list to be failed and detach it.
FailedQueries.insert(Q);
ToDetach.push_back(Q);
}
for (auto &Q : ToDetach)
Q->detach();
assert(!MI.hasQueriesPending() && "Queries still pending after detach");
};
for (auto &Name : SymbolsToFail) {
(*FailedSymbolsMap)[&JD].insert(Name);
// Look up the symbol to fail.
auto SymI = JD.Symbols.find(Name);
// FIXME: Revisit this. We should be able to assert sequencing between
// ResourceTracker removal and symbol failure.
//
// It's possible that this symbol has already been removed, e.g. if a
// materialization failure happens concurrently with a ResourceTracker or
// JITDylib removal. In that case we can safely skip this symbol and
// continue.
if (SymI == JD.Symbols.end())
continue;
auto &Sym = SymI->second;
// If the symbol is already in the error state then we must have visited
// it earlier.
if (Sym.getFlags().hasError()) {
assert(!JD.MaterializingInfos.count(Name) &&
"Symbol in error state still has MaterializingInfo");
continue;
}
// Move the symbol into the error state.
Sym.setFlags(Sym.getFlags() | JITSymbolFlags::HasError);
// FIXME: Come up with a sane mapping of state to
// presence-of-MaterializingInfo so that we can assert presence / absence
// here, rather than testing it.
auto MII = JD.MaterializingInfos.find(Name);
if (MII == JD.MaterializingInfos.end())
continue;
auto &MI = MII->second;
// Collect queries to be failed for this MII.
ExtractFailedQueries(MI);
if (MI.DefiningEDU) {
// If there is a DefiningEDU for this symbol then remove this
// symbol from it.
assert(MI.DependantEDUs.empty() &&
"Symbol with DefiningEDU should not have DependantEDUs");
assert(Sym.getState() >= SymbolState::Emitted &&
"Symbol has EDU, should have been emitted");
assert(MI.DefiningEDU->Symbols.count(NonOwningSymbolStringPtr(Name)) &&
"Symbol does not appear in its DefiningEDU");
MI.DefiningEDU->Symbols.erase(NonOwningSymbolStringPtr(Name));
// Remove this EDU from the dependants lists of its dependencies.
for (auto &[DepJD, DepSyms] : MI.DefiningEDU->Dependencies) {
for (auto DepSym : DepSyms) {
assert(DepJD->Symbols.count(SymbolStringPtr(DepSym)) &&
"DepSym not in DepJD");
assert(DepJD->MaterializingInfos.count(SymbolStringPtr(DepSym)) &&
"DepSym has not MaterializingInfo");
auto &SymMI = DepJD->MaterializingInfos[SymbolStringPtr(DepSym)];
assert(SymMI.DependantEDUs.count(MI.DefiningEDU.get()) &&
"DefiningEDU missing from DependantEDUs list of dependency");
SymMI.DependantEDUs.erase(MI.DefiningEDU.get());
}
}
MI.DefiningEDU = nullptr;
} else {
// Otherwise if there are any EDUs waiting on this symbol then move
// those symbols to the error state too, and deregister them from the
// symbols that they depend on.
// Note: We use a copy of DependantEDUs here since we'll be removing
// from the original set as we go.
for (auto &DependantEDU : MI.DependantEDUs) {
// Remove DependantEDU from all of its users DependantEDUs lists.
for (auto &[DepJD, DepSyms] : DependantEDU->Dependencies) {
for (auto DepSym : DepSyms) {
// Skip self-reference to avoid invalidating the MI.DependantEDUs
// map. We'll clear this later.
if (DepJD == &JD && DepSym == Name)
continue;
assert(DepJD->Symbols.count(SymbolStringPtr(DepSym)) &&
"DepSym not in DepJD?");
assert(DepJD->MaterializingInfos.count(SymbolStringPtr(DepSym)) &&
"DependantEDU not registered with symbol it depends on");
auto &SymMI = DepJD->MaterializingInfos[SymbolStringPtr(DepSym)];
assert(SymMI.DependantEDUs.count(DependantEDU) &&
"DependantEDU missing from DependantEDUs list");
SymMI.DependantEDUs.erase(DependantEDU);
}
}
// Move any symbols defined by DependantEDU into the error state and
// fail any queries waiting on them.
auto &DepJD = *DependantEDU->JD;
auto DepEDUSymbols = std::move(DependantEDU->Symbols);
for (auto &[DepName, Flags] : DepEDUSymbols) {
auto DepSymItr = DepJD.Symbols.find(SymbolStringPtr(DepName));
assert(DepSymItr != DepJD.Symbols.end() &&
"Symbol not present in table");
auto &DepSym = DepSymItr->second;
assert(DepSym.getState() >= SymbolState::Emitted &&
"Symbol has EDU, should have been emitted");
assert(!DepSym.getFlags().hasError() &&
"Symbol is already in the error state?");
DepSym.setFlags(DepSym.getFlags() | JITSymbolFlags::HasError);
(*FailedSymbolsMap)[&DepJD].insert(SymbolStringPtr(DepName));
// This symbol has a defining EDU so its MaterializingInfo object must
// exist.
auto DepMIItr =
DepJD.MaterializingInfos.find(SymbolStringPtr(DepName));
assert(DepMIItr != DepJD.MaterializingInfos.end() &&
"Symbol has defining EDU but not MaterializingInfo");
auto &DepMI = DepMIItr->second;
assert(DepMI.DefiningEDU.get() == DependantEDU &&
"Bad EDU dependence edge");
assert(DepMI.DependantEDUs.empty() &&
"Symbol was emitted, should not have any DependantEDUs");
ExtractFailedQueries(DepMI);
DepJD.MaterializingInfos.erase(SymbolStringPtr(DepName));
}
DepJD.shrinkMaterializationInfoMemory();
}
MI.DependantEDUs.clear();
}
assert(!MI.DefiningEDU && "DefiningEDU should have been reset");
assert(MI.DependantEDUs.empty() &&
"DependantEDUs should have been removed above");
assert(!MI.hasQueriesPending() &&
"Can not delete MaterializingInfo with queries pending");
JD.MaterializingInfos.erase(Name);
}
JD.shrinkMaterializationInfoMemory();
#ifdef EXPENSIVE_CHECKS
verifySessionState("exiting ExecutionSession::IL_failSymbols");
#endif
return std::make_pair(std::move(FailedQueries), std::move(FailedSymbolsMap));
}
void ExecutionSession::OL_notifyFailed(MaterializationResponsibility &MR) {
LLVM_DEBUG({
dbgs() << "In " << MR.JD.getName() << " failing materialization for "
<< MR.SymbolFlags << "\n";
});
if (MR.SymbolFlags.empty())
return;
SymbolNameVector SymbolsToFail;
for (auto &[Name, Flags] : MR.SymbolFlags)
SymbolsToFail.push_back(Name);
MR.SymbolFlags.clear();
JITDylib::AsynchronousSymbolQuerySet FailedQueries;
std::shared_ptr<SymbolDependenceMap> FailedSymbols;
std::tie(FailedQueries, FailedSymbols) = runSessionLocked([&]() {
// If the tracker is defunct then there's nothing to do here.
if (MR.RT->isDefunct())
return std::pair<JITDylib::AsynchronousSymbolQuerySet,
std::shared_ptr<SymbolDependenceMap>>();
return IL_failSymbols(MR.getTargetJITDylib(), SymbolsToFail);
});
for (auto &Q : FailedQueries)
Q->handleFailed(
make_error<FailedToMaterialize>(getSymbolStringPool(), FailedSymbols));
}
Error ExecutionSession::OL_replace(MaterializationResponsibility &MR,
std::unique_ptr<MaterializationUnit> MU) {
for (auto &KV : MU->getSymbols()) {
assert(MR.SymbolFlags.count(KV.first) &&
"Replacing definition outside this responsibility set");
MR.SymbolFlags.erase(KV.first);
}
if (MU->getInitializerSymbol() == MR.InitSymbol)
MR.InitSymbol = nullptr;
LLVM_DEBUG(MR.JD.getExecutionSession().runSessionLocked([&]() {
dbgs() << "In " << MR.JD.getName() << " replacing symbols with " << *MU
<< "\n";
}););
return MR.JD.replace(MR, std::move(MU));
}
Expected<std::unique_ptr<MaterializationResponsibility>>
ExecutionSession::OL_delegate(MaterializationResponsibility &MR,
const SymbolNameSet &Symbols) {
SymbolStringPtr DelegatedInitSymbol;
SymbolFlagsMap DelegatedFlags;
for (auto &Name : Symbols) {
auto I = MR.SymbolFlags.find(Name);
assert(I != MR.SymbolFlags.end() &&
"Symbol is not tracked by this MaterializationResponsibility "
"instance");
DelegatedFlags[Name] = std::move(I->second);
if (Name == MR.InitSymbol)
std::swap(MR.InitSymbol, DelegatedInitSymbol);
MR.SymbolFlags.erase(I);
}
return MR.JD.delegate(MR, std::move(DelegatedFlags),
std::move(DelegatedInitSymbol));
}
#ifndef NDEBUG
void ExecutionSession::dumpDispatchInfo(Task &T) {
runSessionLocked([&]() {
dbgs() << "Dispatching: ";
T.printDescription(dbgs());
dbgs() << "\n";
});
}
#endif // NDEBUG
} // End namespace orc.
} // End namespace llvm.