| //===-- Single-precision general exp/log functions ------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H |
| #define LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H |
| |
| #include "common_constants.h" |
| #include "math_utils.h" |
| #include "src/__support/CPP/bit.h" |
| #include "src/__support/CPP/optional.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/PolyEval.h" |
| #include "src/__support/FPUtil/nearest_integer.h" |
| #include "src/__support/common.h" |
| #include "src/__support/macros/properties/cpu_features.h" |
| |
| #include <errno.h> |
| |
| namespace LIBC_NAMESPACE { |
| |
| struct ExpBase { |
| // Base = e |
| static constexpr int MID_BITS = 5; |
| static constexpr int MID_MASK = (1 << MID_BITS) - 1; |
| // log2(e) * 2^5 |
| static constexpr double LOG2_B = 0x1.71547652b82fep+0 * (1 << MID_BITS); |
| // High and low parts of -log(2) * 2^(-5) |
| static constexpr double M_LOGB_2_HI = -0x1.62e42fefa0000p-1 / (1 << MID_BITS); |
| static constexpr double M_LOGB_2_LO = |
| -0x1.cf79abc9e3b3ap-40 / (1 << MID_BITS); |
| // Look up table for bit fields of 2^(i/32) for i = 0..31, generated by Sollya |
| // with: |
| // > for i from 0 to 31 do printdouble(round(2^(i/32), D, RN)); |
| static constexpr int64_t EXP_2_MID[1 << MID_BITS] = { |
| 0x3ff0000000000000, 0x3ff059b0d3158574, 0x3ff0b5586cf9890f, |
| 0x3ff11301d0125b51, 0x3ff172b83c7d517b, 0x3ff1d4873168b9aa, |
| 0x3ff2387a6e756238, 0x3ff29e9df51fdee1, 0x3ff306fe0a31b715, |
| 0x3ff371a7373aa9cb, 0x3ff3dea64c123422, 0x3ff44e086061892d, |
| 0x3ff4bfdad5362a27, 0x3ff5342b569d4f82, 0x3ff5ab07dd485429, |
| 0x3ff6247eb03a5585, 0x3ff6a09e667f3bcd, 0x3ff71f75e8ec5f74, |
| 0x3ff7a11473eb0187, 0x3ff82589994cce13, 0x3ff8ace5422aa0db, |
| 0x3ff93737b0cdc5e5, 0x3ff9c49182a3f090, 0x3ffa5503b23e255d, |
| 0x3ffae89f995ad3ad, 0x3ffb7f76f2fb5e47, 0x3ffc199bdd85529c, |
| 0x3ffcb720dcef9069, 0x3ffd5818dcfba487, 0x3ffdfc97337b9b5f, |
| 0x3ffea4afa2a490da, 0x3fff50765b6e4540, |
| }; |
| |
| // Approximating e^dx with degree-5 minimax polynomial generated by Sollya: |
| // > Q = fpminimax(expm1(x)/x, 4, [|1, D...|], [-log(2)/64, log(2)/64]); |
| // Then: |
| // e^dx ~ P(dx) = 1 + dx + COEFFS[0] * dx^2 + ... + COEFFS[3] * dx^5. |
| static constexpr double COEFFS[4] = { |
| 0x1.ffffffffe5bc8p-2, 0x1.555555555cd67p-3, 0x1.5555c2a9b48b4p-5, |
| 0x1.11112a0e34bdbp-7}; |
| |
| LIBC_INLINE static double powb_lo(double dx) { |
| using fputil::multiply_add; |
| double dx2 = dx * dx; |
| double c0 = 1.0 + dx; |
| // c1 = COEFFS[0] + COEFFS[1] * dx |
| double c1 = multiply_add(dx, ExpBase::COEFFS[1], ExpBase::COEFFS[0]); |
| // c2 = COEFFS[2] + COEFFS[3] * dx |
| double c2 = multiply_add(dx, ExpBase::COEFFS[3], ExpBase::COEFFS[2]); |
| // r = c4 + c5 * dx^4 |
| // = 1 + dx + COEFFS[0] * dx^2 + ... + COEFFS[5] * dx^7 |
| return fputil::polyeval(dx2, c0, c1, c2); |
| } |
| }; |
| |
| struct Exp10Base : public ExpBase { |
| // log2(10) * 2^5 |
| static constexpr double LOG2_B = 0x1.a934f0979a371p1 * (1 << MID_BITS); |
| // High and low parts of -log10(2) * 2^(-5). |
| // Notice that since |x * log2(10)| < 150: |
| // |k| = |round(x * log2(10) * 2^5)| < 2^8 * 2^5 = 2^13 |
| // So when the FMA instructions are not available, in order for the product |
| // k * M_LOGB_2_HI |
| // to be exact, we only store the high part of log10(2) up to 38 bits |
| // (= 53 - 15) of precision. |
| // It is generated by Sollya with: |
| // > round(log10(2), 44, RN); |
| static constexpr double M_LOGB_2_HI = -0x1.34413509f8p-2 / (1 << MID_BITS); |
| // > round(log10(2) - 0x1.34413509f8p-2, D, RN); |
| static constexpr double M_LOGB_2_LO = 0x1.80433b83b532ap-44 / (1 << MID_BITS); |
| |
| // Approximating 10^dx with degree-5 minimax polynomial generated by Sollya: |
| // > Q = fpminimax((10^x - 1)/x, 4, [|D...|], [-log10(2)/2^6, log10(2)/2^6]); |
| // Then: |
| // 10^dx ~ P(dx) = 1 + COEFFS[0] * dx + ... + COEFFS[4] * dx^5. |
| static constexpr double COEFFS[5] = {0x1.26bb1bbb55515p1, 0x1.53524c73bd3eap1, |
| 0x1.0470591dff149p1, 0x1.2bd7c0a9fbc4dp0, |
| 0x1.1429e74a98f43p-1}; |
| |
| static double powb_lo(double dx) { |
| using fputil::multiply_add; |
| double dx2 = dx * dx; |
| // c0 = 1 + COEFFS[0] * dx |
| double c0 = multiply_add(dx, Exp10Base::COEFFS[0], 1.0); |
| // c1 = COEFFS[1] + COEFFS[2] * dx |
| double c1 = multiply_add(dx, Exp10Base::COEFFS[2], Exp10Base::COEFFS[1]); |
| // c2 = COEFFS[3] + COEFFS[4] * dx |
| double c2 = multiply_add(dx, Exp10Base::COEFFS[4], Exp10Base::COEFFS[3]); |
| // r = c0 + dx^2 * (c1 + c2 * dx^2) |
| // = c0 + c1 * dx^2 + c2 * dx^4 |
| // = 1 + COEFFS[0] * dx + ... + COEFFS[4] * dx^5. |
| return fputil::polyeval(dx2, c0, c1, c2); |
| } |
| }; |
| |
| constexpr int LOG_P1_BITS = 6; |
| constexpr int LOG_P1_SIZE = 1 << LOG_P1_BITS; |
| |
| // N[Table[Log[2, 1 + x], {x, 0/64, 63/64, 1/64}], 40] |
| extern const double LOG_P1_LOG2[LOG_P1_SIZE]; |
| |
| // N[Table[1/(1 + x), {x, 0/64, 63/64, 1/64}], 40] |
| extern const double LOG_P1_1_OVER[LOG_P1_SIZE]; |
| |
| // Taylor series expansion for Log[2, 1 + x] splitted to EVEN AND ODD numbers |
| // K_LOG2_ODD starts from x^3 |
| extern const double K_LOG2_ODD[4]; |
| extern const double K_LOG2_EVEN[4]; |
| |
| // Output of range reduction for exp_b: (2^(mid + hi), lo) |
| // where: |
| // b^x = 2^(mid + hi) * b^lo |
| struct exp_b_reduc_t { |
| double mh; // 2^(mid + hi) |
| double lo; |
| }; |
| |
| // The function correctly calculates b^x value with at least float precision |
| // in a limited range. |
| // Range reduction: |
| // b^x = 2^(hi + mid) * b^lo |
| // where: |
| // x = (hi + mid) * log_b(2) + lo |
| // hi is an integer, |
| // 0 <= mid * 2^MID_BITS < 2^MID_BITS is an integer |
| // -2^(-MID_BITS - 1) <= lo * log2(b) <= 2^(-MID_BITS - 1) |
| // Base class needs to provide the following constants: |
| // - MID_BITS : number of bits after decimal points used for mid |
| // - MID_MASK : 2^MID_BITS - 1, mask to extract mid bits |
| // - LOG2_B : log2(b) * 2^MID_BITS for scaling |
| // - M_LOGB_2_HI : high part of -log_b(2) * 2^(-MID_BITS) |
| // - M_LOGB_2_LO : low part of -log_b(2) * 2^(-MID_BITS) |
| // - EXP_2_MID : look up table for bit fields of 2^mid |
| // Return: |
| // { 2^(hi + mid), lo } |
| template <class Base> LIBC_INLINE exp_b_reduc_t exp_b_range_reduc(float x) { |
| double xd = static_cast<double>(x); |
| // kd = round((hi + mid) * log2(b) * 2^MID_BITS) |
| double kd = fputil::nearest_integer(Base::LOG2_B * xd); |
| // k = round((hi + mid) * log2(b) * 2^MID_BITS) |
| int k = static_cast<int>(kd); |
| // hi = floor(kd * 2^(-MID_BITS)) |
| // exp_hi = shift hi to the exponent field of double precision. |
| int64_t exp_hi = static_cast<int64_t>((k >> Base::MID_BITS)) |
| << fputil::FPBits<double>::FRACTION_LEN; |
| // mh = 2^hi * 2^mid |
| // mh_bits = bit field of mh |
| int64_t mh_bits = Base::EXP_2_MID[k & Base::MID_MASK] + exp_hi; |
| double mh = fputil::FPBits<double>(uint64_t(mh_bits)).get_val(); |
| // dx = lo = x - (hi + mid) * log(2) |
| double dx = fputil::multiply_add( |
| kd, Base::M_LOGB_2_LO, fputil::multiply_add(kd, Base::M_LOGB_2_HI, xd)); |
| return {mh, dx}; |
| } |
| |
| // The function correctly calculates sinh(x) and cosh(x) by calculating exp(x) |
| // and exp(-x) simultaneously. |
| // To compute e^x, we perform the following range |
| // reduction: find hi, mid, lo such that: |
| // x = (hi + mid) * log(2) + lo, in which |
| // hi is an integer, |
| // 0 <= mid * 2^5 < 32 is an integer |
| // -2^(-6) <= lo * log2(e) <= 2^-6. |
| // In particular, |
| // hi + mid = round(x * log2(e) * 2^5) * 2^(-5). |
| // Then, |
| // e^x = 2^(hi + mid) * e^lo = 2^hi * 2^mid * e^lo. |
| // 2^mid is stored in the lookup table of 32 elements. |
| // e^lo is computed using a degree-5 minimax polynomial |
| // generated by Sollya: |
| // e^lo ~ P(lo) = 1 + lo + c2 * lo^2 + ... + c5 * lo^5 |
| // = (1 + c2*lo^2 + c4*lo^4) + lo * (1 + c3*lo^2 + c5*lo^4) |
| // = P_even + lo * P_odd |
| // We perform 2^hi * 2^mid by simply add hi to the exponent field |
| // of 2^mid. |
| // To compute e^(-x), notice that: |
| // e^(-x) = 2^(-(hi + mid)) * e^(-lo) |
| // ~ 2^(-(hi + mid)) * P(-lo) |
| // = 2^(-(hi + mid)) * (P_even - lo * P_odd) |
| // So: |
| // sinh(x) = (e^x - e^(-x)) / 2 |
| // ~ 0.5 * (2^(hi + mid) * (P_even + lo * P_odd) - |
| // 2^(-(hi + mid)) * (P_even - lo * P_odd)) |
| // = 0.5 * (P_even * (2^(hi + mid) - 2^(-(hi + mid))) + |
| // lo * P_odd * (2^(hi + mid) + 2^(-(hi + mid)))) |
| // And similarly: |
| // cosh(x) = (e^x + e^(-x)) / 2 |
| // ~ 0.5 * (P_even * (2^(hi + mid) + 2^(-(hi + mid))) + |
| // lo * P_odd * (2^(hi + mid) - 2^(-(hi + mid)))) |
| // The main point of these formulas is that the expensive part of calculating |
| // the polynomials approximating lower parts of e^(x) and e^(-x) are shared |
| // and only done once. |
| template <bool is_sinh> LIBC_INLINE double exp_pm_eval(float x) { |
| double xd = static_cast<double>(x); |
| |
| // kd = round(x * log2(e) * 2^5) |
| // k_p = round(x * log2(e) * 2^5) |
| // k_m = round(-x * log2(e) * 2^5) |
| double kd; |
| int k_p, k_m; |
| |
| #ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT |
| kd = fputil::nearest_integer(ExpBase::LOG2_B * xd); |
| k_p = static_cast<int>(kd); |
| k_m = -k_p; |
| #else |
| constexpr double HALF_WAY[2] = {0.5, -0.5}; |
| |
| k_p = static_cast<int>( |
| fputil::multiply_add(xd, ExpBase::LOG2_B, HALF_WAY[x < 0.0f])); |
| k_m = -k_p; |
| kd = static_cast<double>(k_p); |
| #endif // LIBC_TARGET_CPU_HAS_NEAREST_INT |
| |
| // hi = floor(kf * 2^(-5)) |
| // exp_hi = shift hi to the exponent field of double precision. |
| int64_t exp_hi_p = static_cast<int64_t>((k_p >> ExpBase::MID_BITS)) |
| << fputil::FPBits<double>::FRACTION_LEN; |
| int64_t exp_hi_m = static_cast<int64_t>((k_m >> ExpBase::MID_BITS)) |
| << fputil::FPBits<double>::FRACTION_LEN; |
| // mh_p = 2^(hi + mid) |
| // mh_m = 2^(-(hi + mid)) |
| // mh_bits_* = bit field of mh_* |
| int64_t mh_bits_p = ExpBase::EXP_2_MID[k_p & ExpBase::MID_MASK] + exp_hi_p; |
| int64_t mh_bits_m = ExpBase::EXP_2_MID[k_m & ExpBase::MID_MASK] + exp_hi_m; |
| double mh_p = fputil::FPBits<double>(uint64_t(mh_bits_p)).get_val(); |
| double mh_m = fputil::FPBits<double>(uint64_t(mh_bits_m)).get_val(); |
| // mh_sum = 2^(hi + mid) + 2^(-(hi + mid)) |
| double mh_sum = mh_p + mh_m; |
| // mh_diff = 2^(hi + mid) - 2^(-(hi + mid)) |
| double mh_diff = mh_p - mh_m; |
| |
| // dx = lo = x - (hi + mid) * log(2) |
| double dx = |
| fputil::multiply_add(kd, ExpBase::M_LOGB_2_LO, |
| fputil::multiply_add(kd, ExpBase::M_LOGB_2_HI, xd)); |
| double dx2 = dx * dx; |
| |
| // c0 = 1 + COEFFS[0] * lo^2 |
| // P_even = (1 + COEFFS[0] * lo^2 + COEFFS[2] * lo^4) / 2 |
| double p_even = fputil::polyeval(dx2, 0.5, ExpBase::COEFFS[0] * 0.5, |
| ExpBase::COEFFS[2] * 0.5); |
| // P_odd = (1 + COEFFS[1] * lo^2 + COEFFS[3] * lo^4) / 2 |
| double p_odd = fputil::polyeval(dx2, 0.5, ExpBase::COEFFS[1] * 0.5, |
| ExpBase::COEFFS[3] * 0.5); |
| |
| double r; |
| if constexpr (is_sinh) |
| r = fputil::multiply_add(dx * mh_sum, p_odd, p_even * mh_diff); |
| else |
| r = fputil::multiply_add(dx * mh_diff, p_odd, p_even * mh_sum); |
| return r; |
| } |
| |
| // x should be positive, normal finite value |
| LIBC_INLINE static double log2_eval(double x) { |
| using FPB = fputil::FPBits<double>; |
| FPB bs(x); |
| |
| double result = 0; |
| result += bs.get_exponent(); |
| |
| int p1 = (bs.get_mantissa() >> (FPB::FRACTION_LEN - LOG_P1_BITS)) & |
| (LOG_P1_SIZE - 1); |
| |
| bs.bits &= FPB::FRACTION_MASK >> LOG_P1_BITS; |
| bs.set_biased_exponent(FPB::EXP_BIAS); |
| double dx = (bs.get_val() - 1.0) * LOG_P1_1_OVER[p1]; |
| |
| // Taylor series for log(2,1+x) |
| double c1 = fputil::multiply_add(dx, K_LOG2_ODD[0], K_LOG2_EVEN[0]); |
| double c2 = fputil::multiply_add(dx, K_LOG2_ODD[1], K_LOG2_EVEN[1]); |
| double c3 = fputil::multiply_add(dx, K_LOG2_ODD[2], K_LOG2_EVEN[2]); |
| double c4 = fputil::multiply_add(dx, K_LOG2_ODD[3], K_LOG2_EVEN[3]); |
| |
| // c0 = dx * (1.0 / ln(2)) + LOG_P1_LOG2[p1] |
| double c0 = fputil::multiply_add(dx, 0x1.71547652b82fep+0, LOG_P1_LOG2[p1]); |
| result += LIBC_NAMESPACE::fputil::polyeval(dx * dx, c0, c1, c2, c3, c4); |
| return result; |
| } |
| |
| // x should be positive, normal finite value |
| LIBC_INLINE static double log_eval(double x) { |
| // For x = 2^ex * (1 + mx) |
| // log(x) = ex * log(2) + log(1 + mx) |
| using FPB = fputil::FPBits<double>; |
| FPB bs(x); |
| |
| double ex = static_cast<double>(bs.get_exponent()); |
| |
| // p1 is the leading 7 bits of mx, i.e. |
| // p1 * 2^(-7) <= m_x < (p1 + 1) * 2^(-7). |
| int p1 = static_cast<int>(bs.get_mantissa() >> (FPB::FRACTION_LEN - 7)); |
| |
| // Set bs to (1 + (mx - p1*2^(-7)) |
| bs.bits &= FPB::FRACTION_MASK >> 7; |
| bs.set_biased_exponent(FPB::EXP_BIAS); |
| // dx = (mx - p1*2^(-7)) / (1 + p1*2^(-7)). |
| double dx = (bs.get_val() - 1.0) * ONE_OVER_F[p1]; |
| |
| // Minimax polynomial of log(1 + dx) generated by Sollya with: |
| // > P = fpminimax(log(1 + x)/x, 6, [|D...|], [0, 2^-7]); |
| const double COEFFS[6] = {-0x1.ffffffffffffcp-2, 0x1.5555555552ddep-2, |
| -0x1.ffffffefe562dp-3, 0x1.9999817d3a50fp-3, |
| -0x1.554317b3f67a5p-3, 0x1.1dc5c45e09c18p-3}; |
| double dx2 = dx * dx; |
| double c1 = fputil::multiply_add(dx, COEFFS[1], COEFFS[0]); |
| double c2 = fputil::multiply_add(dx, COEFFS[3], COEFFS[2]); |
| double c3 = fputil::multiply_add(dx, COEFFS[5], COEFFS[4]); |
| |
| double p = fputil::polyeval(dx2, dx, c1, c2, c3); |
| double result = |
| fputil::multiply_add(ex, /*log(2)*/ 0x1.62e42fefa39efp-1, LOG_F[p1] + p); |
| return result; |
| } |
| |
| // Rounding tests for 2^hi * (mid + lo) when the output might be denormal. We |
| // assume further that 1 <= mid < 2, mid + lo < 2, and |lo| << mid. |
| // Notice that, if 0 < x < 2^-1022, |
| // double(2^-1022 + x) - 2^-1022 = double(x). |
| // So if we scale x up by 2^1022, we can use |
| // double(1.0 + 2^1022 * x) - 1.0 to test how x is rounded in denormal range. |
| LIBC_INLINE cpp::optional<double> ziv_test_denorm(int hi, double mid, double lo, |
| double err) { |
| using FPBits = typename fputil::FPBits<double>; |
| |
| // Scaling factor = 1/(min normal number) = 2^1022 |
| int64_t exp_hi = static_cast<int64_t>(hi + 1022) << FPBits::FRACTION_LEN; |
| double mid_hi = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(mid)); |
| double lo_scaled = |
| (lo != 0.0) ? cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(lo)) |
| : 0.0; |
| |
| double extra_factor = 0.0; |
| uint64_t scale_down = 0x3FE0'0000'0000'0000; // 1022 in the exponent field. |
| |
| // Result is denormal if (mid_hi + lo_scale < 1.0). |
| if ((1.0 - mid_hi) > lo_scaled) { |
| // Extra rounding step is needed, which adds more rounding errors. |
| err += 0x1.0p-52; |
| extra_factor = 1.0; |
| scale_down = 0x3FF0'0000'0000'0000; // 1023 in the exponent field. |
| } |
| |
| double err_scaled = |
| cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(err)); |
| |
| double lo_u = lo_scaled + err_scaled; |
| double lo_l = lo_scaled - err_scaled; |
| |
| // By adding 1.0, the results will have similar rounding points as denormal |
| // outputs. |
| double upper = extra_factor + (mid_hi + lo_u); |
| double lower = extra_factor + (mid_hi + lo_l); |
| |
| if (LIBC_LIKELY(upper == lower)) { |
| return cpp::bit_cast<double>(cpp::bit_cast<uint64_t>(upper) - scale_down); |
| } |
| |
| return cpp::nullopt; |
| } |
| |
| } // namespace LIBC_NAMESPACE |
| |
| #endif // LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H |