blob: ee8e853063644ee5e336f5ca88f1f63ba83c6a6d [file] [log] [blame]
//===-- Single-precision asin function ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/math/asinf.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/except_value_utils.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/sqrt.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
#include <errno.h>
#include "inv_trigf_utils.h"
namespace LIBC_NAMESPACE {
static constexpr size_t N_EXCEPTS = 2;
// Exceptional values when |x| <= 0.5
static constexpr fputil::ExceptValues<float, N_EXCEPTS> ASINF_EXCEPTS_LO = {{
// (inputs, RZ output, RU offset, RD offset, RN offset)
// x = 0x1.137f0cp-5, asinf(x) = 0x1.138c58p-5 (RZ)
{0x3d09bf86, 0x3d09c62c, 1, 0, 1},
// x = 0x1.cbf43cp-4, asinf(x) = 0x1.cced1cp-4 (RZ)
{0x3de5fa1e, 0x3de6768e, 1, 0, 0},
}};
// Exceptional values when 0.5 < |x| <= 1
static constexpr fputil::ExceptValues<float, N_EXCEPTS> ASINF_EXCEPTS_HI = {{
// (inputs, RZ output, RU offset, RD offset, RN offset)
// x = 0x1.107434p-1, asinf(x) = 0x1.1f4b64p-1 (RZ)
{0x3f083a1a, 0x3f0fa5b2, 1, 0, 0},
// x = 0x1.ee836cp-1, asinf(x) = 0x1.4f0654p0 (RZ)
{0x3f7741b6, 0x3fa7832a, 1, 0, 0},
}};
LLVM_LIBC_FUNCTION(float, asinf, (float x)) {
using FPBits = typename fputil::FPBits<float>;
using Sign = fputil::Sign;
FPBits xbits(x);
uint32_t x_uint = xbits.uintval();
uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU;
constexpr double SIGN[2] = {1.0, -1.0};
uint32_t x_sign = x_uint >> 31;
// |x| <= 0.5-ish
if (x_abs < 0x3f04'471dU) {
// |x| < 0x1.d12edp-12
if (LIBC_UNLIKELY(x_abs < 0x39e8'9768U)) {
// When |x| < 2^-12, the relative error of the approximation asin(x) ~ x
// is:
// |asin(x) - x| / |asin(x)| < |x^3| / (6|x|)
// = x^2 / 6
// < 2^-25
// < epsilon(1)/2.
// So the correctly rounded values of asin(x) are:
// = x + sign(x)*eps(x) if rounding mode = FE_TOWARDZERO,
// or (rounding mode = FE_UPWARD and x is
// negative),
// = x otherwise.
// To simplify the rounding decision and make it more efficient, we use
// fma(x, 2^-25, x) instead.
// An exhaustive test shows that this formula work correctly for all
// rounding modes up to |x| < 0x1.d12edp-12.
// Note: to use the formula x + 2^-25*x to decide the correct rounding, we
// do need fma(x, 2^-25, x) to prevent underflow caused by 2^-25*x when
// |x| < 2^-125. For targets without FMA instructions, we simply use
// double for intermediate results as it is more efficient than using an
// emulated version of FMA.
#if defined(LIBC_TARGET_CPU_HAS_FMA)
return fputil::multiply_add(x, 0x1.0p-25f, x);
#else
double xd = static_cast<double>(x);
return static_cast<float>(fputil::multiply_add(xd, 0x1.0p-25, xd));
#endif // LIBC_TARGET_CPU_HAS_FMA
}
// Check for exceptional values
if (auto r = ASINF_EXCEPTS_LO.lookup_odd(x_abs, x_sign);
LIBC_UNLIKELY(r.has_value()))
return r.value();
// For |x| <= 0.5, we approximate asinf(x) by:
// asin(x) = x * P(x^2)
// Where P(X^2) = Q(X) is a degree-20 minimax even polynomial approximating
// asin(x)/x on [0, 0.5] generated by Sollya with:
// > Q = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20|],
// [|1, D...|], [0, 0.5]);
// An exhaustive test shows that this approximation works well up to a
// little more than 0.5.
double xd = static_cast<double>(x);
double xsq = xd * xd;
double x3 = xd * xsq;
double r = asin_eval(xsq);
return static_cast<float>(fputil::multiply_add(x3, r, xd));
}
// |x| > 1, return NaNs.
if (LIBC_UNLIKELY(x_abs > 0x3f80'0000U)) {
if (x_abs <= 0x7f80'0000U) {
fputil::set_errno_if_required(EDOM);
fputil::raise_except_if_required(FE_INVALID);
}
return x + FPBits::build_nan(Sign::POS, FPBits::FRACTION_MASK).get_val();
}
// Check for exceptional values
if (auto r = ASINF_EXCEPTS_HI.lookup_odd(x_abs, x_sign);
LIBC_UNLIKELY(r.has_value()))
return r.value();
// When |x| > 0.5, we perform range reduction as follow:
//
// Assume further that 0.5 < x <= 1, and let:
// y = asin(x)
// We will use the double angle formula:
// cos(2y) = 1 - 2 sin^2(y)
// and the complement angle identity:
// x = sin(y) = cos(pi/2 - y)
// = 1 - 2 sin^2 (pi/4 - y/2)
// So:
// sin(pi/4 - y/2) = sqrt( (1 - x)/2 )
// And hence:
// pi/4 - y/2 = asin( sqrt( (1 - x)/2 ) )
// Equivalently:
// asin(x) = y = pi/2 - 2 * asin( sqrt( (1 - x)/2 ) )
// Let u = (1 - x)/2, then:
// asin(x) = pi/2 - 2 * asin( sqrt(u) )
// Moreover, since 0.5 < x <= 1:
// 0 <= u < 1/4, and 0 <= sqrt(u) < 0.5,
// And hence we can reuse the same polynomial approximation of asin(x) when
// |x| <= 0.5:
// asin(x) ~ pi/2 - 2 * sqrt(u) * P(u),
xbits.set_sign(Sign::POS);
double sign = SIGN[x_sign];
double xd = static_cast<double>(xbits.get_val());
double u = fputil::multiply_add(-0.5, xd, 0.5);
double c1 = sign * (-2 * fputil::sqrt(u));
double c2 = fputil::multiply_add(sign, M_MATH_PI_2, c1);
double c3 = c1 * u;
double r = asin_eval(u);
return static_cast<float>(fputil::multiply_add(c3, r, c2));
}
} // namespace LIBC_NAMESPACE