| //===-- Single-precision asin function ------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/asinf.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/PolyEval.h" |
| #include "src/__support/FPUtil/except_value_utils.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/FPUtil/sqrt.h" |
| #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA |
| |
| #include <errno.h> |
| |
| #include "inv_trigf_utils.h" |
| |
| namespace LIBC_NAMESPACE { |
| |
| static constexpr size_t N_EXCEPTS = 2; |
| |
| // Exceptional values when |x| <= 0.5 |
| static constexpr fputil::ExceptValues<float, N_EXCEPTS> ASINF_EXCEPTS_LO = {{ |
| // (inputs, RZ output, RU offset, RD offset, RN offset) |
| // x = 0x1.137f0cp-5, asinf(x) = 0x1.138c58p-5 (RZ) |
| {0x3d09bf86, 0x3d09c62c, 1, 0, 1}, |
| // x = 0x1.cbf43cp-4, asinf(x) = 0x1.cced1cp-4 (RZ) |
| {0x3de5fa1e, 0x3de6768e, 1, 0, 0}, |
| }}; |
| |
| // Exceptional values when 0.5 < |x| <= 1 |
| static constexpr fputil::ExceptValues<float, N_EXCEPTS> ASINF_EXCEPTS_HI = {{ |
| // (inputs, RZ output, RU offset, RD offset, RN offset) |
| // x = 0x1.107434p-1, asinf(x) = 0x1.1f4b64p-1 (RZ) |
| {0x3f083a1a, 0x3f0fa5b2, 1, 0, 0}, |
| // x = 0x1.ee836cp-1, asinf(x) = 0x1.4f0654p0 (RZ) |
| {0x3f7741b6, 0x3fa7832a, 1, 0, 0}, |
| }}; |
| |
| LLVM_LIBC_FUNCTION(float, asinf, (float x)) { |
| using FPBits = typename fputil::FPBits<float>; |
| using Sign = fputil::Sign; |
| FPBits xbits(x); |
| uint32_t x_uint = xbits.uintval(); |
| uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU; |
| constexpr double SIGN[2] = {1.0, -1.0}; |
| uint32_t x_sign = x_uint >> 31; |
| |
| // |x| <= 0.5-ish |
| if (x_abs < 0x3f04'471dU) { |
| // |x| < 0x1.d12edp-12 |
| if (LIBC_UNLIKELY(x_abs < 0x39e8'9768U)) { |
| // When |x| < 2^-12, the relative error of the approximation asin(x) ~ x |
| // is: |
| // |asin(x) - x| / |asin(x)| < |x^3| / (6|x|) |
| // = x^2 / 6 |
| // < 2^-25 |
| // < epsilon(1)/2. |
| // So the correctly rounded values of asin(x) are: |
| // = x + sign(x)*eps(x) if rounding mode = FE_TOWARDZERO, |
| // or (rounding mode = FE_UPWARD and x is |
| // negative), |
| // = x otherwise. |
| // To simplify the rounding decision and make it more efficient, we use |
| // fma(x, 2^-25, x) instead. |
| // An exhaustive test shows that this formula work correctly for all |
| // rounding modes up to |x| < 0x1.d12edp-12. |
| // Note: to use the formula x + 2^-25*x to decide the correct rounding, we |
| // do need fma(x, 2^-25, x) to prevent underflow caused by 2^-25*x when |
| // |x| < 2^-125. For targets without FMA instructions, we simply use |
| // double for intermediate results as it is more efficient than using an |
| // emulated version of FMA. |
| #if defined(LIBC_TARGET_CPU_HAS_FMA) |
| return fputil::multiply_add(x, 0x1.0p-25f, x); |
| #else |
| double xd = static_cast<double>(x); |
| return static_cast<float>(fputil::multiply_add(xd, 0x1.0p-25, xd)); |
| #endif // LIBC_TARGET_CPU_HAS_FMA |
| } |
| |
| // Check for exceptional values |
| if (auto r = ASINF_EXCEPTS_LO.lookup_odd(x_abs, x_sign); |
| LIBC_UNLIKELY(r.has_value())) |
| return r.value(); |
| |
| // For |x| <= 0.5, we approximate asinf(x) by: |
| // asin(x) = x * P(x^2) |
| // Where P(X^2) = Q(X) is a degree-20 minimax even polynomial approximating |
| // asin(x)/x on [0, 0.5] generated by Sollya with: |
| // > Q = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20|], |
| // [|1, D...|], [0, 0.5]); |
| // An exhaustive test shows that this approximation works well up to a |
| // little more than 0.5. |
| double xd = static_cast<double>(x); |
| double xsq = xd * xd; |
| double x3 = xd * xsq; |
| double r = asin_eval(xsq); |
| return static_cast<float>(fputil::multiply_add(x3, r, xd)); |
| } |
| |
| // |x| > 1, return NaNs. |
| if (LIBC_UNLIKELY(x_abs > 0x3f80'0000U)) { |
| if (x_abs <= 0x7f80'0000U) { |
| fputil::set_errno_if_required(EDOM); |
| fputil::raise_except_if_required(FE_INVALID); |
| } |
| return x + FPBits::build_nan(Sign::POS, FPBits::FRACTION_MASK).get_val(); |
| } |
| |
| // Check for exceptional values |
| if (auto r = ASINF_EXCEPTS_HI.lookup_odd(x_abs, x_sign); |
| LIBC_UNLIKELY(r.has_value())) |
| return r.value(); |
| |
| // When |x| > 0.5, we perform range reduction as follow: |
| // |
| // Assume further that 0.5 < x <= 1, and let: |
| // y = asin(x) |
| // We will use the double angle formula: |
| // cos(2y) = 1 - 2 sin^2(y) |
| // and the complement angle identity: |
| // x = sin(y) = cos(pi/2 - y) |
| // = 1 - 2 sin^2 (pi/4 - y/2) |
| // So: |
| // sin(pi/4 - y/2) = sqrt( (1 - x)/2 ) |
| // And hence: |
| // pi/4 - y/2 = asin( sqrt( (1 - x)/2 ) ) |
| // Equivalently: |
| // asin(x) = y = pi/2 - 2 * asin( sqrt( (1 - x)/2 ) ) |
| // Let u = (1 - x)/2, then: |
| // asin(x) = pi/2 - 2 * asin( sqrt(u) ) |
| // Moreover, since 0.5 < x <= 1: |
| // 0 <= u < 1/4, and 0 <= sqrt(u) < 0.5, |
| // And hence we can reuse the same polynomial approximation of asin(x) when |
| // |x| <= 0.5: |
| // asin(x) ~ pi/2 - 2 * sqrt(u) * P(u), |
| |
| xbits.set_sign(Sign::POS); |
| double sign = SIGN[x_sign]; |
| double xd = static_cast<double>(xbits.get_val()); |
| double u = fputil::multiply_add(-0.5, xd, 0.5); |
| double c1 = sign * (-2 * fputil::sqrt(u)); |
| double c2 = fputil::multiply_add(sign, M_MATH_PI_2, c1); |
| double c3 = c1 * u; |
| |
| double r = asin_eval(u); |
| return static_cast<float>(fputil::multiply_add(c3, r, c2)); |
| } |
| |
| } // namespace LIBC_NAMESPACE |