blob: d29f8c4cd932f45cae5409fb355280df97007e8c [file] [log] [blame]
//===-- High Precision Decimal ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See httpss//llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC___SUPPORT_HIGH_PRECISION_DECIMAL_H
#define LLVM_LIBC_SRC___SUPPORT_HIGH_PRECISION_DECIMAL_H
#include "src/__support/ctype_utils.h"
#include "src/__support/str_to_integer.h"
#include <stdint.h>
namespace LIBC_NAMESPACE {
namespace internal {
struct LShiftTableEntry {
uint32_t new_digits;
char const *power_of_five;
};
// This is used in both this file and in the main str_to_float.h.
// TODO: Figure out where to put this.
enum class RoundDirection { Up, Down, Nearest };
// This is based on the HPD data structure described as part of the Simple
// Decimal Conversion algorithm by Nigel Tao, described at this link:
// https://nigeltao.github.io/blog/2020/parse-number-f64-simple.html
class HighPrecisionDecimal {
// This precomputed table speeds up left shifts by having the number of new
// digits that will be added by multiplying 5^i by 2^i. If the number is less
// than 5^i then it will add one fewer digit. There are only 60 entries since
// that's the max shift amount.
// This table was generated by the script at
// libc/utils/mathtools/GenerateHPDConstants.py
static constexpr LShiftTableEntry LEFT_SHIFT_DIGIT_TABLE[] = {
{0, ""},
{1, "5"},
{1, "25"},
{1, "125"},
{2, "625"},
{2, "3125"},
{2, "15625"},
{3, "78125"},
{3, "390625"},
{3, "1953125"},
{4, "9765625"},
{4, "48828125"},
{4, "244140625"},
{4, "1220703125"},
{5, "6103515625"},
{5, "30517578125"},
{5, "152587890625"},
{6, "762939453125"},
{6, "3814697265625"},
{6, "19073486328125"},
{7, "95367431640625"},
{7, "476837158203125"},
{7, "2384185791015625"},
{7, "11920928955078125"},
{8, "59604644775390625"},
{8, "298023223876953125"},
{8, "1490116119384765625"},
{9, "7450580596923828125"},
{9, "37252902984619140625"},
{9, "186264514923095703125"},
{10, "931322574615478515625"},
{10, "4656612873077392578125"},
{10, "23283064365386962890625"},
{10, "116415321826934814453125"},
{11, "582076609134674072265625"},
{11, "2910383045673370361328125"},
{11, "14551915228366851806640625"},
{12, "72759576141834259033203125"},
{12, "363797880709171295166015625"},
{12, "1818989403545856475830078125"},
{13, "9094947017729282379150390625"},
{13, "45474735088646411895751953125"},
{13, "227373675443232059478759765625"},
{13, "1136868377216160297393798828125"},
{14, "5684341886080801486968994140625"},
{14, "28421709430404007434844970703125"},
{14, "142108547152020037174224853515625"},
{15, "710542735760100185871124267578125"},
{15, "3552713678800500929355621337890625"},
{15, "17763568394002504646778106689453125"},
{16, "88817841970012523233890533447265625"},
{16, "444089209850062616169452667236328125"},
{16, "2220446049250313080847263336181640625"},
{16, "11102230246251565404236316680908203125"},
{17, "55511151231257827021181583404541015625"},
{17, "277555756156289135105907917022705078125"},
{17, "1387778780781445675529539585113525390625"},
{18, "6938893903907228377647697925567626953125"},
{18, "34694469519536141888238489627838134765625"},
{18, "173472347597680709441192448139190673828125"},
{19, "867361737988403547205962240695953369140625"},
};
// The maximum amount we can shift is the number of bits used in the
// accumulator, minus the number of bits needed to represent the base (in this
// case 4).
static constexpr uint32_t MAX_SHIFT_AMOUNT = sizeof(uint64_t) - 4;
// 800 is an arbitrary number of digits, but should be
// large enough for any practical number.
static constexpr uint32_t MAX_NUM_DIGITS = 800;
uint32_t num_digits = 0;
int32_t decimal_point = 0;
bool truncated = false;
uint8_t digits[MAX_NUM_DIGITS];
private:
bool should_round_up(int32_t roundToDigit, RoundDirection round) {
if (roundToDigit < 0 ||
static_cast<uint32_t>(roundToDigit) >= this->num_digits) {
return false;
}
// The above condition handles all cases where all of the trailing digits
// are zero. In that case, if the rounding mode is up, then this number
// should be rounded up. Similarly, if the rounding mode is down, then it
// should always round down.
if (round == RoundDirection::Up) {
return true;
} else if (round == RoundDirection::Down) {
return false;
}
// Else round to nearest.
// If we're right in the middle and there are no extra digits
if (this->digits[roundToDigit] == 5 &&
static_cast<uint32_t>(roundToDigit + 1) == this->num_digits) {
// Round up if we've truncated (since that means the result is slightly
// higher than what's represented.)
if (this->truncated) {
return true;
}
// If this exactly halfway, round to even.
if (roundToDigit == 0)
// When the input is ".5".
return false;
return this->digits[roundToDigit - 1] % 2 != 0;
}
// If there are digits after roundToDigit, they must be non-zero since we
// trim trailing zeroes after all operations that change digits.
return this->digits[roundToDigit] >= 5;
}
// Takes an amount to left shift and returns the number of new digits needed
// to store the result based on LEFT_SHIFT_DIGIT_TABLE.
uint32_t get_num_new_digits(uint32_t lShiftAmount) {
const char *power_of_five =
LEFT_SHIFT_DIGIT_TABLE[lShiftAmount].power_of_five;
uint32_t new_digits = LEFT_SHIFT_DIGIT_TABLE[lShiftAmount].new_digits;
uint32_t digit_index = 0;
while (power_of_five[digit_index] != 0) {
if (digit_index >= this->num_digits) {
return new_digits - 1;
}
if (this->digits[digit_index] != power_of_five[digit_index] - '0') {
return new_digits -
((this->digits[digit_index] < power_of_five[digit_index] - '0')
? 1
: 0);
}
++digit_index;
}
return new_digits;
}
// Trim all trailing 0s
void trim_trailing_zeroes() {
while (this->num_digits > 0 && this->digits[this->num_digits - 1] == 0) {
--this->num_digits;
}
if (this->num_digits == 0) {
this->decimal_point = 0;
}
}
// Perform a digitwise binary non-rounding right shift on this value by
// shiftAmount. The shiftAmount can't be more than MAX_SHIFT_AMOUNT to prevent
// overflow.
void right_shift(uint32_t shiftAmount) {
uint32_t read_index = 0;
uint32_t write_index = 0;
uint64_t accumulator = 0;
const uint64_t shift_mask = (uint64_t(1) << shiftAmount) - 1;
// Warm Up phase: we don't have enough digits to start writing, so just
// read them into the accumulator.
while (accumulator >> shiftAmount == 0) {
uint64_t read_digit = 0;
// If there are still digits to read, read the next one, else the digit is
// assumed to be 0.
if (read_index < this->num_digits) {
read_digit = this->digits[read_index];
}
accumulator = accumulator * 10 + read_digit;
++read_index;
}
// Shift the decimal point by the number of digits it took to fill the
// accumulator.
this->decimal_point -= read_index - 1;
// Middle phase: we have enough digits to write, as well as more digits to
// read. Keep reading until we run out of digits.
while (read_index < this->num_digits) {
uint64_t read_digit = this->digits[read_index];
uint64_t write_digit = accumulator >> shiftAmount;
accumulator &= shift_mask;
this->digits[write_index] = static_cast<uint8_t>(write_digit);
accumulator = accumulator * 10 + read_digit;
++read_index;
++write_index;
}
// Cool Down phase: All of the readable digits have been read, so just write
// the remainder, while treating any more digits as 0.
while (accumulator > 0) {
uint64_t write_digit = accumulator >> shiftAmount;
accumulator &= shift_mask;
if (write_index < MAX_NUM_DIGITS) {
this->digits[write_index] = static_cast<uint8_t>(write_digit);
++write_index;
} else if (write_digit > 0) {
this->truncated = true;
}
accumulator = accumulator * 10;
}
this->num_digits = write_index;
this->trim_trailing_zeroes();
}
// Perform a digitwise binary non-rounding left shift on this value by
// shiftAmount. The shiftAmount can't be more than MAX_SHIFT_AMOUNT to prevent
// overflow.
void left_shift(uint32_t shiftAmount) {
uint32_t new_digits = this->get_num_new_digits(shiftAmount);
int32_t read_index = this->num_digits - 1;
uint32_t write_index = this->num_digits + new_digits;
uint64_t accumulator = 0;
// No Warm Up phase. Since we're putting digits in at the top and taking
// digits from the bottom we don't have to wait for the accumulator to fill.
// Middle phase: while we have more digits to read, keep reading as well as
// writing.
while (read_index >= 0) {
accumulator += static_cast<uint64_t>(this->digits[read_index])
<< shiftAmount;
uint64_t next_accumulator = accumulator / 10;
uint64_t write_digit = accumulator - (10 * next_accumulator);
--write_index;
if (write_index < MAX_NUM_DIGITS) {
this->digits[write_index] = static_cast<uint8_t>(write_digit);
} else if (write_digit != 0) {
this->truncated = true;
}
accumulator = next_accumulator;
--read_index;
}
// Cool Down phase: there are no more digits to read, so just write the
// remaining digits in the accumulator.
while (accumulator > 0) {
uint64_t next_accumulator = accumulator / 10;
uint64_t write_digit = accumulator - (10 * next_accumulator);
--write_index;
if (write_index < MAX_NUM_DIGITS) {
this->digits[write_index] = static_cast<uint8_t>(write_digit);
} else if (write_digit != 0) {
this->truncated = true;
}
accumulator = next_accumulator;
}
this->num_digits += new_digits;
if (this->num_digits > MAX_NUM_DIGITS) {
this->num_digits = MAX_NUM_DIGITS;
}
this->decimal_point += new_digits;
this->trim_trailing_zeroes();
}
public:
// numString is assumed to be a string of numeric characters. It doesn't
// handle leading spaces.
HighPrecisionDecimal(const char *__restrict numString) {
bool saw_dot = false;
// This counts the digits in the number, even if there isn't space to store
// them all.
uint32_t total_digits = 0;
while (isdigit(*numString) || *numString == '.') {
if (*numString == '.') {
if (saw_dot) {
break;
}
this->decimal_point = total_digits;
saw_dot = true;
} else {
if (*numString == '0' && this->num_digits == 0) {
--this->decimal_point;
++numString;
continue;
}
++total_digits;
if (this->num_digits < MAX_NUM_DIGITS) {
this->digits[this->num_digits] =
static_cast<uint8_t>(*numString - '0');
++this->num_digits;
} else if (*numString != '0') {
this->truncated = true;
}
}
++numString;
}
if (!saw_dot)
this->decimal_point = total_digits;
if ((*numString | 32) == 'e') {
++numString;
if (isdigit(*numString) || *numString == '+' || *numString == '-') {
auto result = strtointeger<int32_t>(numString, 10);
if (result.has_error()) {
// TODO: handle error
}
int32_t add_to_exponent = result.value;
// Here we do this operation as int64 to avoid overflow.
int64_t temp_exponent = static_cast<int64_t>(this->decimal_point) +
static_cast<int64_t>(add_to_exponent);
// Theoretically these numbers should be MAX_BIASED_EXPONENT for long
// double, but that should be ~16,000 which is much less than 1 << 30.
if (temp_exponent > (1 << 30)) {
temp_exponent = (1 << 30);
} else if (temp_exponent < -(1 << 30)) {
temp_exponent = -(1 << 30);
}
this->decimal_point = static_cast<int32_t>(temp_exponent);
}
}
this->trim_trailing_zeroes();
}
// Binary shift left (shiftAmount > 0) or right (shiftAmount < 0)
void shift(int shiftAmount) {
if (shiftAmount == 0) {
return;
}
// Left
else if (shiftAmount > 0) {
while (static_cast<uint32_t>(shiftAmount) > MAX_SHIFT_AMOUNT) {
this->left_shift(MAX_SHIFT_AMOUNT);
shiftAmount -= MAX_SHIFT_AMOUNT;
}
this->left_shift(shiftAmount);
}
// Right
else {
while (static_cast<uint32_t>(shiftAmount) < -MAX_SHIFT_AMOUNT) {
this->right_shift(MAX_SHIFT_AMOUNT);
shiftAmount += MAX_SHIFT_AMOUNT;
}
this->right_shift(-shiftAmount);
}
}
// Round the number represented to the closest value of unsigned int type T.
// This is done ignoring overflow.
template <class T>
T round_to_integer_type(RoundDirection round = RoundDirection::Nearest) {
T result = 0;
uint32_t cur_digit = 0;
while (static_cast<int32_t>(cur_digit) < this->decimal_point &&
cur_digit < this->num_digits) {
result = result * 10 + (this->digits[cur_digit]);
++cur_digit;
}
// If there are implicit 0s at the end of the number, include those.
while (static_cast<int32_t>(cur_digit) < this->decimal_point) {
result *= 10;
++cur_digit;
}
return result + this->should_round_up(this->decimal_point, round);
}
// Extra functions for testing.
uint8_t *get_digits() { return this->digits; }
uint32_t get_num_digits() { return this->num_digits; }
int32_t get_decimal_point() { return this->decimal_point; }
void set_truncated(bool trunc) { this->truncated = trunc; }
};
} // namespace internal
} // namespace LIBC_NAMESPACE
#endif // LLVM_LIBC_SRC___SUPPORT_HIGH_PRECISION_DECIMAL_H