| //===--- Context.cpp - Context for the constexpr VM -------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Context.h" |
| #include "ByteCodeEmitter.h" |
| #include "Compiler.h" |
| #include "EvalEmitter.h" |
| #include "Interp.h" |
| #include "InterpFrame.h" |
| #include "InterpStack.h" |
| #include "PrimType.h" |
| #include "Program.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/Basic/TargetInfo.h" |
| |
| using namespace clang; |
| using namespace clang::interp; |
| |
| Context::Context(ASTContext &Ctx) : Ctx(Ctx), P(new Program(*this)) {} |
| |
| Context::~Context() {} |
| |
| bool Context::isPotentialConstantExpr(State &Parent, const FunctionDecl *FD) { |
| assert(Stk.empty()); |
| |
| // Get a function handle. |
| const Function *Func = getOrCreateFunction(FD); |
| if (!Func) |
| return false; |
| |
| // Compile the function. |
| Compiler<ByteCodeEmitter>(*this, *P).compileFunc( |
| FD, const_cast<Function *>(Func)); |
| |
| // And run it. |
| if (!Run(Parent, Func)) |
| return false; |
| |
| return Func->isConstexpr(); |
| } |
| |
| bool Context::evaluateAsRValue(State &Parent, const Expr *E, APValue &Result) { |
| ++EvalID; |
| bool Recursing = !Stk.empty(); |
| size_t StackSizeBefore = Stk.size(); |
| Compiler<EvalEmitter> C(*this, *P, Parent, Stk); |
| |
| auto Res = C.interpretExpr(E, /*ConvertResultToRValue=*/E->isGLValue()); |
| |
| if (Res.isInvalid()) { |
| C.cleanup(); |
| Stk.clearTo(StackSizeBefore); |
| return false; |
| } |
| |
| if (!Recursing) { |
| assert(Stk.empty()); |
| C.cleanup(); |
| #ifndef NDEBUG |
| // Make sure we don't rely on some value being still alive in |
| // InterpStack memory. |
| Stk.clearTo(StackSizeBefore); |
| #endif |
| } |
| |
| Result = Res.toAPValue(); |
| |
| return true; |
| } |
| |
| bool Context::evaluate(State &Parent, const Expr *E, APValue &Result, |
| ConstantExprKind Kind) { |
| ++EvalID; |
| bool Recursing = !Stk.empty(); |
| size_t StackSizeBefore = Stk.size(); |
| Compiler<EvalEmitter> C(*this, *P, Parent, Stk); |
| |
| auto Res = C.interpretExpr(E, /*ConvertResultToRValue=*/false, |
| /*DestroyToplevelScope=*/true); |
| if (Res.isInvalid()) { |
| C.cleanup(); |
| Stk.clearTo(StackSizeBefore); |
| return false; |
| } |
| |
| if (!Recursing) { |
| assert(Stk.empty()); |
| C.cleanup(); |
| #ifndef NDEBUG |
| // Make sure we don't rely on some value being still alive in |
| // InterpStack memory. |
| Stk.clearTo(StackSizeBefore); |
| #endif |
| } |
| |
| Result = Res.toAPValue(); |
| return true; |
| } |
| |
| bool Context::evaluateAsInitializer(State &Parent, const VarDecl *VD, |
| APValue &Result) { |
| ++EvalID; |
| bool Recursing = !Stk.empty(); |
| size_t StackSizeBefore = Stk.size(); |
| Compiler<EvalEmitter> C(*this, *P, Parent, Stk); |
| |
| bool CheckGlobalInitialized = |
| shouldBeGloballyIndexed(VD) && |
| (VD->getType()->isRecordType() || VD->getType()->isArrayType()); |
| auto Res = C.interpretDecl(VD, CheckGlobalInitialized); |
| if (Res.isInvalid()) { |
| C.cleanup(); |
| Stk.clearTo(StackSizeBefore); |
| |
| return false; |
| } |
| |
| if (!Recursing) { |
| assert(Stk.empty()); |
| C.cleanup(); |
| #ifndef NDEBUG |
| // Make sure we don't rely on some value being still alive in |
| // InterpStack memory. |
| Stk.clearTo(StackSizeBefore); |
| #endif |
| } |
| |
| Result = Res.toAPValue(); |
| return true; |
| } |
| |
| const LangOptions &Context::getLangOpts() const { return Ctx.getLangOpts(); } |
| |
| std::optional<PrimType> Context::classify(QualType T) const { |
| if (T->isBooleanType()) |
| return PT_Bool; |
| |
| // We map these to primitive arrays. |
| if (T->isAnyComplexType() || T->isVectorType()) |
| return std::nullopt; |
| |
| if (T->isSignedIntegerOrEnumerationType()) { |
| switch (Ctx.getIntWidth(T)) { |
| case 64: |
| return PT_Sint64; |
| case 32: |
| return PT_Sint32; |
| case 16: |
| return PT_Sint16; |
| case 8: |
| return PT_Sint8; |
| default: |
| return PT_IntAPS; |
| } |
| } |
| |
| if (T->isUnsignedIntegerOrEnumerationType()) { |
| switch (Ctx.getIntWidth(T)) { |
| case 64: |
| return PT_Uint64; |
| case 32: |
| return PT_Uint32; |
| case 16: |
| return PT_Uint16; |
| case 8: |
| return PT_Uint8; |
| case 1: |
| // Might happen for enum types. |
| return PT_Bool; |
| default: |
| return PT_IntAP; |
| } |
| } |
| |
| if (T->isNullPtrType()) |
| return PT_Ptr; |
| |
| if (T->isFloatingType()) |
| return PT_Float; |
| |
| if (T->isSpecificBuiltinType(BuiltinType::BoundMember) || |
| T->isMemberPointerType()) |
| return PT_MemberPtr; |
| |
| if (T->isFunctionPointerType() || T->isFunctionReferenceType() || |
| T->isFunctionType() || T->isBlockPointerType()) |
| return PT_Ptr; |
| |
| if (T->isPointerOrReferenceType() || T->isObjCObjectPointerType()) |
| return PT_Ptr; |
| |
| if (const auto *AT = T->getAs<AtomicType>()) |
| return classify(AT->getValueType()); |
| |
| if (const auto *DT = dyn_cast<DecltypeType>(T)) |
| return classify(DT->getUnderlyingType()); |
| |
| if (T->isFixedPointType()) |
| return PT_FixedPoint; |
| |
| return std::nullopt; |
| } |
| |
| unsigned Context::getCharBit() const { |
| return Ctx.getTargetInfo().getCharWidth(); |
| } |
| |
| /// Simple wrapper around getFloatTypeSemantics() to make code a |
| /// little shorter. |
| const llvm::fltSemantics &Context::getFloatSemantics(QualType T) const { |
| return Ctx.getFloatTypeSemantics(T); |
| } |
| |
| bool Context::Run(State &Parent, const Function *Func) { |
| |
| { |
| InterpState State(Parent, *P, Stk, *this, Func); |
| if (Interpret(State)) { |
| assert(Stk.empty()); |
| return true; |
| } |
| // State gets destroyed here, so the Stk.clear() below doesn't accidentally |
| // remove values the State's destructor might access. |
| } |
| |
| Stk.clear(); |
| return false; |
| } |
| |
| // TODO: Virtual bases? |
| const CXXMethodDecl * |
| Context::getOverridingFunction(const CXXRecordDecl *DynamicDecl, |
| const CXXRecordDecl *StaticDecl, |
| const CXXMethodDecl *InitialFunction) const { |
| assert(DynamicDecl); |
| assert(StaticDecl); |
| assert(InitialFunction); |
| |
| const CXXRecordDecl *CurRecord = DynamicDecl; |
| const CXXMethodDecl *FoundFunction = InitialFunction; |
| for (;;) { |
| const CXXMethodDecl *Overrider = |
| FoundFunction->getCorrespondingMethodDeclaredInClass(CurRecord, false); |
| if (Overrider) |
| return Overrider; |
| |
| // Common case of only one base class. |
| if (CurRecord->getNumBases() == 1) { |
| CurRecord = CurRecord->bases_begin()->getType()->getAsCXXRecordDecl(); |
| continue; |
| } |
| |
| // Otherwise, go to the base class that will lead to the StaticDecl. |
| for (const CXXBaseSpecifier &Spec : CurRecord->bases()) { |
| const CXXRecordDecl *Base = Spec.getType()->getAsCXXRecordDecl(); |
| if (Base == StaticDecl || Base->isDerivedFrom(StaticDecl)) { |
| CurRecord = Base; |
| break; |
| } |
| } |
| } |
| |
| llvm_unreachable( |
| "Couldn't find an overriding function in the class hierarchy?"); |
| return nullptr; |
| } |
| |
| const Function *Context::getOrCreateFunction(const FunctionDecl *FuncDecl) { |
| assert(FuncDecl); |
| FuncDecl = FuncDecl->getMostRecentDecl(); |
| |
| if (const Function *Func = P->getFunction(FuncDecl)) |
| return Func; |
| |
| // Manually created functions that haven't been assigned proper |
| // parameters yet. |
| if (!FuncDecl->param_empty() && !FuncDecl->param_begin()) |
| return nullptr; |
| |
| bool IsLambdaStaticInvoker = false; |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl); |
| MD && MD->isLambdaStaticInvoker()) { |
| // For a lambda static invoker, we might have to pick a specialized |
| // version if the lambda is generic. In that case, the picked function |
| // will *NOT* be a static invoker anymore. However, it will still |
| // be a non-static member function, this (usually) requiring an |
| // instance pointer. We suppress that later in this function. |
| IsLambdaStaticInvoker = true; |
| |
| const CXXRecordDecl *ClosureClass = MD->getParent(); |
| assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); |
| if (ClosureClass->isGenericLambda()) { |
| const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); |
| assert(MD->isFunctionTemplateSpecialization() && |
| "A generic lambda's static-invoker function must be a " |
| "template specialization"); |
| const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); |
| FunctionTemplateDecl *CallOpTemplate = |
| LambdaCallOp->getDescribedFunctionTemplate(); |
| void *InsertPos = nullptr; |
| const FunctionDecl *CorrespondingCallOpSpecialization = |
| CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); |
| assert(CorrespondingCallOpSpecialization); |
| FuncDecl = CorrespondingCallOpSpecialization; |
| } |
| } |
| // Set up argument indices. |
| unsigned ParamOffset = 0; |
| SmallVector<PrimType, 8> ParamTypes; |
| SmallVector<unsigned, 8> ParamOffsets; |
| llvm::DenseMap<unsigned, Function::ParamDescriptor> ParamDescriptors; |
| |
| // If the return is not a primitive, a pointer to the storage where the |
| // value is initialized in is passed as the first argument. See 'RVO' |
| // elsewhere in the code. |
| QualType Ty = FuncDecl->getReturnType(); |
| bool HasRVO = false; |
| if (!Ty->isVoidType() && !classify(Ty)) { |
| HasRVO = true; |
| ParamTypes.push_back(PT_Ptr); |
| ParamOffsets.push_back(ParamOffset); |
| ParamOffset += align(primSize(PT_Ptr)); |
| } |
| |
| // If the function decl is a member decl, the next parameter is |
| // the 'this' pointer. This parameter is pop()ed from the |
| // InterpStack when calling the function. |
| bool HasThisPointer = false; |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) { |
| if (!IsLambdaStaticInvoker) { |
| HasThisPointer = MD->isInstance(); |
| if (MD->isImplicitObjectMemberFunction()) { |
| ParamTypes.push_back(PT_Ptr); |
| ParamOffsets.push_back(ParamOffset); |
| ParamOffset += align(primSize(PT_Ptr)); |
| } |
| } |
| |
| if (isLambdaCallOperator(MD)) { |
| // The parent record needs to be complete, we need to know about all |
| // the lambda captures. |
| if (!MD->getParent()->isCompleteDefinition()) |
| return nullptr; |
| llvm::DenseMap<const ValueDecl *, FieldDecl *> LC; |
| FieldDecl *LTC; |
| |
| MD->getParent()->getCaptureFields(LC, LTC); |
| |
| if (MD->isStatic() && !LC.empty()) { |
| // Static lambdas cannot have any captures. If this one does, |
| // it has already been diagnosed and we can only ignore it. |
| return nullptr; |
| } |
| } |
| } |
| |
| // Assign descriptors to all parameters. |
| // Composite objects are lowered to pointers. |
| for (const ParmVarDecl *PD : FuncDecl->parameters()) { |
| std::optional<PrimType> T = classify(PD->getType()); |
| PrimType PT = T.value_or(PT_Ptr); |
| Descriptor *Desc = P->createDescriptor(PD, PT); |
| ParamDescriptors.insert({ParamOffset, {PT, Desc}}); |
| ParamOffsets.push_back(ParamOffset); |
| ParamOffset += align(primSize(PT)); |
| ParamTypes.push_back(PT); |
| } |
| |
| // Create a handle over the emitted code. |
| assert(!P->getFunction(FuncDecl)); |
| const Function *Func = P->createFunction( |
| FuncDecl, ParamOffset, std::move(ParamTypes), std::move(ParamDescriptors), |
| std::move(ParamOffsets), HasThisPointer, HasRVO, IsLambdaStaticInvoker); |
| return Func; |
| } |
| |
| const Function *Context::getOrCreateObjCBlock(const BlockExpr *E) { |
| const BlockDecl *BD = E->getBlockDecl(); |
| // Set up argument indices. |
| unsigned ParamOffset = 0; |
| SmallVector<PrimType, 8> ParamTypes; |
| SmallVector<unsigned, 8> ParamOffsets; |
| llvm::DenseMap<unsigned, Function::ParamDescriptor> ParamDescriptors; |
| |
| // Assign descriptors to all parameters. |
| // Composite objects are lowered to pointers. |
| for (const ParmVarDecl *PD : BD->parameters()) { |
| std::optional<PrimType> T = classify(PD->getType()); |
| PrimType PT = T.value_or(PT_Ptr); |
| Descriptor *Desc = P->createDescriptor(PD, PT); |
| ParamDescriptors.insert({ParamOffset, {PT, Desc}}); |
| ParamOffsets.push_back(ParamOffset); |
| ParamOffset += align(primSize(PT)); |
| ParamTypes.push_back(PT); |
| } |
| |
| if (BD->hasCaptures()) |
| return nullptr; |
| |
| // Create a handle over the emitted code. |
| Function *Func = |
| P->createFunction(E, ParamOffset, std::move(ParamTypes), |
| std::move(ParamDescriptors), std::move(ParamOffsets), |
| /*HasThisPointer=*/false, /*HasRVO=*/false, |
| /*IsLambdaStaticInvoker=*/false); |
| |
| assert(Func); |
| Func->setDefined(true); |
| // We don't compile the BlockDecl code at all right now. |
| Func->setIsFullyCompiled(true); |
| return Func; |
| } |
| |
| unsigned Context::collectBaseOffset(const RecordDecl *BaseDecl, |
| const RecordDecl *DerivedDecl) const { |
| assert(BaseDecl); |
| assert(DerivedDecl); |
| const auto *FinalDecl = cast<CXXRecordDecl>(BaseDecl); |
| const RecordDecl *CurDecl = DerivedDecl; |
| const Record *CurRecord = P->getOrCreateRecord(CurDecl); |
| assert(CurDecl && FinalDecl); |
| |
| unsigned OffsetSum = 0; |
| for (;;) { |
| assert(CurRecord->getNumBases() > 0); |
| // One level up |
| for (const Record::Base &B : CurRecord->bases()) { |
| const auto *BaseDecl = cast<CXXRecordDecl>(B.Decl); |
| |
| if (BaseDecl == FinalDecl || BaseDecl->isDerivedFrom(FinalDecl)) { |
| OffsetSum += B.Offset; |
| CurRecord = B.R; |
| CurDecl = BaseDecl; |
| break; |
| } |
| } |
| if (CurDecl == FinalDecl) |
| break; |
| } |
| |
| assert(OffsetSum > 0); |
| return OffsetSum; |
| } |
| |
| const Record *Context::getRecord(const RecordDecl *D) const { |
| return P->getOrCreateRecord(D); |
| } |
| |
| bool Context::isUnevaluatedBuiltin(unsigned ID) { |
| return ID == Builtin::BI__builtin_classify_type || |
| ID == Builtin::BI__builtin_os_log_format_buffer_size || |
| ID == Builtin::BI__builtin_constant_p || ID == Builtin::BI__noop; |
| } |