|  | //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass statically checks for common and easily-identified constructs | 
|  | // which produce undefined or likely unintended behavior in LLVM IR. | 
|  | // | 
|  | // It is not a guarantee of correctness, in two ways. First, it isn't | 
|  | // comprehensive. There are checks which could be done statically which are | 
|  | // not yet implemented. Some of these are indicated by TODO comments, but | 
|  | // those aren't comprehensive either. Second, many conditions cannot be | 
|  | // checked statically. This pass does no dynamic instrumentation, so it | 
|  | // can't check for all possible problems. | 
|  | // | 
|  | // Another limitation is that it assumes all code will be executed. A store | 
|  | // through a null pointer in a basic block which is never reached is harmless, | 
|  | // but this pass will warn about it anyway. This is the main reason why most | 
|  | // of these checks live here instead of in the Verifier pass. | 
|  | // | 
|  | // Optimization passes may make conditions that this pass checks for more or | 
|  | // less obvious. If an optimization pass appears to be introducing a warning, | 
|  | // it may be that the optimization pass is merely exposing an existing | 
|  | // condition in the code. | 
|  | // | 
|  | // This code may be run before instcombine. In many cases, instcombine checks | 
|  | // for the same kinds of things and turns instructions with undefined behavior | 
|  | // into unreachable (or equivalent). Because of this, this pass makes some | 
|  | // effort to look through bitcasts and so on. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/Lint.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/BasicAliasAnalysis.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/MemoryLocation.h" | 
|  | #include "llvm/Analysis/ScopedNoAliasAA.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/TypeBasedAliasAnalysis.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/InstVisitor.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/AMDGPUAddrSpace.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <string> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  | namespace MemRef { | 
|  | static const unsigned Read = 1; | 
|  | static const unsigned Write = 2; | 
|  | static const unsigned Callee = 4; | 
|  | static const unsigned Branchee = 8; | 
|  | } // end namespace MemRef | 
|  |  | 
|  | class Lint : public InstVisitor<Lint> { | 
|  | friend class InstVisitor<Lint>; | 
|  |  | 
|  | void visitFunction(Function &F); | 
|  |  | 
|  | void visitCallBase(CallBase &CB); | 
|  | void visitMemoryReference(Instruction &I, const MemoryLocation &Loc, | 
|  | MaybeAlign Alignment, Type *Ty, unsigned Flags); | 
|  |  | 
|  | void visitReturnInst(ReturnInst &I); | 
|  | void visitLoadInst(LoadInst &I); | 
|  | void visitStoreInst(StoreInst &I); | 
|  | void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); | 
|  | void visitAtomicRMWInst(AtomicRMWInst &I); | 
|  | void visitXor(BinaryOperator &I); | 
|  | void visitSub(BinaryOperator &I); | 
|  | void visitLShr(BinaryOperator &I); | 
|  | void visitAShr(BinaryOperator &I); | 
|  | void visitShl(BinaryOperator &I); | 
|  | void visitSDiv(BinaryOperator &I); | 
|  | void visitUDiv(BinaryOperator &I); | 
|  | void visitSRem(BinaryOperator &I); | 
|  | void visitURem(BinaryOperator &I); | 
|  | void visitAllocaInst(AllocaInst &I); | 
|  | void visitVAArgInst(VAArgInst &I); | 
|  | void visitIndirectBrInst(IndirectBrInst &I); | 
|  | void visitExtractElementInst(ExtractElementInst &I); | 
|  | void visitInsertElementInst(InsertElementInst &I); | 
|  | void visitUnreachableInst(UnreachableInst &I); | 
|  |  | 
|  | Value *findValue(Value *V, bool OffsetOk) const; | 
|  | Value *findValueImpl(Value *V, bool OffsetOk, | 
|  | SmallPtrSetImpl<Value *> &Visited) const; | 
|  |  | 
|  | public: | 
|  | Module *Mod; | 
|  | const Triple &TT; | 
|  | const DataLayout *DL; | 
|  | AliasAnalysis *AA; | 
|  | AssumptionCache *AC; | 
|  | DominatorTree *DT; | 
|  | TargetLibraryInfo *TLI; | 
|  |  | 
|  | std::string Messages; | 
|  | raw_string_ostream MessagesStr; | 
|  |  | 
|  | Lint(Module *Mod, const DataLayout *DL, AliasAnalysis *AA, | 
|  | AssumptionCache *AC, DominatorTree *DT, TargetLibraryInfo *TLI) | 
|  | : Mod(Mod), TT(Mod->getTargetTriple()), DL(DL), AA(AA), AC(AC), DT(DT), | 
|  | TLI(TLI), MessagesStr(Messages) {} | 
|  |  | 
|  | void WriteValues(ArrayRef<const Value *> Vs) { | 
|  | for (const Value *V : Vs) { | 
|  | if (!V) | 
|  | continue; | 
|  | if (isa<Instruction>(V)) { | 
|  | MessagesStr << *V << '\n'; | 
|  | } else { | 
|  | V->printAsOperand(MessagesStr, true, Mod); | 
|  | MessagesStr << '\n'; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// A check failed, so printout out the condition and the message. | 
|  | /// | 
|  | /// This provides a nice place to put a breakpoint if you want to see why | 
|  | /// something is not correct. | 
|  | void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; } | 
|  |  | 
|  | /// A check failed (with values to print). | 
|  | /// | 
|  | /// This calls the Message-only version so that the above is easier to set | 
|  | /// a breakpoint on. | 
|  | template <typename T1, typename... Ts> | 
|  | void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { | 
|  | CheckFailed(Message); | 
|  | WriteValues({V1, Vs...}); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // Check - We know that cond should be true, if not print an error message. | 
|  | #define Check(C, ...)                                                          \ | 
|  | do {                                                                         \ | 
|  | if (!(C)) {                                                                \ | 
|  | CheckFailed(__VA_ARGS__);                                                \ | 
|  | return;                                                                  \ | 
|  | }                                                                          \ | 
|  | } while (false) | 
|  |  | 
|  | void Lint::visitFunction(Function &F) { | 
|  | // This isn't undefined behavior, it's just a little unusual, and it's a | 
|  | // fairly common mistake to neglect to name a function. | 
|  | Check(F.hasName() || F.hasLocalLinkage(), | 
|  | "Unusual: Unnamed function with non-local linkage", &F); | 
|  |  | 
|  | // TODO: Check for irreducible control flow. | 
|  | } | 
|  |  | 
|  | void Lint::visitCallBase(CallBase &I) { | 
|  | Value *Callee = I.getCalledOperand(); | 
|  |  | 
|  | visitMemoryReference(I, MemoryLocation::getAfter(Callee), std::nullopt, | 
|  | nullptr, MemRef::Callee); | 
|  |  | 
|  | if (Function *F = dyn_cast<Function>(findValue(Callee, | 
|  | /*OffsetOk=*/false))) { | 
|  | Check(I.getCallingConv() == F->getCallingConv(), | 
|  | "Undefined behavior: Caller and callee calling convention differ", | 
|  | &I); | 
|  |  | 
|  | FunctionType *FT = F->getFunctionType(); | 
|  | unsigned NumActualArgs = I.arg_size(); | 
|  |  | 
|  | Check(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs | 
|  | : FT->getNumParams() == NumActualArgs, | 
|  | "Undefined behavior: Call argument count mismatches callee " | 
|  | "argument count", | 
|  | &I); | 
|  |  | 
|  | Check(FT->getReturnType() == I.getType(), | 
|  | "Undefined behavior: Call return type mismatches " | 
|  | "callee return type", | 
|  | &I); | 
|  |  | 
|  | // Check argument types (in case the callee was casted) and attributes. | 
|  | // TODO: Verify that caller and callee attributes are compatible. | 
|  | Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end(); | 
|  | auto AI = I.arg_begin(), AE = I.arg_end(); | 
|  | for (; AI != AE; ++AI) { | 
|  | Value *Actual = *AI; | 
|  | if (PI != PE) { | 
|  | Argument *Formal = &*PI++; | 
|  | Check(Formal->getType() == Actual->getType(), | 
|  | "Undefined behavior: Call argument type mismatches " | 
|  | "callee parameter type", | 
|  | &I); | 
|  |  | 
|  | // Check that noalias arguments don't alias other arguments. This is | 
|  | // not fully precise because we don't know the sizes of the dereferenced | 
|  | // memory regions. | 
|  | if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) { | 
|  | AttributeList PAL = I.getAttributes(); | 
|  | unsigned ArgNo = 0; | 
|  | for (auto *BI = I.arg_begin(); BI != AE; ++BI, ++ArgNo) { | 
|  | // Skip ByVal arguments since they will be memcpy'd to the callee's | 
|  | // stack so we're not really passing the pointer anyway. | 
|  | if (PAL.hasParamAttr(ArgNo, Attribute::ByVal)) | 
|  | continue; | 
|  | // If both arguments are readonly, they have no dependence. | 
|  | if (Formal->onlyReadsMemory() && I.onlyReadsMemory(ArgNo)) | 
|  | continue; | 
|  | // Skip readnone arguments since those are guaranteed not to be | 
|  | // dereferenced anyway. | 
|  | if (I.doesNotAccessMemory(ArgNo)) | 
|  | continue; | 
|  | if (AI != BI && (*BI)->getType()->isPointerTy() && | 
|  | !isa<ConstantPointerNull>(*BI)) { | 
|  | AliasResult Result = AA->alias(*AI, *BI); | 
|  | Check(Result != AliasResult::MustAlias && | 
|  | Result != AliasResult::PartialAlias, | 
|  | "Unusual: noalias argument aliases another argument", &I); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that an sret argument points to valid memory. | 
|  | if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) { | 
|  | Type *Ty = Formal->getParamStructRetType(); | 
|  | MemoryLocation Loc( | 
|  | Actual, LocationSize::precise(DL->getTypeStoreSize(Ty))); | 
|  | visitMemoryReference(I, Loc, DL->getABITypeAlign(Ty), Ty, | 
|  | MemRef::Read | MemRef::Write); | 
|  | } | 
|  |  | 
|  | // Check that ABI attributes for the function and call-site match. | 
|  | unsigned ArgNo = AI->getOperandNo(); | 
|  | Attribute::AttrKind ABIAttributes[] = { | 
|  | Attribute::ZExt,         Attribute::SExt,     Attribute::InReg, | 
|  | Attribute::ByVal,        Attribute::ByRef,    Attribute::InAlloca, | 
|  | Attribute::Preallocated, Attribute::StructRet}; | 
|  | AttributeList CallAttrs = I.getAttributes(); | 
|  | for (Attribute::AttrKind Attr : ABIAttributes) { | 
|  | Attribute CallAttr = CallAttrs.getParamAttr(ArgNo, Attr); | 
|  | Attribute FnAttr = F->getParamAttribute(ArgNo, Attr); | 
|  | Check(CallAttr.isValid() == FnAttr.isValid(), | 
|  | Twine("Undefined behavior: ABI attribute ") + | 
|  | Attribute::getNameFromAttrKind(Attr) + | 
|  | " not present on both function and call-site", | 
|  | &I); | 
|  | if (CallAttr.isValid() && FnAttr.isValid()) { | 
|  | Check(CallAttr == FnAttr, | 
|  | Twine("Undefined behavior: ABI attribute ") + | 
|  | Attribute::getNameFromAttrKind(Attr) + | 
|  | " does not have same argument for function and call-site", | 
|  | &I); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const auto *CI = dyn_cast<CallInst>(&I)) { | 
|  | if (CI->isTailCall()) { | 
|  | const AttributeList &PAL = CI->getAttributes(); | 
|  | unsigned ArgNo = 0; | 
|  | for (Value *Arg : I.args()) { | 
|  | // Skip ByVal arguments since they will be memcpy'd to the callee's | 
|  | // stack anyway. | 
|  | if (PAL.hasParamAttr(ArgNo++, Attribute::ByVal)) | 
|  | continue; | 
|  | Value *Obj = findValue(Arg, /*OffsetOk=*/true); | 
|  | Check(!isa<AllocaInst>(Obj), | 
|  | "Undefined behavior: Call with \"tail\" keyword references " | 
|  | "alloca", | 
|  | &I); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: | 
|  | break; | 
|  |  | 
|  | // TODO: Check more intrinsics | 
|  |  | 
|  | case Intrinsic::memcpy: | 
|  | case Intrinsic::memcpy_inline: { | 
|  | MemCpyInst *MCI = cast<MemCpyInst>(&I); | 
|  | visitMemoryReference(I, MemoryLocation::getForDest(MCI), | 
|  | MCI->getDestAlign(), nullptr, MemRef::Write); | 
|  | visitMemoryReference(I, MemoryLocation::getForSource(MCI), | 
|  | MCI->getSourceAlign(), nullptr, MemRef::Read); | 
|  |  | 
|  | // Check that the memcpy arguments don't overlap. The AliasAnalysis API | 
|  | // isn't expressive enough for what we really want to do. Known partial | 
|  | // overlap is not distinguished from the case where nothing is known. | 
|  | auto Size = LocationSize::afterPointer(); | 
|  | if (const ConstantInt *Len = | 
|  | dyn_cast<ConstantInt>(findValue(MCI->getLength(), | 
|  | /*OffsetOk=*/false))) | 
|  | if (Len->getValue().isIntN(32)) | 
|  | Size = LocationSize::precise(Len->getValue().getZExtValue()); | 
|  | Check(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) != | 
|  | AliasResult::MustAlias, | 
|  | "Undefined behavior: memcpy source and destination overlap", &I); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::memmove: { | 
|  | MemMoveInst *MMI = cast<MemMoveInst>(&I); | 
|  | visitMemoryReference(I, MemoryLocation::getForDest(MMI), | 
|  | MMI->getDestAlign(), nullptr, MemRef::Write); | 
|  | visitMemoryReference(I, MemoryLocation::getForSource(MMI), | 
|  | MMI->getSourceAlign(), nullptr, MemRef::Read); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::memset: { | 
|  | MemSetInst *MSI = cast<MemSetInst>(&I); | 
|  | visitMemoryReference(I, MemoryLocation::getForDest(MSI), | 
|  | MSI->getDestAlign(), nullptr, MemRef::Write); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::memset_inline: { | 
|  | MemSetInlineInst *MSII = cast<MemSetInlineInst>(&I); | 
|  | visitMemoryReference(I, MemoryLocation::getForDest(MSII), | 
|  | MSII->getDestAlign(), nullptr, MemRef::Write); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::vastart: | 
|  | // vastart in non-varargs function is rejected by the verifier | 
|  | visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), | 
|  | std::nullopt, nullptr, MemRef::Read | MemRef::Write); | 
|  | break; | 
|  | case Intrinsic::vacopy: | 
|  | visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), | 
|  | std::nullopt, nullptr, MemRef::Write); | 
|  | visitMemoryReference(I, MemoryLocation::getForArgument(&I, 1, TLI), | 
|  | std::nullopt, nullptr, MemRef::Read); | 
|  | break; | 
|  | case Intrinsic::vaend: | 
|  | visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), | 
|  | std::nullopt, nullptr, MemRef::Read | MemRef::Write); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::stackrestore: | 
|  | // Stackrestore doesn't read or write memory, but it sets the | 
|  | // stack pointer, which the compiler may read from or write to | 
|  | // at any time, so check it for both readability and writeability. | 
|  | visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), | 
|  | std::nullopt, nullptr, MemRef::Read | MemRef::Write); | 
|  | break; | 
|  | case Intrinsic::get_active_lane_mask: | 
|  | if (auto *TripCount = dyn_cast<ConstantInt>(I.getArgOperand(1))) | 
|  | Check(!TripCount->isZero(), | 
|  | "get_active_lane_mask: operand #2 " | 
|  | "must be greater than 0", | 
|  | &I); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Lint::visitReturnInst(ReturnInst &I) { | 
|  | Function *F = I.getParent()->getParent(); | 
|  | Check(!F->doesNotReturn(), | 
|  | "Unusual: Return statement in function with noreturn attribute", &I); | 
|  |  | 
|  | if (Value *V = I.getReturnValue()) { | 
|  | Value *Obj = findValue(V, /*OffsetOk=*/true); | 
|  | Check(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: Check that the reference is in bounds. | 
|  | // TODO: Check readnone/readonly function attributes. | 
|  | void Lint::visitMemoryReference(Instruction &I, const MemoryLocation &Loc, | 
|  | MaybeAlign Align, Type *Ty, unsigned Flags) { | 
|  | // If no memory is being referenced, it doesn't matter if the pointer | 
|  | // is valid. | 
|  | if (Loc.Size.isZero()) | 
|  | return; | 
|  |  | 
|  | Value *Ptr = const_cast<Value *>(Loc.Ptr); | 
|  | Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true); | 
|  | Check(!isa<ConstantPointerNull>(UnderlyingObject), | 
|  | "Undefined behavior: Null pointer dereference", &I); | 
|  | Check(!isa<UndefValue>(UnderlyingObject), | 
|  | "Undefined behavior: Undef pointer dereference", &I); | 
|  | Check(!isa<ConstantInt>(UnderlyingObject) || | 
|  | !cast<ConstantInt>(UnderlyingObject)->isMinusOne(), | 
|  | "Unusual: All-ones pointer dereference", &I); | 
|  | Check(!isa<ConstantInt>(UnderlyingObject) || | 
|  | !cast<ConstantInt>(UnderlyingObject)->isOne(), | 
|  | "Unusual: Address one pointer dereference", &I); | 
|  |  | 
|  | if (Flags & MemRef::Write) { | 
|  | if (TT.isAMDGPU()) | 
|  | Check(!AMDGPU::isConstantAddressSpace( | 
|  | UnderlyingObject->getType()->getPointerAddressSpace()), | 
|  | "Undefined behavior: Write to memory in const addrspace", &I); | 
|  |  | 
|  | if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject)) | 
|  | Check(!GV->isConstant(), "Undefined behavior: Write to read-only memory", | 
|  | &I); | 
|  | Check(!isa<Function>(UnderlyingObject) && | 
|  | !isa<BlockAddress>(UnderlyingObject), | 
|  | "Undefined behavior: Write to text section", &I); | 
|  | } | 
|  | if (Flags & MemRef::Read) { | 
|  | Check(!isa<Function>(UnderlyingObject), "Unusual: Load from function body", | 
|  | &I); | 
|  | Check(!isa<BlockAddress>(UnderlyingObject), | 
|  | "Undefined behavior: Load from block address", &I); | 
|  | } | 
|  | if (Flags & MemRef::Callee) { | 
|  | Check(!isa<BlockAddress>(UnderlyingObject), | 
|  | "Undefined behavior: Call to block address", &I); | 
|  | } | 
|  | if (Flags & MemRef::Branchee) { | 
|  | Check(!isa<Constant>(UnderlyingObject) || | 
|  | isa<BlockAddress>(UnderlyingObject), | 
|  | "Undefined behavior: Branch to non-blockaddress", &I); | 
|  | } | 
|  |  | 
|  | // Check for buffer overflows and misalignment. | 
|  | // Only handles memory references that read/write something simple like an | 
|  | // alloca instruction or a global variable. | 
|  | int64_t Offset = 0; | 
|  | if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) { | 
|  | // OK, so the access is to a constant offset from Ptr.  Check that Ptr is | 
|  | // something we can handle and if so extract the size of this base object | 
|  | // along with its alignment. | 
|  | uint64_t BaseSize = MemoryLocation::UnknownSize; | 
|  | MaybeAlign BaseAlign; | 
|  |  | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { | 
|  | Type *ATy = AI->getAllocatedType(); | 
|  | if (!AI->isArrayAllocation() && ATy->isSized() && !ATy->isScalableTy()) | 
|  | BaseSize = DL->getTypeAllocSize(ATy).getFixedValue(); | 
|  | BaseAlign = AI->getAlign(); | 
|  | } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { | 
|  | // If the global may be defined differently in another compilation unit | 
|  | // then don't warn about funky memory accesses. | 
|  | if (GV->hasDefinitiveInitializer()) { | 
|  | Type *GTy = GV->getValueType(); | 
|  | if (GTy->isSized()) | 
|  | BaseSize = DL->getTypeAllocSize(GTy); | 
|  | BaseAlign = GV->getAlign(); | 
|  | if (!BaseAlign && GTy->isSized()) | 
|  | BaseAlign = DL->getABITypeAlign(GTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Accesses from before the start or after the end of the object are not | 
|  | // defined. | 
|  | Check(!Loc.Size.hasValue() || Loc.Size.isScalable() || | 
|  | BaseSize == MemoryLocation::UnknownSize || | 
|  | (Offset >= 0 && Offset + Loc.Size.getValue() <= BaseSize), | 
|  | "Undefined behavior: Buffer overflow", &I); | 
|  |  | 
|  | // Accesses that say that the memory is more aligned than it is are not | 
|  | // defined. | 
|  | if (!Align && Ty && Ty->isSized()) | 
|  | Align = DL->getABITypeAlign(Ty); | 
|  | if (BaseAlign && Align) | 
|  | Check(*Align <= commonAlignment(*BaseAlign, Offset), | 
|  | "Undefined behavior: Memory reference address is misaligned", &I); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Lint::visitLoadInst(LoadInst &I) { | 
|  | visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), I.getType(), | 
|  | MemRef::Read); | 
|  | } | 
|  |  | 
|  | void Lint::visitStoreInst(StoreInst &I) { | 
|  | visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), | 
|  | I.getOperand(0)->getType(), MemRef::Write); | 
|  | } | 
|  |  | 
|  | void Lint::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { | 
|  | visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), | 
|  | I.getOperand(0)->getType(), MemRef::Write); | 
|  | } | 
|  |  | 
|  | void Lint::visitAtomicRMWInst(AtomicRMWInst &I) { | 
|  | visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), | 
|  | I.getOperand(0)->getType(), MemRef::Write); | 
|  | } | 
|  |  | 
|  | void Lint::visitXor(BinaryOperator &I) { | 
|  | Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), | 
|  | "Undefined result: xor(undef, undef)", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitSub(BinaryOperator &I) { | 
|  | Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), | 
|  | "Undefined result: sub(undef, undef)", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitLShr(BinaryOperator &I) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1), | 
|  | /*OffsetOk=*/false))) | 
|  | Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), | 
|  | "Undefined result: Shift count out of range", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitAShr(BinaryOperator &I) { | 
|  | if (ConstantInt *CI = | 
|  | dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) | 
|  | Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), | 
|  | "Undefined result: Shift count out of range", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitShl(BinaryOperator &I) { | 
|  | if (ConstantInt *CI = | 
|  | dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) | 
|  | Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), | 
|  | "Undefined result: Shift count out of range", &I); | 
|  | } | 
|  |  | 
|  | static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, | 
|  | AssumptionCache *AC) { | 
|  | // Assume undef could be zero. | 
|  | if (isa<UndefValue>(V)) | 
|  | return true; | 
|  |  | 
|  | VectorType *VecTy = dyn_cast<VectorType>(V->getType()); | 
|  | if (!VecTy) { | 
|  | KnownBits Known = | 
|  | computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT); | 
|  | return Known.isZero(); | 
|  | } | 
|  |  | 
|  | // Per-component check doesn't work with zeroinitializer | 
|  | Constant *C = dyn_cast<Constant>(V); | 
|  | if (!C) | 
|  | return false; | 
|  |  | 
|  | if (C->isZeroValue()) | 
|  | return true; | 
|  |  | 
|  | // For a vector, KnownZero will only be true if all values are zero, so check | 
|  | // this per component | 
|  | for (unsigned I = 0, N = cast<FixedVectorType>(VecTy)->getNumElements(); | 
|  | I != N; ++I) { | 
|  | Constant *Elem = C->getAggregateElement(I); | 
|  | if (isa<UndefValue>(Elem)) | 
|  | return true; | 
|  |  | 
|  | KnownBits Known = computeKnownBits(Elem, DL); | 
|  | if (Known.isZero()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Lint::visitSDiv(BinaryOperator &I) { | 
|  | Check(!isZero(I.getOperand(1), I.getDataLayout(), DT, AC), | 
|  | "Undefined behavior: Division by zero", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitUDiv(BinaryOperator &I) { | 
|  | Check(!isZero(I.getOperand(1), I.getDataLayout(), DT, AC), | 
|  | "Undefined behavior: Division by zero", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitSRem(BinaryOperator &I) { | 
|  | Check(!isZero(I.getOperand(1), I.getDataLayout(), DT, AC), | 
|  | "Undefined behavior: Division by zero", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitURem(BinaryOperator &I) { | 
|  | Check(!isZero(I.getOperand(1), I.getDataLayout(), DT, AC), | 
|  | "Undefined behavior: Division by zero", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitAllocaInst(AllocaInst &I) { | 
|  | if (isa<ConstantInt>(I.getArraySize())) | 
|  | // This isn't undefined behavior, it's just an obvious pessimization. | 
|  | Check(&I.getParent()->getParent()->getEntryBlock() == I.getParent(), | 
|  | "Pessimization: Static alloca outside of entry block", &I); | 
|  |  | 
|  | // TODO: Check for an unusual size (MSB set?) | 
|  | } | 
|  |  | 
|  | void Lint::visitVAArgInst(VAArgInst &I) { | 
|  | visitMemoryReference(I, MemoryLocation::get(&I), std::nullopt, nullptr, | 
|  | MemRef::Read | MemRef::Write); | 
|  | } | 
|  |  | 
|  | void Lint::visitIndirectBrInst(IndirectBrInst &I) { | 
|  | visitMemoryReference(I, MemoryLocation::getAfter(I.getAddress()), | 
|  | std::nullopt, nullptr, MemRef::Branchee); | 
|  |  | 
|  | Check(I.getNumDestinations() != 0, | 
|  | "Undefined behavior: indirectbr with no destinations", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitExtractElementInst(ExtractElementInst &I) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(), | 
|  | /*OffsetOk=*/false))) { | 
|  | ElementCount EC = I.getVectorOperandType()->getElementCount(); | 
|  | Check(EC.isScalable() || CI->getValue().ult(EC.getFixedValue()), | 
|  | "Undefined result: extractelement index out of range", &I); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Lint::visitInsertElementInst(InsertElementInst &I) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2), | 
|  | /*OffsetOk=*/false))) { | 
|  | ElementCount EC = I.getType()->getElementCount(); | 
|  | Check(EC.isScalable() || CI->getValue().ult(EC.getFixedValue()), | 
|  | "Undefined result: insertelement index out of range", &I); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Lint::visitUnreachableInst(UnreachableInst &I) { | 
|  | // This isn't undefined behavior, it's merely suspicious. | 
|  | Check(&I == &I.getParent()->front() || | 
|  | std::prev(I.getIterator())->mayHaveSideEffects(), | 
|  | "Unusual: unreachable immediately preceded by instruction without " | 
|  | "side effects", | 
|  | &I); | 
|  | } | 
|  |  | 
|  | /// findValue - Look through bitcasts and simple memory reference patterns | 
|  | /// to identify an equivalent, but more informative, value.  If OffsetOk | 
|  | /// is true, look through getelementptrs with non-zero offsets too. | 
|  | /// | 
|  | /// Most analysis passes don't require this logic, because instcombine | 
|  | /// will simplify most of these kinds of things away. But it's a goal of | 
|  | /// this Lint pass to be useful even on non-optimized IR. | 
|  | Value *Lint::findValue(Value *V, bool OffsetOk) const { | 
|  | SmallPtrSet<Value *, 4> Visited; | 
|  | return findValueImpl(V, OffsetOk, Visited); | 
|  | } | 
|  |  | 
|  | /// findValueImpl - Implementation helper for findValue. | 
|  | Value *Lint::findValueImpl(Value *V, bool OffsetOk, | 
|  | SmallPtrSetImpl<Value *> &Visited) const { | 
|  | // Detect self-referential values. | 
|  | if (!Visited.insert(V).second) | 
|  | return PoisonValue::get(V->getType()); | 
|  |  | 
|  | // TODO: Look through sext or zext cast, when the result is known to | 
|  | // be interpreted as signed or unsigned, respectively. | 
|  | // TODO: Look through eliminable cast pairs. | 
|  | // TODO: Look through calls with unique return values. | 
|  | // TODO: Look through vector insert/extract/shuffle. | 
|  | V = OffsetOk ? getUnderlyingObject(V) : V->stripPointerCasts(); | 
|  | if (LoadInst *L = dyn_cast<LoadInst>(V)) { | 
|  | BasicBlock::iterator BBI = L->getIterator(); | 
|  | BasicBlock *BB = L->getParent(); | 
|  | SmallPtrSet<BasicBlock *, 4> VisitedBlocks; | 
|  | BatchAAResults BatchAA(*AA); | 
|  | for (;;) { | 
|  | if (!VisitedBlocks.insert(BB).second) | 
|  | break; | 
|  | if (Value *U = | 
|  | FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, &BatchAA)) | 
|  | return findValueImpl(U, OffsetOk, Visited); | 
|  | if (BBI != BB->begin()) | 
|  | break; | 
|  | BB = BB->getUniquePredecessor(); | 
|  | if (!BB) | 
|  | break; | 
|  | BBI = BB->end(); | 
|  | } | 
|  | } else if (PHINode *PN = dyn_cast<PHINode>(V)) { | 
|  | if (Value *W = PN->hasConstantValue()) | 
|  | return findValueImpl(W, OffsetOk, Visited); | 
|  | } else if (CastInst *CI = dyn_cast<CastInst>(V)) { | 
|  | if (CI->isNoopCast(*DL)) | 
|  | return findValueImpl(CI->getOperand(0), OffsetOk, Visited); | 
|  | } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) { | 
|  | if (Value *W = | 
|  | FindInsertedValue(Ex->getAggregateOperand(), Ex->getIndices())) | 
|  | if (W != V) | 
|  | return findValueImpl(W, OffsetOk, Visited); | 
|  | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
|  | // Same as above, but for ConstantExpr instead of Instruction. | 
|  | if (Instruction::isCast(CE->getOpcode())) { | 
|  | if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()), | 
|  | CE->getOperand(0)->getType(), CE->getType(), | 
|  | *DL)) | 
|  | return findValueImpl(CE->getOperand(0), OffsetOk, Visited); | 
|  | } | 
|  | } | 
|  |  | 
|  | // As a last resort, try SimplifyInstruction or constant folding. | 
|  | if (Instruction *Inst = dyn_cast<Instruction>(V)) { | 
|  | if (Value *W = simplifyInstruction(Inst, {*DL, TLI, DT, AC})) | 
|  | return findValueImpl(W, OffsetOk, Visited); | 
|  | } else if (auto *C = dyn_cast<Constant>(V)) { | 
|  | Value *W = ConstantFoldConstant(C, *DL, TLI); | 
|  | if (W != V) | 
|  | return findValueImpl(W, OffsetOk, Visited); | 
|  | } | 
|  |  | 
|  | return V; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses LintPass::run(Function &F, FunctionAnalysisManager &AM) { | 
|  | auto *Mod = F.getParent(); | 
|  | auto *DL = &F.getDataLayout(); | 
|  | auto *AA = &AM.getResult<AAManager>(F); | 
|  | auto *AC = &AM.getResult<AssumptionAnalysis>(F); | 
|  | auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); | 
|  | auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F); | 
|  | Lint L(Mod, DL, AA, AC, DT, TLI); | 
|  | L.visit(F); | 
|  | dbgs() << L.MessagesStr.str(); | 
|  | if (AbortOnError && !L.MessagesStr.str().empty()) | 
|  | report_fatal_error( | 
|  | "linter found errors, aborting. (enabled by abort-on-error)", false); | 
|  | return PreservedAnalyses::all(); | 
|  | } | 
|  |  | 
|  | void LintPass::printPipeline( | 
|  | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { | 
|  | PassInfoMixin<LintPass>::printPipeline(OS, MapClassName2PassName); | 
|  | if (AbortOnError) | 
|  | OS << "<abort-on-error>"; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Implement the public interfaces to this file... | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// lintFunction - Check a function for errors, printing messages on stderr. | 
|  | /// | 
|  | void llvm::lintFunction(const Function &f, bool AbortOnError) { | 
|  | Function &F = const_cast<Function &>(f); | 
|  | assert(!F.isDeclaration() && "Cannot lint external functions"); | 
|  |  | 
|  | FunctionAnalysisManager FAM; | 
|  | FAM.registerPass([&] { return TargetLibraryAnalysis(); }); | 
|  | FAM.registerPass([&] { return DominatorTreeAnalysis(); }); | 
|  | FAM.registerPass([&] { return AssumptionAnalysis(); }); | 
|  | FAM.registerPass([&] { | 
|  | AAManager AA; | 
|  | AA.registerFunctionAnalysis<BasicAA>(); | 
|  | AA.registerFunctionAnalysis<ScopedNoAliasAA>(); | 
|  | AA.registerFunctionAnalysis<TypeBasedAA>(); | 
|  | return AA; | 
|  | }); | 
|  | LintPass(AbortOnError).run(F, FAM); | 
|  | } | 
|  |  | 
|  | /// lintModule - Check a module for errors, printing messages on stderr. | 
|  | /// | 
|  | void llvm::lintModule(const Module &M, bool AbortOnError) { | 
|  | for (const Function &F : M) { | 
|  | if (!F.isDeclaration()) | 
|  | lintFunction(F, AbortOnError); | 
|  | } | 
|  | } |