|  | //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the AsmPrinter class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/AsmPrinter.h" | 
|  | #include "CodeViewDebug.h" | 
|  | #include "DwarfDebug.h" | 
|  | #include "DwarfException.h" | 
|  | #include "PseudoProbePrinter.h" | 
|  | #include "WasmException.h" | 
|  | #include "WinCFGuard.h" | 
|  | #include "WinException.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/TinyPtrVector.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/MemoryLocation.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/BinaryFormat/COFF.h" | 
|  | #include "llvm/BinaryFormat/Dwarf.h" | 
|  | #include "llvm/BinaryFormat/ELF.h" | 
|  | #include "llvm/CodeGen/GCMetadata.h" | 
|  | #include "llvm/CodeGen/GCMetadataPrinter.h" | 
|  | #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBundle.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfoImpls.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" | 
|  | #include "llvm/CodeGen/StackMaps.h" | 
|  | #include "llvm/CodeGen/TargetFrameLowering.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/TargetOpcodes.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/Config/config.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Comdat.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/EHPersonalities.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GCStrategy.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalIFunc.h" | 
|  | #include "llvm/IR/GlobalObject.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Mangler.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PseudoProbe.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/MC/MCDirectives.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/MC/MCInst.h" | 
|  | #include "llvm/MC/MCSchedule.h" | 
|  | #include "llvm/MC/MCSection.h" | 
|  | #include "llvm/MC/MCSectionCOFF.h" | 
|  | #include "llvm/MC/MCSectionELF.h" | 
|  | #include "llvm/MC/MCSectionMachO.h" | 
|  | #include "llvm/MC/MCSectionXCOFF.h" | 
|  | #include "llvm/MC/MCStreamer.h" | 
|  | #include "llvm/MC/MCSubtargetInfo.h" | 
|  | #include "llvm/MC/MCSymbol.h" | 
|  | #include "llvm/MC/MCSymbolELF.h" | 
|  | #include "llvm/MC/MCTargetOptions.h" | 
|  | #include "llvm/MC/MCValue.h" | 
|  | #include "llvm/MC/SectionKind.h" | 
|  | #include "llvm/Object/ELFTypes.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Remarks/RemarkStreamer.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/FileSystem.h" | 
|  | #include "llvm/Support/Format.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/Path.h" | 
|  | #include "llvm/Support/VCSRevision.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetLoweringObjectFile.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/TargetParser/Triple.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cinttypes> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <memory> | 
|  | #include <optional> | 
|  | #include <string> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "asm-printer" | 
|  |  | 
|  | // This is a replication of fields of object::PGOAnalysisMap::Features. It | 
|  | // should match the order of the fields so that | 
|  | // `object::PGOAnalysisMap::Features::decode(PgoAnalysisMapFeatures.getBits())` | 
|  | // succeeds. | 
|  | enum class PGOMapFeaturesEnum { | 
|  | None, | 
|  | FuncEntryCount, | 
|  | BBFreq, | 
|  | BrProb, | 
|  | All, | 
|  | }; | 
|  | static cl::bits<PGOMapFeaturesEnum> PgoAnalysisMapFeatures( | 
|  | "pgo-analysis-map", cl::Hidden, cl::CommaSeparated, | 
|  | cl::values( | 
|  | clEnumValN(PGOMapFeaturesEnum::None, "none", "Disable all options"), | 
|  | clEnumValN(PGOMapFeaturesEnum::FuncEntryCount, "func-entry-count", | 
|  | "Function Entry Count"), | 
|  | clEnumValN(PGOMapFeaturesEnum::BBFreq, "bb-freq", | 
|  | "Basic Block Frequency"), | 
|  | clEnumValN(PGOMapFeaturesEnum::BrProb, "br-prob", "Branch Probability"), | 
|  | clEnumValN(PGOMapFeaturesEnum::All, "all", "Enable all options")), | 
|  | cl::desc( | 
|  | "Enable extended information within the SHT_LLVM_BB_ADDR_MAP that is " | 
|  | "extracted from PGO related analysis.")); | 
|  |  | 
|  | static cl::opt<bool> BBAddrMapSkipEmitBBEntries( | 
|  | "basic-block-address-map-skip-bb-entries", | 
|  | cl::desc("Skip emitting basic block entries in the SHT_LLVM_BB_ADDR_MAP " | 
|  | "section. It's used to save binary size when BB entries are " | 
|  | "unnecessary for some PGOAnalysisMap features."), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> EmitJumpTableSizesSection( | 
|  | "emit-jump-table-sizes-section", | 
|  | cl::desc("Emit a section containing jump table addresses and sizes"), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | // This isn't turned on by default, since several of the scheduling models are | 
|  | // not completely accurate, and we don't want to be misleading. | 
|  | static cl::opt<bool> PrintLatency( | 
|  | "asm-print-latency", | 
|  | cl::desc("Print instruction latencies as verbose asm comments"), cl::Hidden, | 
|  | cl::init(false)); | 
|  |  | 
|  | STATISTIC(EmittedInsts, "Number of machine instrs printed"); | 
|  |  | 
|  | char AsmPrinter::ID = 0; | 
|  |  | 
|  | namespace { | 
|  | class AddrLabelMapCallbackPtr final : CallbackVH { | 
|  | AddrLabelMap *Map = nullptr; | 
|  |  | 
|  | public: | 
|  | AddrLabelMapCallbackPtr() = default; | 
|  | AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {} | 
|  |  | 
|  | void setPtr(BasicBlock *BB) { | 
|  | ValueHandleBase::operator=(BB); | 
|  | } | 
|  |  | 
|  | void setMap(AddrLabelMap *map) { Map = map; } | 
|  |  | 
|  | void deleted() override; | 
|  | void allUsesReplacedWith(Value *V2) override; | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | class llvm::AddrLabelMap { | 
|  | MCContext &Context; | 
|  | struct AddrLabelSymEntry { | 
|  | /// The symbols for the label. | 
|  | TinyPtrVector<MCSymbol *> Symbols; | 
|  |  | 
|  | Function *Fn;   // The containing function of the BasicBlock. | 
|  | unsigned Index; // The index in BBCallbacks for the BasicBlock. | 
|  | }; | 
|  |  | 
|  | DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols; | 
|  |  | 
|  | /// Callbacks for the BasicBlock's that we have entries for.  We use this so | 
|  | /// we get notified if a block is deleted or RAUWd. | 
|  | std::vector<AddrLabelMapCallbackPtr> BBCallbacks; | 
|  |  | 
|  | /// This is a per-function list of symbols whose corresponding BasicBlock got | 
|  | /// deleted.  These symbols need to be emitted at some point in the file, so | 
|  | /// AsmPrinter emits them after the function body. | 
|  | DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>> | 
|  | DeletedAddrLabelsNeedingEmission; | 
|  |  | 
|  | public: | 
|  | AddrLabelMap(MCContext &context) : Context(context) {} | 
|  |  | 
|  | ~AddrLabelMap() { | 
|  | assert(DeletedAddrLabelsNeedingEmission.empty() && | 
|  | "Some labels for deleted blocks never got emitted"); | 
|  | } | 
|  |  | 
|  | ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB); | 
|  |  | 
|  | void takeDeletedSymbolsForFunction(Function *F, | 
|  | std::vector<MCSymbol *> &Result); | 
|  |  | 
|  | void UpdateForDeletedBlock(BasicBlock *BB); | 
|  | void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New); | 
|  | }; | 
|  |  | 
|  | ArrayRef<MCSymbol *> AddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) { | 
|  | assert(BB->hasAddressTaken() && | 
|  | "Shouldn't get label for block without address taken"); | 
|  | AddrLabelSymEntry &Entry = AddrLabelSymbols[BB]; | 
|  |  | 
|  | // If we already had an entry for this block, just return it. | 
|  | if (!Entry.Symbols.empty()) { | 
|  | assert(BB->getParent() == Entry.Fn && "Parent changed"); | 
|  | return Entry.Symbols; | 
|  | } | 
|  |  | 
|  | // Otherwise, this is a new entry, create a new symbol for it and add an | 
|  | // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd. | 
|  | BBCallbacks.emplace_back(BB); | 
|  | BBCallbacks.back().setMap(this); | 
|  | Entry.Index = BBCallbacks.size() - 1; | 
|  | Entry.Fn = BB->getParent(); | 
|  | MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol() | 
|  | : Context.createTempSymbol(); | 
|  | Entry.Symbols.push_back(Sym); | 
|  | return Entry.Symbols; | 
|  | } | 
|  |  | 
|  | /// If we have any deleted symbols for F, return them. | 
|  | void AddrLabelMap::takeDeletedSymbolsForFunction( | 
|  | Function *F, std::vector<MCSymbol *> &Result) { | 
|  | DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I = | 
|  | DeletedAddrLabelsNeedingEmission.find(F); | 
|  |  | 
|  | // If there are no entries for the function, just return. | 
|  | if (I == DeletedAddrLabelsNeedingEmission.end()) | 
|  | return; | 
|  |  | 
|  | // Otherwise, take the list. | 
|  | std::swap(Result, I->second); | 
|  | DeletedAddrLabelsNeedingEmission.erase(I); | 
|  | } | 
|  |  | 
|  | //===- Address of Block Management ----------------------------------------===// | 
|  |  | 
|  | ArrayRef<MCSymbol *> | 
|  | AsmPrinter::getAddrLabelSymbolToEmit(const BasicBlock *BB) { | 
|  | // Lazily create AddrLabelSymbols. | 
|  | if (!AddrLabelSymbols) | 
|  | AddrLabelSymbols = std::make_unique<AddrLabelMap>(OutContext); | 
|  | return AddrLabelSymbols->getAddrLabelSymbolToEmit( | 
|  | const_cast<BasicBlock *>(BB)); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::takeDeletedSymbolsForFunction( | 
|  | const Function *F, std::vector<MCSymbol *> &Result) { | 
|  | // If no blocks have had their addresses taken, we're done. | 
|  | if (!AddrLabelSymbols) | 
|  | return; | 
|  | return AddrLabelSymbols->takeDeletedSymbolsForFunction( | 
|  | const_cast<Function *>(F), Result); | 
|  | } | 
|  |  | 
|  | void AddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) { | 
|  | // If the block got deleted, there is no need for the symbol.  If the symbol | 
|  | // was already emitted, we can just forget about it, otherwise we need to | 
|  | // queue it up for later emission when the function is output. | 
|  | AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]); | 
|  | AddrLabelSymbols.erase(BB); | 
|  | assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?"); | 
|  | BBCallbacks[Entry.Index] = nullptr; // Clear the callback. | 
|  |  | 
|  | #if !LLVM_MEMORY_SANITIZER_BUILD | 
|  | // BasicBlock is destroyed already, so this access is UB detectable by msan. | 
|  | assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) && | 
|  | "Block/parent mismatch"); | 
|  | #endif | 
|  |  | 
|  | for (MCSymbol *Sym : Entry.Symbols) { | 
|  | if (Sym->isDefined()) | 
|  | return; | 
|  |  | 
|  | // If the block is not yet defined, we need to emit it at the end of the | 
|  | // function.  Add the symbol to the DeletedAddrLabelsNeedingEmission list | 
|  | // for the containing Function.  Since the block is being deleted, its | 
|  | // parent may already be removed, we have to get the function from 'Entry'. | 
|  | DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) { | 
|  | // Get the entry for the RAUW'd block and remove it from our map. | 
|  | AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]); | 
|  | AddrLabelSymbols.erase(Old); | 
|  | assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?"); | 
|  |  | 
|  | AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New]; | 
|  |  | 
|  | // If New is not address taken, just move our symbol over to it. | 
|  | if (NewEntry.Symbols.empty()) { | 
|  | BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback. | 
|  | NewEntry = std::move(OldEntry);          // Set New's entry. | 
|  | return; | 
|  | } | 
|  |  | 
|  | BBCallbacks[OldEntry.Index] = nullptr; // Update the callback. | 
|  |  | 
|  | // Otherwise, we need to add the old symbols to the new block's set. | 
|  | llvm::append_range(NewEntry.Symbols, OldEntry.Symbols); | 
|  | } | 
|  |  | 
|  | void AddrLabelMapCallbackPtr::deleted() { | 
|  | Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr())); | 
|  | } | 
|  |  | 
|  | void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) { | 
|  | Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2)); | 
|  | } | 
|  |  | 
|  | /// getGVAlignment - Return the alignment to use for the specified global | 
|  | /// value.  This rounds up to the preferred alignment if possible and legal. | 
|  | Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, | 
|  | Align InAlign) { | 
|  | Align Alignment; | 
|  | if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) | 
|  | Alignment = DL.getPreferredAlign(GVar); | 
|  |  | 
|  | // If InAlign is specified, round it to it. | 
|  | if (InAlign > Alignment) | 
|  | Alignment = InAlign; | 
|  |  | 
|  | // If the GV has a specified alignment, take it into account. | 
|  | MaybeAlign GVAlign; | 
|  | if (auto *GVar = dyn_cast<GlobalVariable>(GV)) | 
|  | GVAlign = GVar->getAlign(); | 
|  | else if (auto *F = dyn_cast<Function>(GV)) | 
|  | GVAlign = F->getAlign(); | 
|  | if (!GVAlign) | 
|  | return Alignment; | 
|  |  | 
|  | assert(GVAlign && "GVAlign must be set"); | 
|  |  | 
|  | // If the GVAlign is larger than NumBits, or if we are required to obey | 
|  | // NumBits because the GV has an assigned section, obey it. | 
|  | if (*GVAlign > Alignment || GV->hasSection()) | 
|  | Alignment = *GVAlign; | 
|  | return Alignment; | 
|  | } | 
|  |  | 
|  | AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer, | 
|  | char &ID) | 
|  | : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), | 
|  | OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), | 
|  | SM(*this) { | 
|  | VerboseAsm = OutStreamer->isVerboseAsm(); | 
|  | DwarfUsesRelocationsAcrossSections = | 
|  | MAI->doesDwarfUseRelocationsAcrossSections(); | 
|  | } | 
|  |  | 
|  | AsmPrinter::~AsmPrinter() { | 
|  | assert(!DD && Handlers.size() == NumUserHandlers && | 
|  | "Debug/EH info didn't get finalized"); | 
|  | } | 
|  |  | 
|  | bool AsmPrinter::isPositionIndependent() const { | 
|  | return TM.isPositionIndependent(); | 
|  | } | 
|  |  | 
|  | /// getFunctionNumber - Return a unique ID for the current function. | 
|  | unsigned AsmPrinter::getFunctionNumber() const { | 
|  | return MF->getFunctionNumber(); | 
|  | } | 
|  |  | 
|  | const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { | 
|  | return *TM.getObjFileLowering(); | 
|  | } | 
|  |  | 
|  | const DataLayout &AsmPrinter::getDataLayout() const { | 
|  | assert(MMI && "MMI could not be nullptr!"); | 
|  | return MMI->getModule()->getDataLayout(); | 
|  | } | 
|  |  | 
|  | // Do not use the cached DataLayout because some client use it without a Module | 
|  | // (dsymutil, llvm-dwarfdump). | 
|  | unsigned AsmPrinter::getPointerSize() const { | 
|  | return TM.getPointerSize(0); // FIXME: Default address space | 
|  | } | 
|  |  | 
|  | const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { | 
|  | assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); | 
|  | return MF->getSubtarget<MCSubtargetInfo>(); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { | 
|  | S.emitInstruction(Inst, getSubtargetInfo()); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { | 
|  | if (DD) { | 
|  | assert(OutStreamer->hasRawTextSupport() && | 
|  | "Expected assembly output mode."); | 
|  | // This is NVPTX specific and it's unclear why. | 
|  | // PR51079: If we have code without debug information we need to give up. | 
|  | DISubprogram *MFSP = MF.getFunction().getSubprogram(); | 
|  | if (!MFSP) | 
|  | return; | 
|  | (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getCurrentSection() - Return the current section we are emitting to. | 
|  | const MCSection *AsmPrinter::getCurrentSection() const { | 
|  | return OutStreamer->getCurrentSectionOnly(); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | AU.addRequired<MachineOptimizationRemarkEmitterPass>(); | 
|  | AU.addRequired<GCModuleInfo>(); | 
|  | AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); | 
|  | AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | bool AsmPrinter::doInitialization(Module &M) { | 
|  | auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); | 
|  | MMI = MMIWP ? &MMIWP->getMMI() : nullptr; | 
|  | HasSplitStack = false; | 
|  | HasNoSplitStack = false; | 
|  | DbgInfoAvailable = !M.debug_compile_units().empty(); | 
|  |  | 
|  | AddrLabelSymbols = nullptr; | 
|  |  | 
|  | // Initialize TargetLoweringObjectFile. | 
|  | const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) | 
|  | .Initialize(OutContext, TM); | 
|  |  | 
|  | const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) | 
|  | .getModuleMetadata(M); | 
|  |  | 
|  | // On AIX, we delay emitting any section information until | 
|  | // after emitting the .file pseudo-op. This allows additional | 
|  | // information (such as the embedded command line) to be associated | 
|  | // with all sections in the object file rather than a single section. | 
|  | if (!TM.getTargetTriple().isOSBinFormatXCOFF()) | 
|  | OutStreamer->initSections(false, *TM.getMCSubtargetInfo()); | 
|  |  | 
|  | // Emit the version-min deployment target directive if needed. | 
|  | // | 
|  | // FIXME: If we end up with a collection of these sorts of Darwin-specific | 
|  | // or ELF-specific things, it may make sense to have a platform helper class | 
|  | // that will work with the target helper class. For now keep it here, as the | 
|  | // alternative is duplicated code in each of the target asm printers that | 
|  | // use the directive, where it would need the same conditionalization | 
|  | // anyway. | 
|  | const Triple &Target = TM.getTargetTriple(); | 
|  | if (Target.isOSBinFormatMachO() && Target.isOSDarwin()) { | 
|  | Triple TVT(M.getDarwinTargetVariantTriple()); | 
|  | OutStreamer->emitVersionForTarget( | 
|  | Target, M.getSDKVersion(), | 
|  | M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT, | 
|  | M.getDarwinTargetVariantSDKVersion()); | 
|  | } | 
|  |  | 
|  | // Allow the target to emit any magic that it wants at the start of the file. | 
|  | emitStartOfAsmFile(M); | 
|  |  | 
|  | // Very minimal debug info. It is ignored if we emit actual debug info. If we | 
|  | // don't, this at least helps the user find where a global came from. | 
|  | if (MAI->hasSingleParameterDotFile()) { | 
|  | // .file "foo.c" | 
|  | if (MAI->isAIX()) { | 
|  | const char VerStr[] = | 
|  | #ifdef PACKAGE_VENDOR | 
|  | PACKAGE_VENDOR " " | 
|  | #endif | 
|  | PACKAGE_NAME " version " PACKAGE_VERSION | 
|  | #ifdef LLVM_REVISION | 
|  | " (" LLVM_REVISION ")" | 
|  | #endif | 
|  | ; | 
|  | // TODO: Add timestamp and description. | 
|  | OutStreamer->emitFileDirective(M.getSourceFileName(), VerStr, "", ""); | 
|  | } else { | 
|  | OutStreamer->emitFileDirective( | 
|  | llvm::sys::path::filename(M.getSourceFileName())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // On AIX, emit bytes for llvm.commandline metadata after .file so that the | 
|  | // C_INFO symbol is preserved if any csect is kept by the linker. | 
|  | if (TM.getTargetTriple().isOSBinFormatXCOFF()) { | 
|  | emitModuleCommandLines(M); | 
|  | // Now we can generate section information. | 
|  | OutStreamer->switchSection( | 
|  | OutContext.getObjectFileInfo()->getTextSection()); | 
|  |  | 
|  | // To work around an AIX assembler and/or linker bug, generate | 
|  | // a rename for the default text-section symbol name.  This call has | 
|  | // no effect when generating object code directly. | 
|  | MCSection *TextSection = | 
|  | OutStreamer->getContext().getObjectFileInfo()->getTextSection(); | 
|  | MCSymbolXCOFF *XSym = | 
|  | static_cast<MCSectionXCOFF *>(TextSection)->getQualNameSymbol(); | 
|  | if (XSym->hasRename()) | 
|  | OutStreamer->emitXCOFFRenameDirective(XSym, XSym->getSymbolTableName()); | 
|  | } | 
|  |  | 
|  | GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); | 
|  | assert(MI && "AsmPrinter didn't require GCModuleInfo?"); | 
|  | for (const auto &I : *MI) | 
|  | if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I)) | 
|  | MP->beginAssembly(M, *MI, *this); | 
|  |  | 
|  | // Emit module-level inline asm if it exists. | 
|  | if (!M.getModuleInlineAsm().empty()) { | 
|  | OutStreamer->AddComment("Start of file scope inline assembly"); | 
|  | OutStreamer->addBlankLine(); | 
|  | emitInlineAsm( | 
|  | M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(), | 
|  | TM.Options.MCOptions, nullptr, | 
|  | InlineAsm::AsmDialect(TM.getMCAsmInfo()->getAssemblerDialect())); | 
|  | OutStreamer->AddComment("End of file scope inline assembly"); | 
|  | OutStreamer->addBlankLine(); | 
|  | } | 
|  |  | 
|  | if (MAI->doesSupportDebugInformation()) { | 
|  | bool EmitCodeView = M.getCodeViewFlag(); | 
|  | // On Windows targets, emit minimal CodeView compiler info even when debug | 
|  | // info is disabled. | 
|  | if ((TM.getTargetTriple().isOSWindows() && | 
|  | M.getNamedMetadata("llvm.dbg.cu")) || | 
|  | (TM.getTargetTriple().isUEFI() && EmitCodeView)) | 
|  | Handlers.push_back(std::make_unique<CodeViewDebug>(this)); | 
|  | if (!EmitCodeView || M.getDwarfVersion()) { | 
|  | if (hasDebugInfo()) { | 
|  | DD = new DwarfDebug(this); | 
|  | Handlers.push_back(std::unique_ptr<DwarfDebug>(DD)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (M.getNamedMetadata(PseudoProbeDescMetadataName)) | 
|  | PP = std::make_unique<PseudoProbeHandler>(this); | 
|  |  | 
|  | switch (MAI->getExceptionHandlingType()) { | 
|  | case ExceptionHandling::None: | 
|  | // We may want to emit CFI for debug. | 
|  | [[fallthrough]]; | 
|  | case ExceptionHandling::SjLj: | 
|  | case ExceptionHandling::DwarfCFI: | 
|  | case ExceptionHandling::ARM: | 
|  | for (auto &F : M.getFunctionList()) { | 
|  | if (getFunctionCFISectionType(F) != CFISection::None) | 
|  | ModuleCFISection = getFunctionCFISectionType(F); | 
|  | // If any function needsUnwindTableEntry(), it needs .eh_frame and hence | 
|  | // the module needs .eh_frame. If we have found that case, we are done. | 
|  | if (ModuleCFISection == CFISection::EH) | 
|  | break; | 
|  | } | 
|  | assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI || | 
|  | usesCFIWithoutEH() || ModuleCFISection != CFISection::EH); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | EHStreamer *ES = nullptr; | 
|  | switch (MAI->getExceptionHandlingType()) { | 
|  | case ExceptionHandling::None: | 
|  | if (!usesCFIWithoutEH()) | 
|  | break; | 
|  | [[fallthrough]]; | 
|  | case ExceptionHandling::SjLj: | 
|  | case ExceptionHandling::DwarfCFI: | 
|  | case ExceptionHandling::ZOS: | 
|  | ES = new DwarfCFIException(this); | 
|  | break; | 
|  | case ExceptionHandling::ARM: | 
|  | ES = new ARMException(this); | 
|  | break; | 
|  | case ExceptionHandling::WinEH: | 
|  | switch (MAI->getWinEHEncodingType()) { | 
|  | default: llvm_unreachable("unsupported unwinding information encoding"); | 
|  | case WinEH::EncodingType::Invalid: | 
|  | break; | 
|  | case WinEH::EncodingType::X86: | 
|  | case WinEH::EncodingType::Itanium: | 
|  | ES = new WinException(this); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ExceptionHandling::Wasm: | 
|  | ES = new WasmException(this); | 
|  | break; | 
|  | case ExceptionHandling::AIX: | 
|  | ES = new AIXException(this); | 
|  | break; | 
|  | } | 
|  | if (ES) | 
|  | Handlers.push_back(std::unique_ptr<EHStreamer>(ES)); | 
|  |  | 
|  | // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). | 
|  | if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) | 
|  | EHHandlers.push_back(std::make_unique<WinCFGuard>(this)); | 
|  |  | 
|  | for (auto &Handler : Handlers) | 
|  | Handler->beginModule(&M); | 
|  | for (auto &Handler : EHHandlers) | 
|  | Handler->beginModule(&M); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { | 
|  | if (!MAI.hasWeakDefCanBeHiddenDirective()) | 
|  | return false; | 
|  |  | 
|  | return GV->canBeOmittedFromSymbolTable(); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { | 
|  | GlobalValue::LinkageTypes Linkage = GV->getLinkage(); | 
|  | switch (Linkage) { | 
|  | case GlobalValue::CommonLinkage: | 
|  | case GlobalValue::LinkOnceAnyLinkage: | 
|  | case GlobalValue::LinkOnceODRLinkage: | 
|  | case GlobalValue::WeakAnyLinkage: | 
|  | case GlobalValue::WeakODRLinkage: | 
|  | if (MAI->isMachO()) { | 
|  | // .globl _foo | 
|  | OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); | 
|  |  | 
|  | if (!canBeHidden(GV, *MAI)) | 
|  | // .weak_definition _foo | 
|  | OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); | 
|  | else | 
|  | OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); | 
|  | } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { | 
|  | // .globl _foo | 
|  | OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); | 
|  | //NOTE: linkonce is handled by the section the symbol was assigned to. | 
|  | } else { | 
|  | // .weak _foo | 
|  | OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); | 
|  | } | 
|  | return; | 
|  | case GlobalValue::ExternalLinkage: | 
|  | OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); | 
|  | return; | 
|  | case GlobalValue::PrivateLinkage: | 
|  | case GlobalValue::InternalLinkage: | 
|  | return; | 
|  | case GlobalValue::ExternalWeakLinkage: | 
|  | case GlobalValue::AvailableExternallyLinkage: | 
|  | case GlobalValue::AppendingLinkage: | 
|  | llvm_unreachable("Should never emit this"); | 
|  | } | 
|  | llvm_unreachable("Unknown linkage type!"); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, | 
|  | const GlobalValue *GV) const { | 
|  | TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); | 
|  | } | 
|  |  | 
|  | MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { | 
|  | return TM.getSymbol(GV); | 
|  | } | 
|  |  | 
|  | MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { | 
|  | // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an | 
|  | // exact definion (intersection of GlobalValue::hasExactDefinition() and | 
|  | // !isInterposable()). These linkages include: external, appending, internal, | 
|  | // private. It may be profitable to use a local alias for external. The | 
|  | // assembler would otherwise be conservative and assume a global default | 
|  | // visibility symbol can be interposable, even if the code generator already | 
|  | // assumed it. | 
|  | if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { | 
|  | const Module &M = *GV.getParent(); | 
|  | if (TM.getRelocationModel() != Reloc::Static && | 
|  | M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) | 
|  | return getSymbolWithGlobalValueBase(&GV, "$local"); | 
|  | } | 
|  | return TM.getSymbol(&GV); | 
|  | } | 
|  |  | 
|  | /// EmitGlobalVariable - Emit the specified global variable to the .s file. | 
|  | void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { | 
|  | bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); | 
|  | assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && | 
|  | "No emulated TLS variables in the common section"); | 
|  |  | 
|  | // Never emit TLS variable xyz in emulated TLS model. | 
|  | // The initialization value is in __emutls_t.xyz instead of xyz. | 
|  | if (IsEmuTLSVar) | 
|  | return; | 
|  |  | 
|  | if (GV->hasInitializer()) { | 
|  | // Check to see if this is a special global used by LLVM, if so, emit it. | 
|  | if (emitSpecialLLVMGlobal(GV)) | 
|  | return; | 
|  |  | 
|  | // Skip the emission of global equivalents. The symbol can be emitted later | 
|  | // on by emitGlobalGOTEquivs in case it turns out to be needed. | 
|  | if (GlobalGOTEquivs.count(getSymbol(GV))) | 
|  | return; | 
|  |  | 
|  | if (isVerbose()) { | 
|  | // When printing the control variable __emutls_v.*, | 
|  | // we don't need to print the original TLS variable name. | 
|  | GV->printAsOperand(OutStreamer->getCommentOS(), | 
|  | /*PrintType=*/false, GV->getParent()); | 
|  | OutStreamer->getCommentOS() << '\n'; | 
|  | } | 
|  | } | 
|  |  | 
|  | MCSymbol *GVSym = getSymbol(GV); | 
|  | MCSymbol *EmittedSym = GVSym; | 
|  |  | 
|  | // getOrCreateEmuTLSControlSym only creates the symbol with name and default | 
|  | // attributes. | 
|  | // GV's or GVSym's attributes will be used for the EmittedSym. | 
|  | emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); | 
|  |  | 
|  | if (GV->isTagged()) { | 
|  | Triple T = TM.getTargetTriple(); | 
|  |  | 
|  | if (T.getArch() != Triple::aarch64 || !T.isAndroid()) | 
|  | OutContext.reportError(SMLoc(), | 
|  | "tagged symbols (-fsanitize=memtag-globals) are " | 
|  | "only supported on AArch64 Android"); | 
|  | OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_Memtag); | 
|  | } | 
|  |  | 
|  | if (!GV->hasInitializer())   // External globals require no extra code. | 
|  | return; | 
|  |  | 
|  | GVSym->redefineIfPossible(); | 
|  | if (GVSym->isDefined() || GVSym->isVariable()) | 
|  | OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + | 
|  | "' is already defined"); | 
|  |  | 
|  | if (MAI->hasDotTypeDotSizeDirective()) | 
|  | OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); | 
|  |  | 
|  | SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); | 
|  |  | 
|  | const DataLayout &DL = GV->getDataLayout(); | 
|  | uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); | 
|  |  | 
|  | // If the alignment is specified, we *must* obey it.  Overaligning a global | 
|  | // with a specified alignment is a prompt way to break globals emitted to | 
|  | // sections and expected to be contiguous (e.g. ObjC metadata). | 
|  | const Align Alignment = getGVAlignment(GV, DL); | 
|  |  | 
|  | for (auto &Handler : Handlers) | 
|  | Handler->setSymbolSize(GVSym, Size); | 
|  |  | 
|  | // Handle common symbols | 
|  | if (GVKind.isCommon()) { | 
|  | if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it. | 
|  | // .comm _foo, 42, 4 | 
|  | OutStreamer->emitCommonSymbol(GVSym, Size, Alignment); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Determine to which section this global should be emitted. | 
|  | MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); | 
|  |  | 
|  | // If we have a bss global going to a section that supports the | 
|  | // zerofill directive, do so here. | 
|  | if (GVKind.isBSS() && MAI->isMachO() && TheSection->isVirtualSection()) { | 
|  | if (Size == 0) | 
|  | Size = 1; // zerofill of 0 bytes is undefined. | 
|  | emitLinkage(GV, GVSym); | 
|  | // .zerofill __DATA, __bss, _foo, 400, 5 | 
|  | OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this is a BSS local symbol and we are emitting in the BSS | 
|  | // section use .lcomm/.comm directive. | 
|  | if (GVKind.isBSSLocal() && | 
|  | getObjFileLowering().getBSSSection() == TheSection) { | 
|  | if (Size == 0) | 
|  | Size = 1; // .comm Foo, 0 is undefined, avoid it. | 
|  |  | 
|  | // Use .lcomm only if it supports user-specified alignment. | 
|  | // Otherwise, while it would still be correct to use .lcomm in some | 
|  | // cases (e.g. when Align == 1), the external assembler might enfore | 
|  | // some -unknown- default alignment behavior, which could cause | 
|  | // spurious differences between external and integrated assembler. | 
|  | // Prefer to simply fall back to .local / .comm in this case. | 
|  | if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { | 
|  | // .lcomm _foo, 42 | 
|  | OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // .local _foo | 
|  | OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); | 
|  | // .comm _foo, 42, 4 | 
|  | OutStreamer->emitCommonSymbol(GVSym, Size, Alignment); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle thread local data for mach-o which requires us to output an | 
|  | // additional structure of data and mangle the original symbol so that we | 
|  | // can reference it later. | 
|  | // | 
|  | // TODO: This should become an "emit thread local global" method on TLOF. | 
|  | // All of this macho specific stuff should be sunk down into TLOFMachO and | 
|  | // stuff like "TLSExtraDataSection" should no longer be part of the parent | 
|  | // TLOF class.  This will also make it more obvious that stuff like | 
|  | // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho | 
|  | // specific code. | 
|  | if (GVKind.isThreadLocal() && MAI->isMachO()) { | 
|  | // Emit the .tbss symbol | 
|  | MCSymbol *MangSym = | 
|  | OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); | 
|  |  | 
|  | if (GVKind.isThreadBSS()) { | 
|  | TheSection = getObjFileLowering().getTLSBSSSection(); | 
|  | OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment); | 
|  | } else if (GVKind.isThreadData()) { | 
|  | OutStreamer->switchSection(TheSection); | 
|  |  | 
|  | emitAlignment(Alignment, GV); | 
|  | OutStreamer->emitLabel(MangSym); | 
|  |  | 
|  | emitGlobalConstant(GV->getDataLayout(), | 
|  | GV->getInitializer()); | 
|  | } | 
|  |  | 
|  | OutStreamer->addBlankLine(); | 
|  |  | 
|  | // Emit the variable struct for the runtime. | 
|  | MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); | 
|  |  | 
|  | OutStreamer->switchSection(TLVSect); | 
|  | // Emit the linkage here. | 
|  | emitLinkage(GV, GVSym); | 
|  | OutStreamer->emitLabel(GVSym); | 
|  |  | 
|  | // Three pointers in size: | 
|  | //   - __tlv_bootstrap - used to make sure support exists | 
|  | //   - spare pointer, used when mapped by the runtime | 
|  | //   - pointer to mangled symbol above with initializer | 
|  | unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); | 
|  | OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), | 
|  | PtrSize); | 
|  | OutStreamer->emitIntValue(0, PtrSize); | 
|  | OutStreamer->emitSymbolValue(MangSym, PtrSize); | 
|  |  | 
|  | OutStreamer->addBlankLine(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | MCSymbol *EmittedInitSym = GVSym; | 
|  |  | 
|  | OutStreamer->switchSection(TheSection); | 
|  |  | 
|  | emitLinkage(GV, EmittedInitSym); | 
|  | emitAlignment(Alignment, GV); | 
|  |  | 
|  | OutStreamer->emitLabel(EmittedInitSym); | 
|  | MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); | 
|  | if (LocalAlias != EmittedInitSym) | 
|  | OutStreamer->emitLabel(LocalAlias); | 
|  |  | 
|  | emitGlobalConstant(GV->getDataLayout(), GV->getInitializer()); | 
|  |  | 
|  | if (MAI->hasDotTypeDotSizeDirective()) | 
|  | // .size foo, 42 | 
|  | OutStreamer->emitELFSize(EmittedInitSym, | 
|  | MCConstantExpr::create(Size, OutContext)); | 
|  |  | 
|  | OutStreamer->addBlankLine(); | 
|  | } | 
|  |  | 
|  | /// Emit the directive and value for debug thread local expression | 
|  | /// | 
|  | /// \p Value - The value to emit. | 
|  | /// \p Size - The size of the integer (in bytes) to emit. | 
|  | void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { | 
|  | OutStreamer->emitValue(Value, Size); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitFunctionHeaderComment() {} | 
|  |  | 
|  | void AsmPrinter::emitFunctionPrefix(ArrayRef<const Constant *> Prefix) { | 
|  | const Function &F = MF->getFunction(); | 
|  | if (!MAI->hasSubsectionsViaSymbols()) { | 
|  | for (auto &C : Prefix) | 
|  | emitGlobalConstant(F.getDataLayout(), C); | 
|  | return; | 
|  | } | 
|  | // Preserving prefix-like data on platforms which use subsections-via-symbols | 
|  | // is a bit tricky. Here we introduce a symbol for the prefix-like data | 
|  | // and use the .alt_entry attribute to mark the function's real entry point | 
|  | // as an alternative entry point to the symbol that precedes the function.. | 
|  | OutStreamer->emitLabel(OutContext.createLinkerPrivateTempSymbol()); | 
|  |  | 
|  | for (auto &C : Prefix) { | 
|  | emitGlobalConstant(F.getDataLayout(), C); | 
|  | } | 
|  |  | 
|  | // Emit an .alt_entry directive for the actual function symbol. | 
|  | OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); | 
|  | } | 
|  |  | 
|  | /// EmitFunctionHeader - This method emits the header for the current | 
|  | /// function. | 
|  | void AsmPrinter::emitFunctionHeader() { | 
|  | const Function &F = MF->getFunction(); | 
|  |  | 
|  | if (isVerbose()) | 
|  | OutStreamer->getCommentOS() | 
|  | << "-- Begin function " | 
|  | << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; | 
|  |  | 
|  | // Print out constants referenced by the function | 
|  | emitConstantPool(); | 
|  |  | 
|  | // Print the 'header' of function. | 
|  | // If basic block sections are desired, explicitly request a unique section | 
|  | // for this function's entry block. | 
|  | if (MF->front().isBeginSection()) | 
|  | MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); | 
|  | else | 
|  | MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); | 
|  | OutStreamer->switchSection(MF->getSection()); | 
|  |  | 
|  | if (MAI->isAIX()) | 
|  | emitLinkage(&F, CurrentFnDescSym); | 
|  | else | 
|  | emitVisibility(CurrentFnSym, F.getVisibility()); | 
|  |  | 
|  | emitLinkage(&F, CurrentFnSym); | 
|  | if (MAI->hasFunctionAlignment()) | 
|  | emitAlignment(MF->getAlignment(), &F); | 
|  |  | 
|  | if (MAI->hasDotTypeDotSizeDirective()) | 
|  | OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); | 
|  |  | 
|  | if (F.hasFnAttribute(Attribute::Cold)) | 
|  | OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); | 
|  |  | 
|  | // Emit the prefix data. | 
|  | if (F.hasPrefixData()) | 
|  | emitFunctionPrefix({F.getPrefixData()}); | 
|  |  | 
|  | // Emit KCFI type information before patchable-function-prefix nops. | 
|  | emitKCFITypeId(*MF); | 
|  |  | 
|  | // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily | 
|  | // place prefix data before NOPs. | 
|  | unsigned PatchableFunctionPrefix = 0; | 
|  | unsigned PatchableFunctionEntry = 0; | 
|  | (void)F.getFnAttribute("patchable-function-prefix") | 
|  | .getValueAsString() | 
|  | .getAsInteger(10, PatchableFunctionPrefix); | 
|  | (void)F.getFnAttribute("patchable-function-entry") | 
|  | .getValueAsString() | 
|  | .getAsInteger(10, PatchableFunctionEntry); | 
|  | if (PatchableFunctionPrefix) { | 
|  | CurrentPatchableFunctionEntrySym = | 
|  | OutContext.createLinkerPrivateTempSymbol(); | 
|  | OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); | 
|  | emitNops(PatchableFunctionPrefix); | 
|  | } else if (PatchableFunctionEntry) { | 
|  | // May be reassigned when emitting the body, to reference the label after | 
|  | // the initial BTI (AArch64) or endbr32/endbr64 (x86). | 
|  | CurrentPatchableFunctionEntrySym = CurrentFnBegin; | 
|  | } | 
|  |  | 
|  | // Emit the function prologue data for the indirect call sanitizer. | 
|  | if (const MDNode *MD = F.getMetadata(LLVMContext::MD_func_sanitize)) { | 
|  | assert(MD->getNumOperands() == 2); | 
|  |  | 
|  | auto *PrologueSig = mdconst::extract<Constant>(MD->getOperand(0)); | 
|  | auto *TypeHash = mdconst::extract<Constant>(MD->getOperand(1)); | 
|  | emitFunctionPrefix({PrologueSig, TypeHash}); | 
|  | } | 
|  |  | 
|  | if (isVerbose()) { | 
|  | F.printAsOperand(OutStreamer->getCommentOS(), | 
|  | /*PrintType=*/false, F.getParent()); | 
|  | emitFunctionHeaderComment(); | 
|  | OutStreamer->getCommentOS() << '\n'; | 
|  | } | 
|  |  | 
|  | // Emit the function descriptor. This is a virtual function to allow targets | 
|  | // to emit their specific function descriptor. Right now it is only used by | 
|  | // the AIX target. The PowerPC 64-bit V1 ELF target also uses function | 
|  | // descriptors and should be converted to use this hook as well. | 
|  | if (MAI->isAIX()) | 
|  | emitFunctionDescriptor(); | 
|  |  | 
|  | // Emit the CurrentFnSym. This is a virtual function to allow targets to do | 
|  | // their wild and crazy things as required. | 
|  | emitFunctionEntryLabel(); | 
|  |  | 
|  | // If the function had address-taken blocks that got deleted, then we have | 
|  | // references to the dangling symbols.  Emit them at the start of the function | 
|  | // so that we don't get references to undefined symbols. | 
|  | std::vector<MCSymbol*> DeadBlockSyms; | 
|  | takeDeletedSymbolsForFunction(&F, DeadBlockSyms); | 
|  | for (MCSymbol *DeadBlockSym : DeadBlockSyms) { | 
|  | OutStreamer->AddComment("Address taken block that was later removed"); | 
|  | OutStreamer->emitLabel(DeadBlockSym); | 
|  | } | 
|  |  | 
|  | if (CurrentFnBegin) { | 
|  | if (MAI->useAssignmentForEHBegin()) { | 
|  | MCSymbol *CurPos = OutContext.createTempSymbol(); | 
|  | OutStreamer->emitLabel(CurPos); | 
|  | OutStreamer->emitAssignment(CurrentFnBegin, | 
|  | MCSymbolRefExpr::create(CurPos, OutContext)); | 
|  | } else { | 
|  | OutStreamer->emitLabel(CurrentFnBegin); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit pre-function debug and/or EH information. | 
|  | for (auto &Handler : Handlers) { | 
|  | Handler->beginFunction(MF); | 
|  | Handler->beginBasicBlockSection(MF->front()); | 
|  | } | 
|  | for (auto &Handler : EHHandlers) { | 
|  | Handler->beginFunction(MF); | 
|  | Handler->beginBasicBlockSection(MF->front()); | 
|  | } | 
|  |  | 
|  | // Emit the prologue data. | 
|  | if (F.hasPrologueData()) | 
|  | emitGlobalConstant(F.getDataLayout(), F.getPrologueData()); | 
|  | } | 
|  |  | 
|  | /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the | 
|  | /// function.  This can be overridden by targets as required to do custom stuff. | 
|  | void AsmPrinter::emitFunctionEntryLabel() { | 
|  | CurrentFnSym->redefineIfPossible(); | 
|  |  | 
|  | // The function label could have already been emitted if two symbols end up | 
|  | // conflicting due to asm renaming.  Detect this and emit an error. | 
|  | if (CurrentFnSym->isVariable()) | 
|  | report_fatal_error("'" + Twine(CurrentFnSym->getName()) + | 
|  | "' is a protected alias"); | 
|  |  | 
|  | OutStreamer->emitLabel(CurrentFnSym); | 
|  |  | 
|  | if (TM.getTargetTriple().isOSBinFormatELF()) { | 
|  | MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); | 
|  | if (Sym != CurrentFnSym) { | 
|  | CurrentFnBeginLocal = Sym; | 
|  | OutStreamer->emitLabel(Sym); | 
|  | OutStreamer->emitSymbolAttribute(Sym, MCSA_ELF_TypeFunction); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// emitComments - Pretty-print comments for instructions. | 
|  | static void emitComments(const MachineInstr &MI, const MCSubtargetInfo *STI, | 
|  | raw_ostream &CommentOS) { | 
|  | const MachineFunction *MF = MI.getMF(); | 
|  | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); | 
|  |  | 
|  | // Check for spills and reloads | 
|  |  | 
|  | // We assume a single instruction only has a spill or reload, not | 
|  | // both. | 
|  | std::optional<LocationSize> Size; | 
|  | if ((Size = MI.getRestoreSize(TII))) { | 
|  | CommentOS << Size->getValue() << "-byte Reload\n"; | 
|  | } else if ((Size = MI.getFoldedRestoreSize(TII))) { | 
|  | if (!Size->hasValue()) | 
|  | CommentOS << "Unknown-size Folded Reload\n"; | 
|  | else if (Size->getValue()) | 
|  | CommentOS << Size->getValue() << "-byte Folded Reload\n"; | 
|  | } else if ((Size = MI.getSpillSize(TII))) { | 
|  | CommentOS << Size->getValue() << "-byte Spill\n"; | 
|  | } else if ((Size = MI.getFoldedSpillSize(TII))) { | 
|  | if (!Size->hasValue()) | 
|  | CommentOS << "Unknown-size Folded Spill\n"; | 
|  | else if (Size->getValue()) | 
|  | CommentOS << Size->getValue() << "-byte Folded Spill\n"; | 
|  | } | 
|  |  | 
|  | // Check for spill-induced copies | 
|  | if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) | 
|  | CommentOS << " Reload Reuse\n"; | 
|  |  | 
|  | if (PrintLatency) { | 
|  | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); | 
|  | const MCSchedModel &SCModel = STI->getSchedModel(); | 
|  | int Latency = SCModel.computeInstrLatency<MCSubtargetInfo, MCInstrInfo, | 
|  | InstrItineraryData, MachineInstr>( | 
|  | *STI, *TII, MI); | 
|  | // Report only interesting latencies. | 
|  | if (1 < Latency) | 
|  | CommentOS << " Latency: " << Latency << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// emitImplicitDef - This method emits the specified machine instruction | 
|  | /// that is an implicit def. | 
|  | void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { | 
|  | Register RegNo = MI->getOperand(0).getReg(); | 
|  |  | 
|  | SmallString<128> Str; | 
|  | raw_svector_ostream OS(Str); | 
|  | OS << "implicit-def: " | 
|  | << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); | 
|  |  | 
|  | OutStreamer->AddComment(OS.str()); | 
|  | OutStreamer->addBlankLine(); | 
|  | } | 
|  |  | 
|  | static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { | 
|  | std::string Str; | 
|  | raw_string_ostream OS(Str); | 
|  | OS << "kill:"; | 
|  | for (const MachineOperand &Op : MI->operands()) { | 
|  | assert(Op.isReg() && "KILL instruction must have only register operands"); | 
|  | OS << ' ' << (Op.isDef() ? "def " : "killed ") | 
|  | << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); | 
|  | } | 
|  | AP.OutStreamer->AddComment(Str); | 
|  | AP.OutStreamer->addBlankLine(); | 
|  | } | 
|  |  | 
|  | static void emitFakeUse(const MachineInstr *MI, AsmPrinter &AP) { | 
|  | std::string Str; | 
|  | raw_string_ostream OS(Str); | 
|  | OS << "fake_use:"; | 
|  | for (const MachineOperand &Op : MI->operands()) { | 
|  | // In some circumstances we can end up with fake uses of constants; skip | 
|  | // these. | 
|  | if (!Op.isReg()) | 
|  | continue; | 
|  | OS << ' ' << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); | 
|  | } | 
|  | AP.OutStreamer->AddComment(OS.str()); | 
|  | AP.OutStreamer->addBlankLine(); | 
|  | } | 
|  |  | 
|  | /// emitDebugValueComment - This method handles the target-independent form | 
|  | /// of DBG_VALUE, returning true if it was able to do so.  A false return | 
|  | /// means the target will need to handle MI in EmitInstruction. | 
|  | static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { | 
|  | // This code handles only the 4-operand target-independent form. | 
|  | if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) | 
|  | return false; | 
|  |  | 
|  | SmallString<128> Str; | 
|  | raw_svector_ostream OS(Str); | 
|  | OS << "DEBUG_VALUE: "; | 
|  |  | 
|  | const DILocalVariable *V = MI->getDebugVariable(); | 
|  | if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { | 
|  | StringRef Name = SP->getName(); | 
|  | if (!Name.empty()) | 
|  | OS << Name << ":"; | 
|  | } | 
|  | OS << V->getName(); | 
|  | OS << " <- "; | 
|  |  | 
|  | const DIExpression *Expr = MI->getDebugExpression(); | 
|  | // First convert this to a non-variadic expression if possible, to simplify | 
|  | // the output. | 
|  | if (auto NonVariadicExpr = DIExpression::convertToNonVariadicExpression(Expr)) | 
|  | Expr = *NonVariadicExpr; | 
|  | // Then, output the possibly-simplified expression. | 
|  | if (Expr->getNumElements()) { | 
|  | OS << '['; | 
|  | ListSeparator LS; | 
|  | for (auto &Op : Expr->expr_ops()) { | 
|  | OS << LS << dwarf::OperationEncodingString(Op.getOp()); | 
|  | for (unsigned I = 0; I < Op.getNumArgs(); ++I) | 
|  | OS << ' ' << Op.getArg(I); | 
|  | } | 
|  | OS << "] "; | 
|  | } | 
|  |  | 
|  | // Register or immediate value. Register 0 means undef. | 
|  | for (const MachineOperand &Op : MI->debug_operands()) { | 
|  | if (&Op != MI->debug_operands().begin()) | 
|  | OS << ", "; | 
|  | switch (Op.getType()) { | 
|  | case MachineOperand::MO_FPImmediate: { | 
|  | APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); | 
|  | Type *ImmTy = Op.getFPImm()->getType(); | 
|  | if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() || | 
|  | ImmTy->isDoubleTy()) { | 
|  | OS << APF.convertToDouble(); | 
|  | } else { | 
|  | // There is no good way to print long double.  Convert a copy to | 
|  | // double.  Ah well, it's only a comment. | 
|  | bool ignored; | 
|  | APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, | 
|  | &ignored); | 
|  | OS << "(long double) " << APF.convertToDouble(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case MachineOperand::MO_Immediate: { | 
|  | OS << Op.getImm(); | 
|  | break; | 
|  | } | 
|  | case MachineOperand::MO_CImmediate: { | 
|  | Op.getCImm()->getValue().print(OS, false /*isSigned*/); | 
|  | break; | 
|  | } | 
|  | case MachineOperand::MO_TargetIndex: { | 
|  | OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; | 
|  | break; | 
|  | } | 
|  | case MachineOperand::MO_Register: | 
|  | case MachineOperand::MO_FrameIndex: { | 
|  | Register Reg; | 
|  | std::optional<StackOffset> Offset; | 
|  | if (Op.isReg()) { | 
|  | Reg = Op.getReg(); | 
|  | } else { | 
|  | const TargetFrameLowering *TFI = | 
|  | AP.MF->getSubtarget().getFrameLowering(); | 
|  | Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); | 
|  | } | 
|  | if (!Reg) { | 
|  | // Suppress offset, it is not meaningful here. | 
|  | OS << "undef"; | 
|  | break; | 
|  | } | 
|  | // The second operand is only an offset if it's an immediate. | 
|  | if (MI->isIndirectDebugValue()) | 
|  | Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); | 
|  | if (Offset) | 
|  | OS << '['; | 
|  | OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); | 
|  | if (Offset) | 
|  | OS << '+' << Offset->getFixed() << ']'; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("Unknown operand type"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // NOTE: Want this comment at start of line, don't emit with AddComment. | 
|  | AP.OutStreamer->emitRawComment(Str); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// This method handles the target-independent form of DBG_LABEL, returning | 
|  | /// true if it was able to do so.  A false return means the target will need | 
|  | /// to handle MI in EmitInstruction. | 
|  | static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { | 
|  | if (MI->getNumOperands() != 1) | 
|  | return false; | 
|  |  | 
|  | SmallString<128> Str; | 
|  | raw_svector_ostream OS(Str); | 
|  | OS << "DEBUG_LABEL: "; | 
|  |  | 
|  | const DILabel *V = MI->getDebugLabel(); | 
|  | if (auto *SP = dyn_cast<DISubprogram>( | 
|  | V->getScope()->getNonLexicalBlockFileScope())) { | 
|  | StringRef Name = SP->getName(); | 
|  | if (!Name.empty()) | 
|  | OS << Name << ":"; | 
|  | } | 
|  | OS << V->getName(); | 
|  |  | 
|  | // NOTE: Want this comment at start of line, don't emit with AddComment. | 
|  | AP.OutStreamer->emitRawComment(OS.str()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | AsmPrinter::CFISection | 
|  | AsmPrinter::getFunctionCFISectionType(const Function &F) const { | 
|  | // Ignore functions that won't get emitted. | 
|  | if (F.isDeclarationForLinker()) | 
|  | return CFISection::None; | 
|  |  | 
|  | if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && | 
|  | F.needsUnwindTableEntry()) | 
|  | return CFISection::EH; | 
|  |  | 
|  | if (MAI->usesCFIWithoutEH() && F.hasUWTable()) | 
|  | return CFISection::EH; | 
|  |  | 
|  | if (hasDebugInfo() || TM.Options.ForceDwarfFrameSection) | 
|  | return CFISection::Debug; | 
|  |  | 
|  | return CFISection::None; | 
|  | } | 
|  |  | 
|  | AsmPrinter::CFISection | 
|  | AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const { | 
|  | return getFunctionCFISectionType(MF.getFunction()); | 
|  | } | 
|  |  | 
|  | bool AsmPrinter::needsSEHMoves() { | 
|  | return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); | 
|  | } | 
|  |  | 
|  | bool AsmPrinter::usesCFIWithoutEH() const { | 
|  | return MAI->usesCFIWithoutEH() && ModuleCFISection != CFISection::None; | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { | 
|  | ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); | 
|  | if (!usesCFIWithoutEH() && | 
|  | ExceptionHandlingType != ExceptionHandling::DwarfCFI && | 
|  | ExceptionHandlingType != ExceptionHandling::ARM) | 
|  | return; | 
|  |  | 
|  | if (getFunctionCFISectionType(*MF) == CFISection::None) | 
|  | return; | 
|  |  | 
|  | // If there is no "real" instruction following this CFI instruction, skip | 
|  | // emitting it; it would be beyond the end of the function's FDE range. | 
|  | auto *MBB = MI.getParent(); | 
|  | auto I = std::next(MI.getIterator()); | 
|  | while (I != MBB->end() && I->isTransient()) | 
|  | ++I; | 
|  | if (I == MBB->instr_end() && | 
|  | MBB->getReverseIterator() == MBB->getParent()->rbegin()) | 
|  | return; | 
|  |  | 
|  | const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); | 
|  | unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); | 
|  | const MCCFIInstruction &CFI = Instrs[CFIIndex]; | 
|  | emitCFIInstruction(CFI); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { | 
|  | // The operands are the MCSymbol and the frame offset of the allocation. | 
|  | MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); | 
|  | int FrameOffset = MI.getOperand(1).getImm(); | 
|  |  | 
|  | // Emit a symbol assignment. | 
|  | OutStreamer->emitAssignment(FrameAllocSym, | 
|  | MCConstantExpr::create(FrameOffset, OutContext)); | 
|  | } | 
|  |  | 
|  | /// Returns the BB metadata to be emitted in the SHT_LLVM_BB_ADDR_MAP section | 
|  | /// for a given basic block. This can be used to capture more precise profile | 
|  | /// information. | 
|  | static uint32_t getBBAddrMapMetadata(const MachineBasicBlock &MBB) { | 
|  | const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); | 
|  | return object::BBAddrMap::BBEntry::Metadata{ | 
|  | MBB.isReturnBlock(), !MBB.empty() && TII->isTailCall(MBB.back()), | 
|  | MBB.isEHPad(), const_cast<MachineBasicBlock &>(MBB).canFallThrough(), | 
|  | !MBB.empty() && MBB.rbegin()->isIndirectBranch()} | 
|  | .encode(); | 
|  | } | 
|  |  | 
|  | static llvm::object::BBAddrMap::Features | 
|  | getBBAddrMapFeature(const MachineFunction &MF, int NumMBBSectionRanges) { | 
|  | // Ensure that the user has not passed in additional options while also | 
|  | // specifying all or none. | 
|  | if ((PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::None) || | 
|  | PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::All)) && | 
|  | popcount(PgoAnalysisMapFeatures.getBits()) != 1) { | 
|  | MF.getFunction().getContext().emitError( | 
|  | "-pgo-anaylsis-map can accept only all or none with no additional " | 
|  | "values."); | 
|  | } | 
|  |  | 
|  | bool NoFeatures = PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::None); | 
|  | bool AllFeatures = PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::All); | 
|  | bool FuncEntryCountEnabled = | 
|  | AllFeatures || (!NoFeatures && PgoAnalysisMapFeatures.isSet( | 
|  | PGOMapFeaturesEnum::FuncEntryCount)); | 
|  | bool BBFreqEnabled = | 
|  | AllFeatures || | 
|  | (!NoFeatures && PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::BBFreq)); | 
|  | bool BrProbEnabled = | 
|  | AllFeatures || | 
|  | (!NoFeatures && PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::BrProb)); | 
|  |  | 
|  | if ((BBFreqEnabled || BrProbEnabled) && BBAddrMapSkipEmitBBEntries) { | 
|  | MF.getFunction().getContext().emitError( | 
|  | "BB entries info is required for BBFreq and BrProb " | 
|  | "features"); | 
|  | } | 
|  | return {FuncEntryCountEnabled, BBFreqEnabled, BrProbEnabled, | 
|  | MF.hasBBSections() && NumMBBSectionRanges > 1, | 
|  | static_cast<bool>(BBAddrMapSkipEmitBBEntries)}; | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { | 
|  | MCSection *BBAddrMapSection = | 
|  | getObjFileLowering().getBBAddrMapSection(*MF.getSection()); | 
|  | assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); | 
|  |  | 
|  | const MCSymbol *FunctionSymbol = getFunctionBegin(); | 
|  |  | 
|  | OutStreamer->pushSection(); | 
|  | OutStreamer->switchSection(BBAddrMapSection); | 
|  | OutStreamer->AddComment("version"); | 
|  | uint8_t BBAddrMapVersion = OutStreamer->getContext().getBBAddrMapVersion(); | 
|  | OutStreamer->emitInt8(BBAddrMapVersion); | 
|  | OutStreamer->AddComment("feature"); | 
|  | auto Features = getBBAddrMapFeature(MF, MBBSectionRanges.size()); | 
|  | OutStreamer->emitInt8(Features.encode()); | 
|  | // Emit BB Information for each basic block in the function. | 
|  | if (Features.MultiBBRange) { | 
|  | OutStreamer->AddComment("number of basic block ranges"); | 
|  | OutStreamer->emitULEB128IntValue(MBBSectionRanges.size()); | 
|  | } | 
|  | // Number of blocks in each MBB section. | 
|  | MapVector<MBBSectionID, unsigned> MBBSectionNumBlocks; | 
|  | const MCSymbol *PrevMBBEndSymbol = nullptr; | 
|  | if (!Features.MultiBBRange) { | 
|  | OutStreamer->AddComment("function address"); | 
|  | OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); | 
|  | OutStreamer->AddComment("number of basic blocks"); | 
|  | OutStreamer->emitULEB128IntValue(MF.size()); | 
|  | PrevMBBEndSymbol = FunctionSymbol; | 
|  | } else { | 
|  | unsigned BBCount = 0; | 
|  | for (const MachineBasicBlock &MBB : MF) { | 
|  | BBCount++; | 
|  | if (MBB.isEndSection()) { | 
|  | // Store each section's basic block count when it ends. | 
|  | MBBSectionNumBlocks[MBB.getSectionID()] = BBCount; | 
|  | // Reset the count for the next section. | 
|  | BBCount = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Emit the BB entry for each basic block in the function. | 
|  | for (const MachineBasicBlock &MBB : MF) { | 
|  | const MCSymbol *MBBSymbol = | 
|  | MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); | 
|  | bool IsBeginSection = | 
|  | Features.MultiBBRange && (MBB.isBeginSection() || MBB.isEntryBlock()); | 
|  | if (IsBeginSection) { | 
|  | OutStreamer->AddComment("base address"); | 
|  | OutStreamer->emitSymbolValue(MBBSymbol, getPointerSize()); | 
|  | OutStreamer->AddComment("number of basic blocks"); | 
|  | OutStreamer->emitULEB128IntValue(MBBSectionNumBlocks[MBB.getSectionID()]); | 
|  | PrevMBBEndSymbol = MBBSymbol; | 
|  | } | 
|  |  | 
|  | if (!Features.OmitBBEntries) { | 
|  | // TODO: Remove this check when version 1 is deprecated. | 
|  | if (BBAddrMapVersion > 1) { | 
|  | OutStreamer->AddComment("BB id"); | 
|  | // Emit the BB ID for this basic block. | 
|  | // We only emit BaseID since CloneID is unset for | 
|  | // -basic-block-adress-map. | 
|  | // TODO: Emit the full BBID when labels and sections can be mixed | 
|  | // together. | 
|  | OutStreamer->emitULEB128IntValue(MBB.getBBID()->BaseID); | 
|  | } | 
|  | // Emit the basic block offset relative to the end of the previous block. | 
|  | // This is zero unless the block is padded due to alignment. | 
|  | emitLabelDifferenceAsULEB128(MBBSymbol, PrevMBBEndSymbol); | 
|  | // Emit the basic block size. When BBs have alignments, their size cannot | 
|  | // always be computed from their offsets. | 
|  | emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); | 
|  | // Emit the Metadata. | 
|  | OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); | 
|  | } | 
|  |  | 
|  | PrevMBBEndSymbol = MBB.getEndSymbol(); | 
|  | } | 
|  |  | 
|  | if (Features.hasPGOAnalysis()) { | 
|  | assert(BBAddrMapVersion >= 2 && | 
|  | "PGOAnalysisMap only supports version 2 or later"); | 
|  |  | 
|  | if (Features.FuncEntryCount) { | 
|  | OutStreamer->AddComment("function entry count"); | 
|  | auto MaybeEntryCount = MF.getFunction().getEntryCount(); | 
|  | OutStreamer->emitULEB128IntValue( | 
|  | MaybeEntryCount ? MaybeEntryCount->getCount() : 0); | 
|  | } | 
|  | const MachineBlockFrequencyInfo *MBFI = | 
|  | Features.BBFreq | 
|  | ? &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() | 
|  | : nullptr; | 
|  | const MachineBranchProbabilityInfo *MBPI = | 
|  | Features.BrProb | 
|  | ? &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI() | 
|  | : nullptr; | 
|  |  | 
|  | if (Features.BBFreq || Features.BrProb) { | 
|  | for (const MachineBasicBlock &MBB : MF) { | 
|  | if (Features.BBFreq) { | 
|  | OutStreamer->AddComment("basic block frequency"); | 
|  | OutStreamer->emitULEB128IntValue( | 
|  | MBFI->getBlockFreq(&MBB).getFrequency()); | 
|  | } | 
|  | if (Features.BrProb) { | 
|  | unsigned SuccCount = MBB.succ_size(); | 
|  | OutStreamer->AddComment("basic block successor count"); | 
|  | OutStreamer->emitULEB128IntValue(SuccCount); | 
|  | for (const MachineBasicBlock *SuccMBB : MBB.successors()) { | 
|  | OutStreamer->AddComment("successor BB ID"); | 
|  | OutStreamer->emitULEB128IntValue(SuccMBB->getBBID()->BaseID); | 
|  | OutStreamer->AddComment("successor branch probability"); | 
|  | OutStreamer->emitULEB128IntValue( | 
|  | MBPI->getEdgeProbability(&MBB, SuccMBB).getNumerator()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | OutStreamer->popSection(); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitKCFITrapEntry(const MachineFunction &MF, | 
|  | const MCSymbol *Symbol) { | 
|  | MCSection *Section = | 
|  | getObjFileLowering().getKCFITrapSection(*MF.getSection()); | 
|  | if (!Section) | 
|  | return; | 
|  |  | 
|  | OutStreamer->pushSection(); | 
|  | OutStreamer->switchSection(Section); | 
|  |  | 
|  | MCSymbol *Loc = OutContext.createLinkerPrivateTempSymbol(); | 
|  | OutStreamer->emitLabel(Loc); | 
|  | OutStreamer->emitAbsoluteSymbolDiff(Symbol, Loc, 4); | 
|  |  | 
|  | OutStreamer->popSection(); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitKCFITypeId(const MachineFunction &MF) { | 
|  | const Function &F = MF.getFunction(); | 
|  | if (const MDNode *MD = F.getMetadata(LLVMContext::MD_kcfi_type)) | 
|  | emitGlobalConstant(F.getDataLayout(), | 
|  | mdconst::extract<ConstantInt>(MD->getOperand(0))); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { | 
|  | if (PP) { | 
|  | auto GUID = MI.getOperand(0).getImm(); | 
|  | auto Index = MI.getOperand(1).getImm(); | 
|  | auto Type = MI.getOperand(2).getImm(); | 
|  | auto Attr = MI.getOperand(3).getImm(); | 
|  | DILocation *DebugLoc = MI.getDebugLoc(); | 
|  | PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { | 
|  | if (!MF.getTarget().Options.EmitStackSizeSection) | 
|  | return; | 
|  |  | 
|  | MCSection *StackSizeSection = | 
|  | getObjFileLowering().getStackSizesSection(*MF.getSection()); | 
|  | if (!StackSizeSection) | 
|  | return; | 
|  |  | 
|  | const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); | 
|  | // Don't emit functions with dynamic stack allocations. | 
|  | if (FrameInfo.hasVarSizedObjects()) | 
|  | return; | 
|  |  | 
|  | OutStreamer->pushSection(); | 
|  | OutStreamer->switchSection(StackSizeSection); | 
|  |  | 
|  | const MCSymbol *FunctionSymbol = getFunctionBegin(); | 
|  | uint64_t StackSize = | 
|  | FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); | 
|  | OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); | 
|  | OutStreamer->emitULEB128IntValue(StackSize); | 
|  |  | 
|  | OutStreamer->popSection(); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitStackUsage(const MachineFunction &MF) { | 
|  | const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput; | 
|  |  | 
|  | // OutputFilename empty implies -fstack-usage is not passed. | 
|  | if (OutputFilename.empty()) | 
|  | return; | 
|  |  | 
|  | const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); | 
|  | uint64_t StackSize = | 
|  | FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); | 
|  |  | 
|  | if (StackUsageStream == nullptr) { | 
|  | std::error_code EC; | 
|  | StackUsageStream = | 
|  | std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text); | 
|  | if (EC) { | 
|  | errs() << "Could not open file: " << EC.message(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const DISubprogram *DSP = MF.getFunction().getSubprogram()) | 
|  | *StackUsageStream << DSP->getFilename() << ':' << DSP->getLine(); | 
|  | else | 
|  | *StackUsageStream << MF.getFunction().getParent()->getName(); | 
|  |  | 
|  | *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t'; | 
|  | if (FrameInfo.hasVarSizedObjects()) | 
|  | *StackUsageStream << "dynamic\n"; | 
|  | else | 
|  | *StackUsageStream << "static\n"; | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitPCSectionsLabel(const MachineFunction &MF, | 
|  | const MDNode &MD) { | 
|  | MCSymbol *S = MF.getContext().createTempSymbol("pcsection"); | 
|  | OutStreamer->emitLabel(S); | 
|  | PCSectionsSymbols[&MD].emplace_back(S); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitPCSections(const MachineFunction &MF) { | 
|  | const Function &F = MF.getFunction(); | 
|  | if (PCSectionsSymbols.empty() && !F.hasMetadata(LLVMContext::MD_pcsections)) | 
|  | return; | 
|  |  | 
|  | const CodeModel::Model CM = MF.getTarget().getCodeModel(); | 
|  | const unsigned RelativeRelocSize = | 
|  | (CM == CodeModel::Medium || CM == CodeModel::Large) ? getPointerSize() | 
|  | : 4; | 
|  |  | 
|  | // Switch to PCSection, short-circuiting the common case where the current | 
|  | // section is still valid (assume most MD_pcsections contain just 1 section). | 
|  | auto SwitchSection = [&, Prev = StringRef()](const StringRef &Sec) mutable { | 
|  | if (Sec == Prev) | 
|  | return; | 
|  | MCSection *S = getObjFileLowering().getPCSection(Sec, MF.getSection()); | 
|  | assert(S && "PC section is not initialized"); | 
|  | OutStreamer->switchSection(S); | 
|  | Prev = Sec; | 
|  | }; | 
|  | // Emit symbols into sections and data as specified in the pcsections MDNode. | 
|  | auto EmitForMD = [&](const MDNode &MD, ArrayRef<const MCSymbol *> Syms, | 
|  | bool Deltas) { | 
|  | // Expect the first operand to be a section name. After that, a tuple of | 
|  | // constants may appear, which will simply be emitted into the current | 
|  | // section (the user of MD_pcsections decides the format of encoded data). | 
|  | assert(isa<MDString>(MD.getOperand(0)) && "first operand not a string"); | 
|  | bool ConstULEB128 = false; | 
|  | for (const MDOperand &MDO : MD.operands()) { | 
|  | if (auto *S = dyn_cast<MDString>(MDO)) { | 
|  | // Found string, start of new section! | 
|  | // Find options for this section "<section>!<opts>" - supported options: | 
|  | //   C = Compress constant integers of size 2-8 bytes as ULEB128. | 
|  | const StringRef SecWithOpt = S->getString(); | 
|  | const size_t OptStart = SecWithOpt.find('!'); // likely npos | 
|  | const StringRef Sec = SecWithOpt.substr(0, OptStart); | 
|  | const StringRef Opts = SecWithOpt.substr(OptStart); // likely empty | 
|  | ConstULEB128 = Opts.contains('C'); | 
|  | #ifndef NDEBUG | 
|  | for (char O : Opts) | 
|  | assert((O == '!' || O == 'C') && "Invalid !pcsections options"); | 
|  | #endif | 
|  | SwitchSection(Sec); | 
|  | const MCSymbol *Prev = Syms.front(); | 
|  | for (const MCSymbol *Sym : Syms) { | 
|  | if (Sym == Prev || !Deltas) { | 
|  | // Use the entry itself as the base of the relative offset. | 
|  | MCSymbol *Base = MF.getContext().createTempSymbol("pcsection_base"); | 
|  | OutStreamer->emitLabel(Base); | 
|  | // Emit relative relocation `addr - base`, which avoids a dynamic | 
|  | // relocation in the final binary. User will get the address with | 
|  | // `base + addr`. | 
|  | emitLabelDifference(Sym, Base, RelativeRelocSize); | 
|  | } else { | 
|  | // Emit delta between symbol and previous symbol. | 
|  | if (ConstULEB128) | 
|  | emitLabelDifferenceAsULEB128(Sym, Prev); | 
|  | else | 
|  | emitLabelDifference(Sym, Prev, 4); | 
|  | } | 
|  | Prev = Sym; | 
|  | } | 
|  | } else { | 
|  | // Emit auxiliary data after PC. | 
|  | assert(isa<MDNode>(MDO) && "expecting either string or tuple"); | 
|  | const auto *AuxMDs = cast<MDNode>(MDO); | 
|  | for (const MDOperand &AuxMDO : AuxMDs->operands()) { | 
|  | assert(isa<ConstantAsMetadata>(AuxMDO) && "expecting a constant"); | 
|  | const Constant *C = cast<ConstantAsMetadata>(AuxMDO)->getValue(); | 
|  | const DataLayout &DL = F.getDataLayout(); | 
|  | const uint64_t Size = DL.getTypeStoreSize(C->getType()); | 
|  |  | 
|  | if (auto *CI = dyn_cast<ConstantInt>(C); | 
|  | CI && ConstULEB128 && Size > 1 && Size <= 8) { | 
|  | emitULEB128(CI->getZExtValue()); | 
|  | } else { | 
|  | emitGlobalConstant(DL, C); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | OutStreamer->pushSection(); | 
|  | // Emit PCs for function start and function size. | 
|  | if (const MDNode *MD = F.getMetadata(LLVMContext::MD_pcsections)) | 
|  | EmitForMD(*MD, {getFunctionBegin(), getFunctionEnd()}, true); | 
|  | // Emit PCs for instructions collected. | 
|  | for (const auto &MS : PCSectionsSymbols) | 
|  | EmitForMD(*MS.first, MS.second, false); | 
|  | OutStreamer->popSection(); | 
|  | PCSectionsSymbols.clear(); | 
|  | } | 
|  |  | 
|  | /// Returns true if function begin and end labels should be emitted. | 
|  | static bool needFuncLabels(const MachineFunction &MF, const AsmPrinter &Asm) { | 
|  | if (Asm.hasDebugInfo() || !MF.getLandingPads().empty() || | 
|  | MF.hasEHFunclets() || | 
|  | MF.getFunction().hasMetadata(LLVMContext::MD_pcsections)) | 
|  | return true; | 
|  |  | 
|  | // We might emit an EH table that uses function begin and end labels even if | 
|  | // we don't have any landingpads. | 
|  | if (!MF.getFunction().hasPersonalityFn()) | 
|  | return false; | 
|  | return !isNoOpWithoutInvoke( | 
|  | classifyEHPersonality(MF.getFunction().getPersonalityFn())); | 
|  | } | 
|  |  | 
|  | // Return the mnemonic of a MachineInstr if available, or the MachineInstr | 
|  | // opcode name otherwise. | 
|  | static StringRef getMIMnemonic(const MachineInstr &MI, MCStreamer &Streamer) { | 
|  | const TargetInstrInfo *TII = | 
|  | MI.getParent()->getParent()->getSubtarget().getInstrInfo(); | 
|  | MCInst MCI; | 
|  | MCI.setOpcode(MI.getOpcode()); | 
|  | if (StringRef Name = Streamer.getMnemonic(MCI); !Name.empty()) | 
|  | return Name; | 
|  | StringRef Name = TII->getName(MI.getOpcode()); | 
|  | assert(!Name.empty() && "Missing mnemonic and name for opcode"); | 
|  | return Name; | 
|  | } | 
|  |  | 
|  | /// EmitFunctionBody - This method emits the body and trailer for a | 
|  | /// function. | 
|  | void AsmPrinter::emitFunctionBody() { | 
|  | emitFunctionHeader(); | 
|  |  | 
|  | // Emit target-specific gunk before the function body. | 
|  | emitFunctionBodyStart(); | 
|  |  | 
|  | if (isVerbose()) { | 
|  | // Get MachineDominatorTree or compute it on the fly if it's unavailable | 
|  | auto MDTWrapper = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>(); | 
|  | MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr; | 
|  | if (!MDT) { | 
|  | OwnedMDT = std::make_unique<MachineDominatorTree>(); | 
|  | OwnedMDT->recalculate(*MF); | 
|  | MDT = OwnedMDT.get(); | 
|  | } | 
|  |  | 
|  | // Get MachineLoopInfo or compute it on the fly if it's unavailable | 
|  | auto *MLIWrapper = getAnalysisIfAvailable<MachineLoopInfoWrapperPass>(); | 
|  | MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr; | 
|  | if (!MLI) { | 
|  | OwnedMLI = std::make_unique<MachineLoopInfo>(); | 
|  | OwnedMLI->analyze(*MDT); | 
|  | MLI = OwnedMLI.get(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Print out code for the function. | 
|  | bool HasAnyRealCode = false; | 
|  | int NumInstsInFunction = 0; | 
|  | bool IsEHa = MMI->getModule()->getModuleFlag("eh-asynch"); | 
|  |  | 
|  | const MCSubtargetInfo *STI = nullptr; | 
|  | if (this->MF) | 
|  | STI = &getSubtargetInfo(); | 
|  | else | 
|  | STI = TM.getMCSubtargetInfo(); | 
|  |  | 
|  | bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); | 
|  | // Create a slot for the entry basic block section so that the section | 
|  | // order is preserved when iterating over MBBSectionRanges. | 
|  | if (!MF->empty()) | 
|  | MBBSectionRanges[MF->front().getSectionID()] = | 
|  | MBBSectionRange{CurrentFnBegin, nullptr}; | 
|  |  | 
|  | for (auto &MBB : *MF) { | 
|  | // Print a label for the basic block. | 
|  | emitBasicBlockStart(MBB); | 
|  | DenseMap<StringRef, unsigned> MnemonicCounts; | 
|  | for (auto &MI : MBB) { | 
|  | // Print the assembly for the instruction. | 
|  | if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && | 
|  | !MI.isDebugInstr()) { | 
|  | HasAnyRealCode = true; | 
|  | } | 
|  |  | 
|  | // If there is a pre-instruction symbol, emit a label for it here. | 
|  | if (MCSymbol *S = MI.getPreInstrSymbol()) | 
|  | OutStreamer->emitLabel(S); | 
|  |  | 
|  | if (MDNode *MD = MI.getPCSections()) | 
|  | emitPCSectionsLabel(*MF, *MD); | 
|  |  | 
|  | for (auto &Handler : Handlers) | 
|  | Handler->beginInstruction(&MI); | 
|  |  | 
|  | if (isVerbose()) | 
|  | emitComments(MI, STI, OutStreamer->getCommentOS()); | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | case TargetOpcode::CFI_INSTRUCTION: | 
|  | emitCFIInstruction(MI); | 
|  | break; | 
|  | case TargetOpcode::LOCAL_ESCAPE: | 
|  | emitFrameAlloc(MI); | 
|  | break; | 
|  | case TargetOpcode::ANNOTATION_LABEL: | 
|  | case TargetOpcode::GC_LABEL: | 
|  | OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); | 
|  | break; | 
|  | case TargetOpcode::EH_LABEL: | 
|  | OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); | 
|  | // For AsynchEH, insert a Nop if followed by a trap inst | 
|  | //   Or the exception won't be caught. | 
|  | //   (see MCConstantExpr::create(1,..) in WinException.cpp) | 
|  | //  Ignore SDiv/UDiv because a DIV with Const-0 divisor | 
|  | //    must have being turned into an UndefValue. | 
|  | //  Div with variable opnds won't be the first instruction in | 
|  | //  an EH region as it must be led by at least a Load | 
|  | { | 
|  | auto MI2 = std::next(MI.getIterator()); | 
|  | if (IsEHa && MI2 != MBB.end() && | 
|  | (MI2->mayLoadOrStore() || MI2->mayRaiseFPException())) | 
|  | emitNops(1); | 
|  | } | 
|  | break; | 
|  | case TargetOpcode::INLINEASM: | 
|  | case TargetOpcode::INLINEASM_BR: | 
|  | emitInlineAsm(&MI); | 
|  | break; | 
|  | case TargetOpcode::DBG_VALUE: | 
|  | case TargetOpcode::DBG_VALUE_LIST: | 
|  | if (isVerbose()) { | 
|  | if (!emitDebugValueComment(&MI, *this)) | 
|  | emitInstruction(&MI); | 
|  | } | 
|  | break; | 
|  | case TargetOpcode::DBG_INSTR_REF: | 
|  | // This instruction reference will have been resolved to a machine | 
|  | // location, and a nearby DBG_VALUE created. We can safely ignore | 
|  | // the instruction reference. | 
|  | break; | 
|  | case TargetOpcode::DBG_PHI: | 
|  | // This instruction is only used to label a program point, it's purely | 
|  | // meta information. | 
|  | break; | 
|  | case TargetOpcode::DBG_LABEL: | 
|  | if (isVerbose()) { | 
|  | if (!emitDebugLabelComment(&MI, *this)) | 
|  | emitInstruction(&MI); | 
|  | } | 
|  | break; | 
|  | case TargetOpcode::IMPLICIT_DEF: | 
|  | if (isVerbose()) emitImplicitDef(&MI); | 
|  | break; | 
|  | case TargetOpcode::KILL: | 
|  | if (isVerbose()) emitKill(&MI, *this); | 
|  | break; | 
|  | case TargetOpcode::FAKE_USE: | 
|  | if (isVerbose()) | 
|  | emitFakeUse(&MI, *this); | 
|  | break; | 
|  | case TargetOpcode::PSEUDO_PROBE: | 
|  | emitPseudoProbe(MI); | 
|  | break; | 
|  | case TargetOpcode::ARITH_FENCE: | 
|  | if (isVerbose()) | 
|  | OutStreamer->emitRawComment("ARITH_FENCE"); | 
|  | break; | 
|  | case TargetOpcode::MEMBARRIER: | 
|  | OutStreamer->emitRawComment("MEMBARRIER"); | 
|  | break; | 
|  | case TargetOpcode::JUMP_TABLE_DEBUG_INFO: | 
|  | // This instruction is only used to note jump table debug info, it's | 
|  | // purely meta information. | 
|  | break; | 
|  | case TargetOpcode::INIT_UNDEF: | 
|  | // This is only used to influence register allocation behavior, no | 
|  | // actual initialization is needed. | 
|  | break; | 
|  | default: | 
|  | emitInstruction(&MI); | 
|  |  | 
|  | auto CountInstruction = [&](const MachineInstr &MI) { | 
|  | // Skip Meta instructions inside bundles. | 
|  | if (MI.isMetaInstruction()) | 
|  | return; | 
|  | ++NumInstsInFunction; | 
|  | if (CanDoExtraAnalysis) { | 
|  | StringRef Name = getMIMnemonic(MI, *OutStreamer); | 
|  | ++MnemonicCounts[Name]; | 
|  | } | 
|  | }; | 
|  | if (!MI.isBundle()) { | 
|  | CountInstruction(MI); | 
|  | break; | 
|  | } | 
|  | // Separately count all the instructions in a bundle. | 
|  | for (auto It = std::next(MI.getIterator()); | 
|  | It != MBB.end() && It->isInsideBundle(); ++It) { | 
|  | CountInstruction(*It); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If there is a post-instruction symbol, emit a label for it here. | 
|  | if (MCSymbol *S = MI.getPostInstrSymbol()) | 
|  | OutStreamer->emitLabel(S); | 
|  |  | 
|  | for (auto &Handler : Handlers) | 
|  | Handler->endInstruction(); | 
|  | } | 
|  |  | 
|  | // We must emit temporary symbol for the end of this basic block, if either | 
|  | // we have BBLabels enabled or if this basic blocks marks the end of a | 
|  | // section. | 
|  | if (MF->getTarget().Options.BBAddrMap || | 
|  | (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection())) | 
|  | OutStreamer->emitLabel(MBB.getEndSymbol()); | 
|  |  | 
|  | if (MBB.isEndSection()) { | 
|  | // The size directive for the section containing the entry block is | 
|  | // handled separately by the function section. | 
|  | if (!MBB.sameSection(&MF->front())) { | 
|  | if (MAI->hasDotTypeDotSizeDirective()) { | 
|  | // Emit the size directive for the basic block section. | 
|  | const MCExpr *SizeExp = MCBinaryExpr::createSub( | 
|  | MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), | 
|  | MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), | 
|  | OutContext); | 
|  | OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); | 
|  | } | 
|  | assert(!MBBSectionRanges.contains(MBB.getSectionID()) && | 
|  | "Overwrite section range"); | 
|  | MBBSectionRanges[MBB.getSectionID()] = | 
|  | MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; | 
|  | } | 
|  | } | 
|  | emitBasicBlockEnd(MBB); | 
|  |  | 
|  | if (CanDoExtraAnalysis) { | 
|  | // Skip empty blocks. | 
|  | if (MBB.empty()) | 
|  | continue; | 
|  |  | 
|  | MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", | 
|  | MBB.begin()->getDebugLoc(), &MBB); | 
|  |  | 
|  | // Generate instruction mix remark. First, sort counts in descending order | 
|  | // by count and name. | 
|  | SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; | 
|  | for (auto &KV : MnemonicCounts) | 
|  | MnemonicVec.emplace_back(KV.first, KV.second); | 
|  |  | 
|  | sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, | 
|  | const std::pair<StringRef, unsigned> &B) { | 
|  | if (A.second > B.second) | 
|  | return true; | 
|  | if (A.second == B.second) | 
|  | return StringRef(A.first) < StringRef(B.first); | 
|  | return false; | 
|  | }); | 
|  | R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; | 
|  | for (auto &KV : MnemonicVec) { | 
|  | auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str(); | 
|  | R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; | 
|  | } | 
|  | ORE->emit(R); | 
|  | } | 
|  | } | 
|  |  | 
|  | EmittedInsts += NumInstsInFunction; | 
|  | MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", | 
|  | MF->getFunction().getSubprogram(), | 
|  | &MF->front()); | 
|  | R << ore::NV("NumInstructions", NumInstsInFunction) | 
|  | << " instructions in function"; | 
|  | ORE->emit(R); | 
|  |  | 
|  | // If the function is empty and the object file uses .subsections_via_symbols, | 
|  | // then we need to emit *something* to the function body to prevent the | 
|  | // labels from collapsing together.  Just emit a noop. | 
|  | // Similarly, don't emit empty functions on Windows either. It can lead to | 
|  | // duplicate entries (two functions with the same RVA) in the Guard CF Table | 
|  | // after linking, causing the kernel not to load the binary: | 
|  | // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html | 
|  | // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. | 
|  | const Triple &TT = TM.getTargetTriple(); | 
|  | if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || | 
|  | (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { | 
|  | MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); | 
|  |  | 
|  | // Targets can opt-out of emitting the noop here by leaving the opcode | 
|  | // unspecified. | 
|  | if (Noop.getOpcode()) { | 
|  | OutStreamer->AddComment("avoids zero-length function"); | 
|  | emitNops(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Switch to the original section in case basic block sections was used. | 
|  | OutStreamer->switchSection(MF->getSection()); | 
|  |  | 
|  | const Function &F = MF->getFunction(); | 
|  | for (const auto &BB : F) { | 
|  | if (!BB.hasAddressTaken()) | 
|  | continue; | 
|  | MCSymbol *Sym = GetBlockAddressSymbol(&BB); | 
|  | if (Sym->isDefined()) | 
|  | continue; | 
|  | OutStreamer->AddComment("Address of block that was removed by CodeGen"); | 
|  | OutStreamer->emitLabel(Sym); | 
|  | } | 
|  |  | 
|  | // Emit target-specific gunk after the function body. | 
|  | emitFunctionBodyEnd(); | 
|  |  | 
|  | // Even though wasm supports .type and .size in general, function symbols | 
|  | // are automatically sized. | 
|  | bool EmitFunctionSize = MAI->hasDotTypeDotSizeDirective() && !TT.isWasm(); | 
|  |  | 
|  | // SPIR-V supports label instructions only inside a block, not after the | 
|  | // function body. | 
|  | if (TT.getObjectFormat() != Triple::SPIRV && | 
|  | (EmitFunctionSize || needFuncLabels(*MF, *this))) { | 
|  | // Create a symbol for the end of function. | 
|  | CurrentFnEnd = createTempSymbol("func_end"); | 
|  | OutStreamer->emitLabel(CurrentFnEnd); | 
|  | } | 
|  |  | 
|  | // If the target wants a .size directive for the size of the function, emit | 
|  | // it. | 
|  | if (EmitFunctionSize) { | 
|  | // We can get the size as difference between the function label and the | 
|  | // temp label. | 
|  | const MCExpr *SizeExp = MCBinaryExpr::createSub( | 
|  | MCSymbolRefExpr::create(CurrentFnEnd, OutContext), | 
|  | MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); | 
|  | OutStreamer->emitELFSize(CurrentFnSym, SizeExp); | 
|  | if (CurrentFnBeginLocal) | 
|  | OutStreamer->emitELFSize(CurrentFnBeginLocal, SizeExp); | 
|  | } | 
|  |  | 
|  | // Call endBasicBlockSection on the last block now, if it wasn't already | 
|  | // called. | 
|  | if (!MF->back().isEndSection()) { | 
|  | for (auto &Handler : Handlers) | 
|  | Handler->endBasicBlockSection(MF->back()); | 
|  | for (auto &Handler : EHHandlers) | 
|  | Handler->endBasicBlockSection(MF->back()); | 
|  | } | 
|  | for (auto &Handler : Handlers) | 
|  | Handler->markFunctionEnd(); | 
|  | for (auto &Handler : EHHandlers) | 
|  | Handler->markFunctionEnd(); | 
|  | // Update the end label of the entry block's section. | 
|  | MBBSectionRanges[MF->front().getSectionID()].EndLabel = CurrentFnEnd; | 
|  |  | 
|  | // Print out jump tables referenced by the function. | 
|  | emitJumpTableInfo(); | 
|  |  | 
|  | // Emit post-function debug and/or EH information. | 
|  | for (auto &Handler : Handlers) | 
|  | Handler->endFunction(MF); | 
|  | for (auto &Handler : EHHandlers) | 
|  | Handler->endFunction(MF); | 
|  |  | 
|  | // Emit section containing BB address offsets and their metadata, when | 
|  | // BB labels are requested for this function. Skip empty functions. | 
|  | if (HasAnyRealCode) { | 
|  | if (MF->getTarget().Options.BBAddrMap) | 
|  | emitBBAddrMapSection(*MF); | 
|  | else if (PgoAnalysisMapFeatures.getBits() != 0) | 
|  | MF->getContext().reportWarning( | 
|  | SMLoc(), "pgo-analysis-map is enabled for function " + MF->getName() + | 
|  | " but it does not have labels"); | 
|  | } | 
|  |  | 
|  | // Emit sections containing instruction and function PCs. | 
|  | emitPCSections(*MF); | 
|  |  | 
|  | // Emit section containing stack size metadata. | 
|  | emitStackSizeSection(*MF); | 
|  |  | 
|  | // Emit .su file containing function stack size information. | 
|  | emitStackUsage(*MF); | 
|  |  | 
|  | emitPatchableFunctionEntries(); | 
|  |  | 
|  | if (isVerbose()) | 
|  | OutStreamer->getCommentOS() << "-- End function\n"; | 
|  |  | 
|  | OutStreamer->addBlankLine(); | 
|  | } | 
|  |  | 
|  | /// Compute the number of Global Variables that uses a Constant. | 
|  | static unsigned getNumGlobalVariableUses(const Constant *C) { | 
|  | if (!C) | 
|  | return 0; | 
|  |  | 
|  | if (isa<GlobalVariable>(C)) | 
|  | return 1; | 
|  |  | 
|  | unsigned NumUses = 0; | 
|  | for (const auto *CU : C->users()) | 
|  | NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); | 
|  |  | 
|  | return NumUses; | 
|  | } | 
|  |  | 
|  | /// Only consider global GOT equivalents if at least one user is a | 
|  | /// cstexpr inside an initializer of another global variables. Also, don't | 
|  | /// handle cstexpr inside instructions. During global variable emission, | 
|  | /// candidates are skipped and are emitted later in case at least one cstexpr | 
|  | /// isn't replaced by a PC relative GOT entry access. | 
|  | static bool isGOTEquivalentCandidate(const GlobalVariable *GV, | 
|  | unsigned &NumGOTEquivUsers) { | 
|  | // Global GOT equivalents are unnamed private globals with a constant | 
|  | // pointer initializer to another global symbol. They must point to a | 
|  | // GlobalVariable or Function, i.e., as GlobalValue. | 
|  | if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || | 
|  | !GV->isConstant() || !GV->isDiscardableIfUnused() || | 
|  | !isa<GlobalValue>(GV->getOperand(0))) | 
|  | return false; | 
|  |  | 
|  | // To be a got equivalent, at least one of its users need to be a constant | 
|  | // expression used by another global variable. | 
|  | for (const auto *U : GV->users()) | 
|  | NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); | 
|  |  | 
|  | return NumGOTEquivUsers > 0; | 
|  | } | 
|  |  | 
|  | /// Unnamed constant global variables solely contaning a pointer to | 
|  | /// another globals variable is equivalent to a GOT table entry; it contains the | 
|  | /// the address of another symbol. Optimize it and replace accesses to these | 
|  | /// "GOT equivalents" by using the GOT entry for the final global instead. | 
|  | /// Compute GOT equivalent candidates among all global variables to avoid | 
|  | /// emitting them if possible later on, after it use is replaced by a GOT entry | 
|  | /// access. | 
|  | void AsmPrinter::computeGlobalGOTEquivs(Module &M) { | 
|  | if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) | 
|  | return; | 
|  |  | 
|  | for (const auto &G : M.globals()) { | 
|  | unsigned NumGOTEquivUsers = 0; | 
|  | if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) | 
|  | continue; | 
|  |  | 
|  | const MCSymbol *GOTEquivSym = getSymbol(&G); | 
|  | GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Constant expressions using GOT equivalent globals may not be eligible | 
|  | /// for PC relative GOT entry conversion, in such cases we need to emit such | 
|  | /// globals we previously omitted in EmitGlobalVariable. | 
|  | void AsmPrinter::emitGlobalGOTEquivs() { | 
|  | if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) | 
|  | return; | 
|  |  | 
|  | SmallVector<const GlobalVariable *, 8> FailedCandidates; | 
|  | for (auto &I : GlobalGOTEquivs) { | 
|  | const GlobalVariable *GV = I.second.first; | 
|  | unsigned Cnt = I.second.second; | 
|  | if (Cnt) | 
|  | FailedCandidates.push_back(GV); | 
|  | } | 
|  | GlobalGOTEquivs.clear(); | 
|  |  | 
|  | for (const auto *GV : FailedCandidates) | 
|  | emitGlobalVariable(GV); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitGlobalAlias(const Module &M, const GlobalAlias &GA) { | 
|  | MCSymbol *Name = getSymbol(&GA); | 
|  | bool IsFunction = GA.getValueType()->isFunctionTy(); | 
|  | // Treat bitcasts of functions as functions also. This is important at least | 
|  | // on WebAssembly where object and function addresses can't alias each other. | 
|  | if (!IsFunction) | 
|  | IsFunction = isa<Function>(GA.getAliasee()->stripPointerCasts()); | 
|  |  | 
|  | // AIX's assembly directive `.set` is not usable for aliasing purpose, | 
|  | // so AIX has to use the extra-label-at-definition strategy. At this | 
|  | // point, all the extra label is emitted, we just have to emit linkage for | 
|  | // those labels. | 
|  | if (TM.getTargetTriple().isOSBinFormatXCOFF()) { | 
|  | // Linkage for alias of global variable has been emitted. | 
|  | if (isa<GlobalVariable>(GA.getAliaseeObject())) | 
|  | return; | 
|  |  | 
|  | emitLinkage(&GA, Name); | 
|  | // If it's a function, also emit linkage for aliases of function entry | 
|  | // point. | 
|  | if (IsFunction) | 
|  | emitLinkage(&GA, | 
|  | getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective()) | 
|  | OutStreamer->emitSymbolAttribute(Name, MCSA_Global); | 
|  | else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage()) | 
|  | OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); | 
|  | else | 
|  | assert(GA.hasLocalLinkage() && "Invalid alias linkage"); | 
|  |  | 
|  | // Set the symbol type to function if the alias has a function type. | 
|  | // This affects codegen when the aliasee is not a function. | 
|  | if (IsFunction) { | 
|  | OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction); | 
|  | if (TM.getTargetTriple().isOSBinFormatCOFF()) { | 
|  | OutStreamer->beginCOFFSymbolDef(Name); | 
|  | OutStreamer->emitCOFFSymbolStorageClass( | 
|  | GA.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC | 
|  | : COFF::IMAGE_SYM_CLASS_EXTERNAL); | 
|  | OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION | 
|  | << COFF::SCT_COMPLEX_TYPE_SHIFT); | 
|  | OutStreamer->endCOFFSymbolDef(); | 
|  | } | 
|  | } | 
|  |  | 
|  | emitVisibility(Name, GA.getVisibility()); | 
|  |  | 
|  | const MCExpr *Expr = lowerConstant(GA.getAliasee()); | 
|  |  | 
|  | if (MAI->isMachO() && isa<MCBinaryExpr>(Expr)) | 
|  | OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); | 
|  |  | 
|  | // Emit the directives as assignments aka .set: | 
|  | OutStreamer->emitAssignment(Name, Expr); | 
|  | MCSymbol *LocalAlias = getSymbolPreferLocal(GA); | 
|  | if (LocalAlias != Name) | 
|  | OutStreamer->emitAssignment(LocalAlias, Expr); | 
|  |  | 
|  | // If the aliasee does not correspond to a symbol in the output, i.e. the | 
|  | // alias is not of an object or the aliased object is private, then set the | 
|  | // size of the alias symbol from the type of the alias. We don't do this in | 
|  | // other situations as the alias and aliasee having differing types but same | 
|  | // size may be intentional. | 
|  | const GlobalObject *BaseObject = GA.getAliaseeObject(); | 
|  | if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() && | 
|  | (!BaseObject || BaseObject->hasPrivateLinkage())) { | 
|  | const DataLayout &DL = M.getDataLayout(); | 
|  | uint64_t Size = DL.getTypeAllocSize(GA.getValueType()); | 
|  | OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) { | 
|  | assert(!TM.getTargetTriple().isOSBinFormatXCOFF() && | 
|  | "IFunc is not supported on AIX."); | 
|  |  | 
|  | auto EmitLinkage = [&](MCSymbol *Sym) { | 
|  | if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective()) | 
|  | OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); | 
|  | else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage()) | 
|  | OutStreamer->emitSymbolAttribute(Sym, MCSA_WeakReference); | 
|  | else | 
|  | assert(GI.hasLocalLinkage() && "Invalid ifunc linkage"); | 
|  | }; | 
|  |  | 
|  | if (TM.getTargetTriple().isOSBinFormatELF()) { | 
|  | MCSymbol *Name = getSymbol(&GI); | 
|  | EmitLinkage(Name); | 
|  | OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); | 
|  | emitVisibility(Name, GI.getVisibility()); | 
|  |  | 
|  | // Emit the directives as assignments aka .set: | 
|  | const MCExpr *Expr = lowerConstant(GI.getResolver()); | 
|  | OutStreamer->emitAssignment(Name, Expr); | 
|  | MCSymbol *LocalAlias = getSymbolPreferLocal(GI); | 
|  | if (LocalAlias != Name) | 
|  | OutStreamer->emitAssignment(LocalAlias, Expr); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!TM.getTargetTriple().isOSBinFormatMachO() || !getIFuncMCSubtargetInfo()) | 
|  | reportFatalUsageError("IFuncs are not supported on this platform"); | 
|  |  | 
|  | // On Darwin platforms, emit a manually-constructed .symbol_resolver that | 
|  | // implements the symbol resolution duties of the IFunc. | 
|  | // | 
|  | // Normally, this would be handled by linker magic, but unfortunately there | 
|  | // are a few limitations in ld64 and ld-prime's implementation of | 
|  | // .symbol_resolver that mean we can't always use them: | 
|  | // | 
|  | //    *  resolvers cannot be the target of an alias | 
|  | //    *  resolvers cannot have private linkage | 
|  | //    *  resolvers cannot have linkonce linkage | 
|  | //    *  resolvers cannot appear in executables | 
|  | //    *  resolvers cannot appear in bundles | 
|  | // | 
|  | // This works around that by emitting a close approximation of what the | 
|  | // linker would have done. | 
|  |  | 
|  | MCSymbol *LazyPointer = | 
|  | GetExternalSymbolSymbol(GI.getName() + ".lazy_pointer"); | 
|  | MCSymbol *StubHelper = GetExternalSymbolSymbol(GI.getName() + ".stub_helper"); | 
|  |  | 
|  | OutStreamer->switchSection(OutContext.getObjectFileInfo()->getDataSection()); | 
|  |  | 
|  | const DataLayout &DL = M.getDataLayout(); | 
|  | emitAlignment(Align(DL.getPointerSize())); | 
|  | OutStreamer->emitLabel(LazyPointer); | 
|  | emitVisibility(LazyPointer, GI.getVisibility()); | 
|  | OutStreamer->emitValue(MCSymbolRefExpr::create(StubHelper, OutContext), 8); | 
|  |  | 
|  | OutStreamer->switchSection(OutContext.getObjectFileInfo()->getTextSection()); | 
|  |  | 
|  | const TargetSubtargetInfo *STI = | 
|  | TM.getSubtargetImpl(*GI.getResolverFunction()); | 
|  | const TargetLowering *TLI = STI->getTargetLowering(); | 
|  | Align TextAlign(TLI->getMinFunctionAlignment()); | 
|  |  | 
|  | MCSymbol *Stub = getSymbol(&GI); | 
|  | EmitLinkage(Stub); | 
|  | OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo()); | 
|  | OutStreamer->emitLabel(Stub); | 
|  | emitVisibility(Stub, GI.getVisibility()); | 
|  | emitMachOIFuncStubBody(M, GI, LazyPointer); | 
|  |  | 
|  | OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo()); | 
|  | OutStreamer->emitLabel(StubHelper); | 
|  | emitVisibility(StubHelper, GI.getVisibility()); | 
|  | emitMachOIFuncStubHelperBody(M, GI, LazyPointer); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { | 
|  | if (!RS.needsSection()) | 
|  | return; | 
|  |  | 
|  | MCSection *RemarksSection = | 
|  | OutContext.getObjectFileInfo()->getRemarksSection(); | 
|  | if (!RemarksSection) { | 
|  | OutContext.reportWarning(SMLoc(), "Current object file format does not " | 
|  | "support remarks sections. Use the yaml " | 
|  | "remark format instead."); | 
|  | return; | 
|  | } | 
|  |  | 
|  | remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); | 
|  |  | 
|  | std::optional<SmallString<128>> Filename; | 
|  | if (std::optional<StringRef> FilenameRef = RS.getFilename()) { | 
|  | Filename = *FilenameRef; | 
|  | sys::fs::make_absolute(*Filename); | 
|  | assert(!Filename->empty() && "The filename can't be empty."); | 
|  | } | 
|  |  | 
|  | std::string Buf; | 
|  | raw_string_ostream OS(Buf); | 
|  | std::unique_ptr<remarks::MetaSerializer> MetaSerializer = | 
|  | Filename ? RemarkSerializer.metaSerializer(OS, Filename->str()) | 
|  | : RemarkSerializer.metaSerializer(OS); | 
|  | MetaSerializer->emit(); | 
|  |  | 
|  | // Switch to the remarks section. | 
|  | OutStreamer->switchSection(RemarksSection); | 
|  | OutStreamer->emitBinaryData(Buf); | 
|  | } | 
|  |  | 
|  | static uint64_t globalSize(const llvm::GlobalVariable &G) { | 
|  | const Constant *Initializer = G.getInitializer(); | 
|  | return G.getParent()->getDataLayout().getTypeAllocSize( | 
|  | Initializer->getType()); | 
|  | } | 
|  |  | 
|  | static bool shouldTagGlobal(const llvm::GlobalVariable &G) { | 
|  | // We used to do this in clang, but there are optimization passes that turn | 
|  | // non-constant globals into constants. So now, clang only tells us whether | 
|  | // it would *like* a global to be tagged, but we still make the decision here. | 
|  | // | 
|  | // For now, don't instrument constant data, as it'll be in .rodata anyway. It | 
|  | // may be worth instrumenting these in future to stop them from being used as | 
|  | // gadgets. | 
|  | if (G.getName().starts_with("llvm.") || G.isThreadLocal() || G.isConstant()) | 
|  | return false; | 
|  |  | 
|  | // Globals can be placed implicitly or explicitly in sections. There's two | 
|  | // different types of globals that meet this criteria that cause problems: | 
|  | //  1. Function pointers that are going into various init arrays (either | 
|  | //     explicitly through `__attribute__((section(<foo>)))` or implicitly | 
|  | //     through `__attribute__((constructor)))`, such as ".(pre)init(_array)", | 
|  | //     ".fini(_array)", ".ctors", and ".dtors". These function pointers end up | 
|  | //     overaligned and overpadded, making iterating over them problematic, and | 
|  | //     each function pointer is individually tagged (so the iteration over | 
|  | //     them causes SIGSEGV/MTE[AS]ERR). | 
|  | //  2. Global variables put into an explicit section, where the section's name | 
|  | //     is a valid C-style identifier. The linker emits a `__start_<name>` and | 
|  | //     `__stop_<name>` symbol for the section, so that you can iterate over | 
|  | //     globals within this section. Unfortunately, again, these globals would | 
|  | //     be tagged and so iteration causes SIGSEGV/MTE[AS]ERR. | 
|  | // | 
|  | // To mitigate both these cases, and because specifying a section is rare | 
|  | // outside of these two cases, disable MTE protection for globals in any | 
|  | // section. | 
|  | if (G.hasSection()) | 
|  | return false; | 
|  |  | 
|  | return globalSize(G) > 0; | 
|  | } | 
|  |  | 
|  | static void tagGlobalDefinition(Module &M, GlobalVariable *G) { | 
|  | uint64_t SizeInBytes = globalSize(*G); | 
|  |  | 
|  | uint64_t NewSize = alignTo(SizeInBytes, 16); | 
|  | if (SizeInBytes != NewSize) { | 
|  | // Pad the initializer out to the next multiple of 16 bytes. | 
|  | llvm::SmallVector<uint8_t> Init(NewSize - SizeInBytes, 0); | 
|  | Constant *Padding = ConstantDataArray::get(M.getContext(), Init); | 
|  | Constant *Initializer = G->getInitializer(); | 
|  | Initializer = ConstantStruct::getAnon({Initializer, Padding}); | 
|  | auto *NewGV = new GlobalVariable( | 
|  | M, Initializer->getType(), G->isConstant(), G->getLinkage(), | 
|  | Initializer, "", G, G->getThreadLocalMode(), G->getAddressSpace()); | 
|  | NewGV->copyAttributesFrom(G); | 
|  | NewGV->setComdat(G->getComdat()); | 
|  | NewGV->copyMetadata(G, 0); | 
|  |  | 
|  | NewGV->takeName(G); | 
|  | G->replaceAllUsesWith(NewGV); | 
|  | G->eraseFromParent(); | 
|  | G = NewGV; | 
|  | } | 
|  |  | 
|  | if (G->getAlign().valueOrOne() < 16) | 
|  | G->setAlignment(Align(16)); | 
|  |  | 
|  | // Ensure that tagged globals don't get merged by ICF - as they should have | 
|  | // different tags at runtime. | 
|  | G->setUnnamedAddr(GlobalValue::UnnamedAddr::None); | 
|  | } | 
|  |  | 
|  | static void removeMemtagFromGlobal(GlobalVariable &G) { | 
|  | auto Meta = G.getSanitizerMetadata(); | 
|  | Meta.Memtag = false; | 
|  | G.setSanitizerMetadata(Meta); | 
|  | } | 
|  |  | 
|  | bool AsmPrinter::doFinalization(Module &M) { | 
|  | // Set the MachineFunction to nullptr so that we can catch attempted | 
|  | // accesses to MF specific features at the module level and so that | 
|  | // we can conditionalize accesses based on whether or not it is nullptr. | 
|  | MF = nullptr; | 
|  |  | 
|  | std::vector<GlobalVariable *> GlobalsToTag; | 
|  | for (GlobalVariable &G : M.globals()) { | 
|  | if (G.isDeclaration() || !G.isTagged()) | 
|  | continue; | 
|  | if (!shouldTagGlobal(G)) { | 
|  | assert(G.hasSanitizerMetadata()); // because isTagged. | 
|  | removeMemtagFromGlobal(G); | 
|  | assert(!G.isTagged()); | 
|  | continue; | 
|  | } | 
|  | GlobalsToTag.push_back(&G); | 
|  | } | 
|  | for (GlobalVariable *G : GlobalsToTag) | 
|  | tagGlobalDefinition(M, G); | 
|  |  | 
|  | // Gather all GOT equivalent globals in the module. We really need two | 
|  | // passes over the globals: one to compute and another to avoid its emission | 
|  | // in EmitGlobalVariable, otherwise we would not be able to handle cases | 
|  | // where the got equivalent shows up before its use. | 
|  | computeGlobalGOTEquivs(M); | 
|  |  | 
|  | // Emit global variables. | 
|  | for (const auto &G : M.globals()) | 
|  | emitGlobalVariable(&G); | 
|  |  | 
|  | // Emit remaining GOT equivalent globals. | 
|  | emitGlobalGOTEquivs(); | 
|  |  | 
|  | const TargetLoweringObjectFile &TLOF = getObjFileLowering(); | 
|  |  | 
|  | // Emit linkage(XCOFF) and visibility info for declarations | 
|  | for (const Function &F : M) { | 
|  | if (!F.isDeclarationForLinker()) | 
|  | continue; | 
|  |  | 
|  | MCSymbol *Name = getSymbol(&F); | 
|  | // Function getSymbol gives us the function descriptor symbol for XCOFF. | 
|  |  | 
|  | if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { | 
|  | GlobalValue::VisibilityTypes V = F.getVisibility(); | 
|  | if (V == GlobalValue::DefaultVisibility) | 
|  | continue; | 
|  |  | 
|  | emitVisibility(Name, V, false); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (F.isIntrinsic()) | 
|  | continue; | 
|  |  | 
|  | // Handle the XCOFF case. | 
|  | // Variable `Name` is the function descriptor symbol (see above). Get the | 
|  | // function entry point symbol. | 
|  | MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); | 
|  | // Emit linkage for the function entry point. | 
|  | emitLinkage(&F, FnEntryPointSym); | 
|  |  | 
|  | // If a function's address is taken, which means it may be called via a | 
|  | // function pointer, we need the function descriptor for it. | 
|  | if (F.hasAddressTaken()) | 
|  | emitLinkage(&F, Name); | 
|  | } | 
|  |  | 
|  | // Emit the remarks section contents. | 
|  | // FIXME: Figure out when is the safest time to emit this section. It should | 
|  | // not come after debug info. | 
|  | if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) | 
|  | emitRemarksSection(*RS); | 
|  |  | 
|  | TLOF.emitModuleMetadata(*OutStreamer, M); | 
|  |  | 
|  | if (TM.getTargetTriple().isOSBinFormatELF()) { | 
|  | MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); | 
|  |  | 
|  | // Output stubs for external and common global variables. | 
|  | MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); | 
|  | if (!Stubs.empty()) { | 
|  | OutStreamer->switchSection(TLOF.getDataSection()); | 
|  | const DataLayout &DL = M.getDataLayout(); | 
|  |  | 
|  | emitAlignment(Align(DL.getPointerSize())); | 
|  | for (const auto &Stub : Stubs) { | 
|  | OutStreamer->emitLabel(Stub.first); | 
|  | OutStreamer->emitSymbolValue(Stub.second.getPointer(), | 
|  | DL.getPointerSize()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TM.getTargetTriple().isOSBinFormatCOFF()) { | 
|  | MachineModuleInfoCOFF &MMICOFF = | 
|  | MMI->getObjFileInfo<MachineModuleInfoCOFF>(); | 
|  |  | 
|  | // Output stubs for external and common global variables. | 
|  | MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); | 
|  | if (!Stubs.empty()) { | 
|  | const DataLayout &DL = M.getDataLayout(); | 
|  |  | 
|  | for (const auto &Stub : Stubs) { | 
|  | SmallString<256> SectionName = StringRef(".rdata$"); | 
|  | SectionName += Stub.first->getName(); | 
|  | OutStreamer->switchSection(OutContext.getCOFFSection( | 
|  | SectionName, | 
|  | COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | | 
|  | COFF::IMAGE_SCN_LNK_COMDAT, | 
|  | Stub.first->getName(), COFF::IMAGE_COMDAT_SELECT_ANY)); | 
|  | emitAlignment(Align(DL.getPointerSize())); | 
|  | OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); | 
|  | OutStreamer->emitLabel(Stub.first); | 
|  | OutStreamer->emitSymbolValue(Stub.second.getPointer(), | 
|  | DL.getPointerSize()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // This needs to happen before emitting debug information since that can end | 
|  | // arbitrary sections. | 
|  | if (auto *TS = OutStreamer->getTargetStreamer()) | 
|  | TS->emitConstantPools(); | 
|  |  | 
|  | // Emit Stack maps before any debug info. Mach-O requires that no data or | 
|  | // text sections come after debug info has been emitted. This matters for | 
|  | // stack maps as they are arbitrary data, and may even have a custom format | 
|  | // through user plugins. | 
|  | emitStackMaps(); | 
|  |  | 
|  | // Print aliases in topological order, that is, for each alias a = b, | 
|  | // b must be printed before a. | 
|  | // This is because on some targets (e.g. PowerPC) linker expects aliases in | 
|  | // such an order to generate correct TOC information. | 
|  | SmallVector<const GlobalAlias *, 16> AliasStack; | 
|  | SmallPtrSet<const GlobalAlias *, 16> AliasVisited; | 
|  | for (const auto &Alias : M.aliases()) { | 
|  | if (Alias.hasAvailableExternallyLinkage()) | 
|  | continue; | 
|  | for (const GlobalAlias *Cur = &Alias; Cur; | 
|  | Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { | 
|  | if (!AliasVisited.insert(Cur).second) | 
|  | break; | 
|  | AliasStack.push_back(Cur); | 
|  | } | 
|  | for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) | 
|  | emitGlobalAlias(M, *AncestorAlias); | 
|  | AliasStack.clear(); | 
|  | } | 
|  |  | 
|  | // IFuncs must come before deubginfo in case the backend decides to emit them | 
|  | // as actual functions, since on Mach-O targets, we cannot create regular | 
|  | // sections after DWARF. | 
|  | for (const auto &IFunc : M.ifuncs()) | 
|  | emitGlobalIFunc(M, IFunc); | 
|  |  | 
|  | // Finalize debug and EH information. | 
|  | for (auto &Handler : Handlers) | 
|  | Handler->endModule(); | 
|  | for (auto &Handler : EHHandlers) | 
|  | Handler->endModule(); | 
|  |  | 
|  | // This deletes all the ephemeral handlers that AsmPrinter added, while | 
|  | // keeping all the user-added handlers alive until the AsmPrinter is | 
|  | // destroyed. | 
|  | EHHandlers.clear(); | 
|  | Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); | 
|  | DD = nullptr; | 
|  |  | 
|  | // If the target wants to know about weak references, print them all. | 
|  | if (MAI->getWeakRefDirective()) { | 
|  | // FIXME: This is not lazy, it would be nice to only print weak references | 
|  | // to stuff that is actually used.  Note that doing so would require targets | 
|  | // to notice uses in operands (due to constant exprs etc).  This should | 
|  | // happen with the MC stuff eventually. | 
|  |  | 
|  | // Print out module-level global objects here. | 
|  | for (const auto &GO : M.global_objects()) { | 
|  | if (!GO.hasExternalWeakLinkage()) | 
|  | continue; | 
|  | OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); | 
|  | } | 
|  | if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) { | 
|  | auto SymbolName = "swift_async_extendedFramePointerFlags"; | 
|  | auto Global = M.getGlobalVariable(SymbolName); | 
|  | if (!Global) { | 
|  | auto PtrTy = PointerType::getUnqual(M.getContext()); | 
|  | Global = new GlobalVariable(M, PtrTy, false, | 
|  | GlobalValue::ExternalWeakLinkage, nullptr, | 
|  | SymbolName); | 
|  | OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); | 
|  | assert(MI && "AsmPrinter didn't require GCModuleInfo?"); | 
|  | for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) | 
|  | if (GCMetadataPrinter *MP = getOrCreateGCPrinter(**--I)) | 
|  | MP->finishAssembly(M, *MI, *this); | 
|  |  | 
|  | // Emit llvm.ident metadata in an '.ident' directive. | 
|  | emitModuleIdents(M); | 
|  |  | 
|  | // Emit bytes for llvm.commandline metadata. | 
|  | // The command line metadata is emitted earlier on XCOFF. | 
|  | if (!TM.getTargetTriple().isOSBinFormatXCOFF()) | 
|  | emitModuleCommandLines(M); | 
|  |  | 
|  | // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if | 
|  | // split-stack is used. | 
|  | if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) { | 
|  | OutStreamer->switchSection(OutContext.getELFSection(".note.GNU-split-stack", | 
|  | ELF::SHT_PROGBITS, 0)); | 
|  | if (HasNoSplitStack) | 
|  | OutStreamer->switchSection(OutContext.getELFSection( | 
|  | ".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); | 
|  | } | 
|  |  | 
|  | // If we don't have any trampolines, then we don't require stack memory | 
|  | // to be executable. Some targets have a directive to declare this. | 
|  | Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); | 
|  | if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) | 
|  | if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) | 
|  | OutStreamer->switchSection(S); | 
|  |  | 
|  | if (TM.Options.EmitAddrsig) { | 
|  | // Emit address-significance attributes for all globals. | 
|  | OutStreamer->emitAddrsig(); | 
|  | for (const GlobalValue &GV : M.global_values()) { | 
|  | if (!GV.use_empty() && !GV.isThreadLocal() && | 
|  | !GV.hasDLLImportStorageClass() && | 
|  | !GV.getName().starts_with("llvm.") && | 
|  | !GV.hasAtLeastLocalUnnamedAddr()) | 
|  | OutStreamer->emitAddrsigSym(getSymbol(&GV)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit symbol partition specifications (ELF only). | 
|  | if (TM.getTargetTriple().isOSBinFormatELF()) { | 
|  | unsigned UniqueID = 0; | 
|  | for (const GlobalValue &GV : M.global_values()) { | 
|  | if (!GV.hasPartition() || GV.isDeclarationForLinker() || | 
|  | GV.getVisibility() != GlobalValue::DefaultVisibility) | 
|  | continue; | 
|  |  | 
|  | OutStreamer->switchSection( | 
|  | OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, | 
|  | "", false, ++UniqueID, nullptr)); | 
|  | OutStreamer->emitBytes(GV.getPartition()); | 
|  | OutStreamer->emitZeros(1); | 
|  | OutStreamer->emitValue( | 
|  | MCSymbolRefExpr::create(getSymbol(&GV), OutContext), | 
|  | MAI->getCodePointerSize()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allow the target to emit any magic that it wants at the end of the file, | 
|  | // after everything else has gone out. | 
|  | emitEndOfAsmFile(M); | 
|  |  | 
|  | MMI = nullptr; | 
|  | AddrLabelSymbols = nullptr; | 
|  |  | 
|  | OutStreamer->finish(); | 
|  | OutStreamer->reset(); | 
|  | OwnedMLI.reset(); | 
|  | OwnedMDT.reset(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { | 
|  | auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionID()); | 
|  | if (Res.second) | 
|  | Res.first->second = createTempSymbol("exception"); | 
|  | return Res.first->second; | 
|  | } | 
|  |  | 
|  | void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { | 
|  | this->MF = &MF; | 
|  | const Function &F = MF.getFunction(); | 
|  |  | 
|  | // Record that there are split-stack functions, so we will emit a special | 
|  | // section to tell the linker. | 
|  | if (MF.shouldSplitStack()) { | 
|  | HasSplitStack = true; | 
|  |  | 
|  | if (!MF.getFrameInfo().needsSplitStackProlog()) | 
|  | HasNoSplitStack = true; | 
|  | } else | 
|  | HasNoSplitStack = true; | 
|  |  | 
|  | // Get the function symbol. | 
|  | if (!MAI->isAIX()) { | 
|  | CurrentFnSym = getSymbol(&MF.getFunction()); | 
|  | } else { | 
|  | assert(TM.getTargetTriple().isOSAIX() && | 
|  | "Only AIX uses the function descriptor hooks."); | 
|  | // AIX is unique here in that the name of the symbol emitted for the | 
|  | // function body does not have the same name as the source function's | 
|  | // C-linkage name. | 
|  | assert(CurrentFnDescSym && "The function descriptor symbol needs to be" | 
|  | " initalized first."); | 
|  |  | 
|  | // Get the function entry point symbol. | 
|  | CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); | 
|  | } | 
|  |  | 
|  | CurrentFnSymForSize = CurrentFnSym; | 
|  | CurrentFnBegin = nullptr; | 
|  | CurrentFnBeginLocal = nullptr; | 
|  | CurrentSectionBeginSym = nullptr; | 
|  | MBBSectionRanges.clear(); | 
|  | MBBSectionExceptionSyms.clear(); | 
|  | bool NeedsLocalForSize = MAI->needsLocalForSize(); | 
|  | if (F.hasFnAttribute("patchable-function-entry") || | 
|  | F.hasFnAttribute("function-instrument") || | 
|  | F.hasFnAttribute("xray-instruction-threshold") || | 
|  | needFuncLabels(MF, *this) || NeedsLocalForSize || | 
|  | MF.getTarget().Options.EmitStackSizeSection || | 
|  | MF.getTarget().Options.BBAddrMap) { | 
|  | CurrentFnBegin = createTempSymbol("func_begin"); | 
|  | if (NeedsLocalForSize) | 
|  | CurrentFnSymForSize = CurrentFnBegin; | 
|  | } | 
|  |  | 
|  | ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Keep track the alignment, constpool entries per Section. | 
|  | struct SectionCPs { | 
|  | MCSection *S; | 
|  | Align Alignment; | 
|  | SmallVector<unsigned, 4> CPEs; | 
|  |  | 
|  | SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | StringRef AsmPrinter::getConstantSectionSuffix(const Constant *C) const { | 
|  | if (TM.Options.EnableStaticDataPartitioning && C && SDPI && PSI) | 
|  | return SDPI->getConstantSectionPrefix(C, PSI); | 
|  |  | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | /// EmitConstantPool - Print to the current output stream assembly | 
|  | /// representations of the constants in the constant pool MCP. This is | 
|  | /// used to print out constants which have been "spilled to memory" by | 
|  | /// the code generator. | 
|  | void AsmPrinter::emitConstantPool() { | 
|  | const MachineConstantPool *MCP = MF->getConstantPool(); | 
|  | const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); | 
|  | if (CP.empty()) return; | 
|  |  | 
|  | // Calculate sections for constant pool entries. We collect entries to go into | 
|  | // the same section together to reduce amount of section switch statements. | 
|  | SmallVector<SectionCPs, 4> CPSections; | 
|  | for (unsigned i = 0, e = CP.size(); i != e; ++i) { | 
|  | const MachineConstantPoolEntry &CPE = CP[i]; | 
|  | Align Alignment = CPE.getAlign(); | 
|  |  | 
|  | SectionKind Kind = CPE.getSectionKind(&getDataLayout()); | 
|  |  | 
|  | const Constant *C = nullptr; | 
|  | if (!CPE.isMachineConstantPoolEntry()) | 
|  | C = CPE.Val.ConstVal; | 
|  |  | 
|  | MCSection *S = getObjFileLowering().getSectionForConstant( | 
|  | getDataLayout(), Kind, C, Alignment, getConstantSectionSuffix(C)); | 
|  |  | 
|  | // The number of sections are small, just do a linear search from the | 
|  | // last section to the first. | 
|  | bool Found = false; | 
|  | unsigned SecIdx = CPSections.size(); | 
|  | while (SecIdx != 0) { | 
|  | if (CPSections[--SecIdx].S == S) { | 
|  | Found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!Found) { | 
|  | SecIdx = CPSections.size(); | 
|  | CPSections.push_back(SectionCPs(S, Alignment)); | 
|  | } | 
|  |  | 
|  | if (Alignment > CPSections[SecIdx].Alignment) | 
|  | CPSections[SecIdx].Alignment = Alignment; | 
|  | CPSections[SecIdx].CPEs.push_back(i); | 
|  | } | 
|  |  | 
|  | // Now print stuff into the calculated sections. | 
|  | const MCSection *CurSection = nullptr; | 
|  | unsigned Offset = 0; | 
|  | for (const SectionCPs &CPSection : CPSections) { | 
|  | for (unsigned CPI : CPSection.CPEs) { | 
|  | MCSymbol *Sym = GetCPISymbol(CPI); | 
|  | if (!Sym->isUndefined()) | 
|  | continue; | 
|  |  | 
|  | if (CurSection != CPSection.S) { | 
|  | OutStreamer->switchSection(CPSection.S); | 
|  | emitAlignment(Align(CPSection.Alignment)); | 
|  | CurSection = CPSection.S; | 
|  | Offset = 0; | 
|  | } | 
|  |  | 
|  | MachineConstantPoolEntry CPE = CP[CPI]; | 
|  |  | 
|  | // Emit inter-object padding for alignment. | 
|  | unsigned NewOffset = alignTo(Offset, CPE.getAlign()); | 
|  | OutStreamer->emitZeros(NewOffset - Offset); | 
|  |  | 
|  | Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); | 
|  |  | 
|  | OutStreamer->emitLabel(Sym); | 
|  | if (CPE.isMachineConstantPoolEntry()) | 
|  | emitMachineConstantPoolValue(CPE.Val.MachineCPVal); | 
|  | else | 
|  | emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Print assembly representations of the jump tables used by the current | 
|  | // function. | 
|  | void AsmPrinter::emitJumpTableInfo() { | 
|  | const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); | 
|  | if (!MJTI) return; | 
|  |  | 
|  | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); | 
|  | if (JT.empty()) return; | 
|  |  | 
|  | if (!TM.Options.EnableStaticDataPartitioning) { | 
|  | emitJumpTableImpl(*MJTI, llvm::to_vector(llvm::seq<unsigned>(JT.size()))); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SmallVector<unsigned> HotJumpTableIndices, ColdJumpTableIndices; | 
|  | // When static data partitioning is enabled, collect jump table entries that | 
|  | // go into the same section together to reduce the amount of section switch | 
|  | // statements. | 
|  | for (unsigned JTI = 0, JTSize = JT.size(); JTI < JTSize; ++JTI) { | 
|  | if (JT[JTI].Hotness == MachineFunctionDataHotness::Cold) { | 
|  | ColdJumpTableIndices.push_back(JTI); | 
|  | } else { | 
|  | HotJumpTableIndices.push_back(JTI); | 
|  | } | 
|  | } | 
|  |  | 
|  | emitJumpTableImpl(*MJTI, HotJumpTableIndices); | 
|  | emitJumpTableImpl(*MJTI, ColdJumpTableIndices); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitJumpTableImpl(const MachineJumpTableInfo &MJTI, | 
|  | ArrayRef<unsigned> JumpTableIndices) { | 
|  | if (MJTI.getEntryKind() == MachineJumpTableInfo::EK_Inline || | 
|  | JumpTableIndices.empty()) | 
|  | return; | 
|  |  | 
|  | const TargetLoweringObjectFile &TLOF = getObjFileLowering(); | 
|  | const Function &F = MF->getFunction(); | 
|  | const std::vector<MachineJumpTableEntry> &JT = MJTI.getJumpTables(); | 
|  | MCSection *JumpTableSection = nullptr; | 
|  |  | 
|  | const bool UseLabelDifference = | 
|  | MJTI.getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || | 
|  | MJTI.getEntryKind() == MachineJumpTableInfo::EK_LabelDifference64; | 
|  | // Pick the directive to use to print the jump table entries, and switch to | 
|  | // the appropriate section. | 
|  | const bool JTInDiffSection = | 
|  | !TLOF.shouldPutJumpTableInFunctionSection(UseLabelDifference, F); | 
|  | if (JTInDiffSection) { | 
|  | if (TM.Options.EnableStaticDataPartitioning) { | 
|  | JumpTableSection = | 
|  | TLOF.getSectionForJumpTable(F, TM, &JT[JumpTableIndices.front()]); | 
|  | } else { | 
|  | JumpTableSection = TLOF.getSectionForJumpTable(F, TM); | 
|  | } | 
|  | OutStreamer->switchSection(JumpTableSection); | 
|  | } | 
|  |  | 
|  | const DataLayout &DL = MF->getDataLayout(); | 
|  | emitAlignment(Align(MJTI.getEntryAlignment(DL))); | 
|  |  | 
|  | // Jump tables in code sections are marked with a data_region directive | 
|  | // where that's supported. | 
|  | if (!JTInDiffSection) | 
|  | OutStreamer->emitDataRegion(MCDR_DataRegionJT32); | 
|  |  | 
|  | for (const unsigned JumpTableIndex : JumpTableIndices) { | 
|  | ArrayRef<MachineBasicBlock *> JTBBs = JT[JumpTableIndex].MBBs; | 
|  |  | 
|  | // If this jump table was deleted, ignore it. | 
|  | if (JTBBs.empty()) | 
|  | continue; | 
|  |  | 
|  | // For the EK_LabelDifference32 entry, if using .set avoids a relocation, | 
|  | /// emit a .set directive for each unique entry. | 
|  | if (MJTI.getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && | 
|  | MAI->doesSetDirectiveSuppressReloc()) { | 
|  | SmallPtrSet<const MachineBasicBlock *, 16> EmittedSets; | 
|  | const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); | 
|  | const MCExpr *Base = | 
|  | TLI->getPICJumpTableRelocBaseExpr(MF, JumpTableIndex, OutContext); | 
|  | for (const MachineBasicBlock *MBB : JTBBs) { | 
|  | if (!EmittedSets.insert(MBB).second) | 
|  | continue; | 
|  |  | 
|  | // .set LJTSet, LBB32-base | 
|  | const MCExpr *LHS = | 
|  | MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); | 
|  | OutStreamer->emitAssignment( | 
|  | GetJTSetSymbol(JumpTableIndex, MBB->getNumber()), | 
|  | MCBinaryExpr::createSub(LHS, Base, OutContext)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // On some targets (e.g. Darwin) we want to emit two consecutive labels | 
|  | // before each jump table.  The first label is never referenced, but tells | 
|  | // the assembler and linker the extents of the jump table object.  The | 
|  | // second label is actually referenced by the code. | 
|  | if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) | 
|  | // FIXME: This doesn't have to have any specific name, just any randomly | 
|  | // named and numbered local label started with 'l' would work.  Simplify | 
|  | // GetJTISymbol. | 
|  | OutStreamer->emitLabel(GetJTISymbol(JumpTableIndex, true)); | 
|  |  | 
|  | MCSymbol *JTISymbol = GetJTISymbol(JumpTableIndex); | 
|  | OutStreamer->emitLabel(JTISymbol); | 
|  |  | 
|  | // Defer MCAssembler based constant folding due to a performance issue. The | 
|  | // label differences will be evaluated at write time. | 
|  | for (const MachineBasicBlock *MBB : JTBBs) | 
|  | emitJumpTableEntry(MJTI, MBB, JumpTableIndex); | 
|  | } | 
|  |  | 
|  | if (EmitJumpTableSizesSection) | 
|  | emitJumpTableSizesSection(MJTI, MF->getFunction()); | 
|  |  | 
|  | if (!JTInDiffSection) | 
|  | OutStreamer->emitDataRegion(MCDR_DataRegionEnd); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitJumpTableSizesSection(const MachineJumpTableInfo &MJTI, | 
|  | const Function &F) const { | 
|  | const std::vector<MachineJumpTableEntry> &JT = MJTI.getJumpTables(); | 
|  |  | 
|  | if (JT.empty()) | 
|  | return; | 
|  |  | 
|  | StringRef GroupName = F.hasComdat() ? F.getComdat()->getName() : ""; | 
|  | MCSection *JumpTableSizesSection = nullptr; | 
|  | StringRef sectionName = ".llvm_jump_table_sizes"; | 
|  |  | 
|  | bool isElf = TM.getTargetTriple().isOSBinFormatELF(); | 
|  | bool isCoff = TM.getTargetTriple().isOSBinFormatCOFF(); | 
|  |  | 
|  | if (!isCoff && !isElf) | 
|  | return; | 
|  |  | 
|  | if (isElf) { | 
|  | MCSymbolELF *LinkedToSym = dyn_cast<MCSymbolELF>(CurrentFnSym); | 
|  | int Flags = F.hasComdat() ? static_cast<int>(ELF::SHF_GROUP) : 0; | 
|  |  | 
|  | JumpTableSizesSection = OutContext.getELFSection( | 
|  | sectionName, ELF::SHT_LLVM_JT_SIZES, Flags, 0, GroupName, F.hasComdat(), | 
|  | MCSection::NonUniqueID, LinkedToSym); | 
|  | } else if (isCoff) { | 
|  | if (F.hasComdat()) { | 
|  | JumpTableSizesSection = OutContext.getCOFFSection( | 
|  | sectionName, | 
|  | COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | | 
|  | COFF::IMAGE_SCN_LNK_COMDAT | COFF::IMAGE_SCN_MEM_DISCARDABLE, | 
|  | F.getComdat()->getName(), COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE); | 
|  | } else { | 
|  | JumpTableSizesSection = OutContext.getCOFFSection( | 
|  | sectionName, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | | 
|  | COFF::IMAGE_SCN_MEM_READ | | 
|  | COFF::IMAGE_SCN_MEM_DISCARDABLE); | 
|  | } | 
|  | } | 
|  |  | 
|  | OutStreamer->switchSection(JumpTableSizesSection); | 
|  |  | 
|  | for (unsigned JTI = 0, E = JT.size(); JTI != E; ++JTI) { | 
|  | const std::vector<MachineBasicBlock *> &JTBBs = JT[JTI].MBBs; | 
|  | OutStreamer->emitSymbolValue(GetJTISymbol(JTI), TM.getProgramPointerSize()); | 
|  | OutStreamer->emitIntValue(JTBBs.size(), TM.getProgramPointerSize()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the | 
|  | /// current stream. | 
|  | void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo &MJTI, | 
|  | const MachineBasicBlock *MBB, | 
|  | unsigned UID) const { | 
|  | assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); | 
|  | const MCExpr *Value = nullptr; | 
|  | switch (MJTI.getEntryKind()) { | 
|  | case MachineJumpTableInfo::EK_Inline: | 
|  | llvm_unreachable("Cannot emit EK_Inline jump table entry"); | 
|  | case MachineJumpTableInfo::EK_GPRel32BlockAddress: | 
|  | case MachineJumpTableInfo::EK_GPRel64BlockAddress: | 
|  | llvm_unreachable("MIPS specific"); | 
|  | case MachineJumpTableInfo::EK_Custom32: | 
|  | Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( | 
|  | &MJTI, MBB, UID, OutContext); | 
|  | break; | 
|  | case MachineJumpTableInfo::EK_BlockAddress: | 
|  | // EK_BlockAddress - Each entry is a plain address of block, e.g.: | 
|  | //     .word LBB123 | 
|  | Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); | 
|  | break; | 
|  |  | 
|  | case MachineJumpTableInfo::EK_LabelDifference32: | 
|  | case MachineJumpTableInfo::EK_LabelDifference64: { | 
|  | // Each entry is the address of the block minus the address of the jump | 
|  | // table. This is used for PIC jump tables where gprel32 is not supported. | 
|  | // e.g.: | 
|  | //      .word LBB123 - LJTI1_2 | 
|  | // If the .set directive avoids relocations, this is emitted as: | 
|  | //      .set L4_5_set_123, LBB123 - LJTI1_2 | 
|  | //      .word L4_5_set_123 | 
|  | if (MJTI.getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && | 
|  | MAI->doesSetDirectiveSuppressReloc()) { | 
|  | Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), | 
|  | OutContext); | 
|  | break; | 
|  | } | 
|  | Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); | 
|  | const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); | 
|  | const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); | 
|  | Value = MCBinaryExpr::createSub(Value, Base, OutContext); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(Value && "Unknown entry kind!"); | 
|  |  | 
|  | unsigned EntrySize = MJTI.getEntrySize(getDataLayout()); | 
|  | OutStreamer->emitValue(Value, EntrySize); | 
|  | } | 
|  |  | 
|  | /// EmitSpecialLLVMGlobal - Check to see if the specified global is a | 
|  | /// special global used by LLVM.  If so, emit it and return true, otherwise | 
|  | /// do nothing and return false. | 
|  | bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { | 
|  | if (GV->getName() == "llvm.used") { | 
|  | if (MAI->hasNoDeadStrip())    // No need to emit this at all. | 
|  | emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Ignore debug and non-emitted data.  This handles llvm.compiler.used. | 
|  | if (GV->getSection() == "llvm.metadata" || | 
|  | GV->hasAvailableExternallyLinkage()) | 
|  | return true; | 
|  |  | 
|  | if (GV->getName() == "llvm.arm64ec.symbolmap") { | 
|  | // For ARM64EC, print the table that maps between symbols and the | 
|  | // corresponding thunks to translate between x64 and AArch64 code. | 
|  | // This table is generated by AArch64Arm64ECCallLowering. | 
|  | OutStreamer->switchSection( | 
|  | OutContext.getCOFFSection(".hybmp$x", COFF::IMAGE_SCN_LNK_INFO)); | 
|  | auto *Arr = cast<ConstantArray>(GV->getInitializer()); | 
|  | for (auto &U : Arr->operands()) { | 
|  | auto *C = cast<Constant>(U); | 
|  | auto *Src = cast<GlobalValue>(C->getOperand(0)->stripPointerCasts()); | 
|  | auto *Dst = cast<GlobalValue>(C->getOperand(1)->stripPointerCasts()); | 
|  | int Kind = cast<ConstantInt>(C->getOperand(2))->getZExtValue(); | 
|  |  | 
|  | if (Src->hasDLLImportStorageClass()) { | 
|  | // For now, we assume dllimport functions aren't directly called. | 
|  | // (We might change this later to match MSVC.) | 
|  | OutStreamer->emitCOFFSymbolIndex( | 
|  | OutContext.getOrCreateSymbol("__imp_" + Src->getName())); | 
|  | OutStreamer->emitCOFFSymbolIndex(getSymbol(Dst)); | 
|  | OutStreamer->emitInt32(Kind); | 
|  | } else { | 
|  | // FIXME: For non-dllimport functions, MSVC emits the same entry | 
|  | // twice, for reasons I don't understand.  I have to assume the linker | 
|  | // ignores the redundant entry; there aren't any reasonable semantics | 
|  | // to attach to it. | 
|  | OutStreamer->emitCOFFSymbolIndex(getSymbol(Src)); | 
|  | OutStreamer->emitCOFFSymbolIndex(getSymbol(Dst)); | 
|  | OutStreamer->emitInt32(Kind); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!GV->hasAppendingLinkage()) return false; | 
|  |  | 
|  | assert(GV->hasInitializer() && "Not a special LLVM global!"); | 
|  |  | 
|  | if (GV->getName() == "llvm.global_ctors") { | 
|  | emitXXStructorList(GV->getDataLayout(), GV->getInitializer(), | 
|  | /* isCtor */ true); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (GV->getName() == "llvm.global_dtors") { | 
|  | emitXXStructorList(GV->getDataLayout(), GV->getInitializer(), | 
|  | /* isCtor */ false); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | report_fatal_error("unknown special variable with appending linkage"); | 
|  | } | 
|  |  | 
|  | /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each | 
|  | /// global in the specified llvm.used list. | 
|  | void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { | 
|  | // Should be an array of 'i8*'. | 
|  | for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { | 
|  | const GlobalValue *GV = | 
|  | dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); | 
|  | if (GV) | 
|  | OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, | 
|  | const Constant *List, | 
|  | SmallVector<Structor, 8> &Structors) { | 
|  | // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is | 
|  | // the init priority. | 
|  | if (!isa<ConstantArray>(List)) | 
|  | return; | 
|  |  | 
|  | // Gather the structors in a form that's convenient for sorting by priority. | 
|  | for (Value *O : cast<ConstantArray>(List)->operands()) { | 
|  | auto *CS = cast<ConstantStruct>(O); | 
|  | if (CS->getOperand(1)->isNullValue()) | 
|  | break; // Found a null terminator, skip the rest. | 
|  | ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); | 
|  | if (!Priority) | 
|  | continue; // Malformed. | 
|  | Structors.push_back(Structor()); | 
|  | Structor &S = Structors.back(); | 
|  | S.Priority = Priority->getLimitedValue(65535); | 
|  | S.Func = CS->getOperand(1); | 
|  | if (!CS->getOperand(2)->isNullValue()) { | 
|  | if (TM.getTargetTriple().isOSAIX()) | 
|  | llvm::report_fatal_error( | 
|  | "associated data of XXStructor list is not yet supported on AIX"); | 
|  | S.ComdatKey = | 
|  | dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit the function pointers in the target-specific order | 
|  | llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { | 
|  | return L.Priority < R.Priority; | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init | 
|  | /// priority. | 
|  | void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, | 
|  | bool IsCtor) { | 
|  | SmallVector<Structor, 8> Structors; | 
|  | preprocessXXStructorList(DL, List, Structors); | 
|  | if (Structors.empty()) | 
|  | return; | 
|  |  | 
|  | // Emit the structors in reverse order if we are using the .ctor/.dtor | 
|  | // initialization scheme. | 
|  | if (!TM.Options.UseInitArray) | 
|  | std::reverse(Structors.begin(), Structors.end()); | 
|  |  | 
|  | const Align Align = DL.getPointerPrefAlignment(); | 
|  | for (Structor &S : Structors) { | 
|  | const TargetLoweringObjectFile &Obj = getObjFileLowering(); | 
|  | const MCSymbol *KeySym = nullptr; | 
|  | if (GlobalValue *GV = S.ComdatKey) { | 
|  | if (GV->isDeclarationForLinker()) | 
|  | // If the associated variable is not defined in this module | 
|  | // (it might be available_externally, or have been an | 
|  | // available_externally definition that was dropped by the | 
|  | // EliminateAvailableExternally pass), some other TU | 
|  | // will provide its dynamic initializer. | 
|  | continue; | 
|  |  | 
|  | KeySym = getSymbol(GV); | 
|  | } | 
|  |  | 
|  | MCSection *OutputSection = | 
|  | (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) | 
|  | : Obj.getStaticDtorSection(S.Priority, KeySym)); | 
|  | OutStreamer->switchSection(OutputSection); | 
|  | if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) | 
|  | emitAlignment(Align); | 
|  | emitXXStructor(DL, S.Func); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitModuleIdents(Module &M) { | 
|  | if (!MAI->hasIdentDirective()) | 
|  | return; | 
|  |  | 
|  | if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { | 
|  | for (const MDNode *N : NMD->operands()) { | 
|  | assert(N->getNumOperands() == 1 && | 
|  | "llvm.ident metadata entry can have only one operand"); | 
|  | const MDString *S = cast<MDString>(N->getOperand(0)); | 
|  | OutStreamer->emitIdent(S->getString()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitModuleCommandLines(Module &M) { | 
|  | MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); | 
|  | if (!CommandLine) | 
|  | return; | 
|  |  | 
|  | const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); | 
|  | if (!NMD || !NMD->getNumOperands()) | 
|  | return; | 
|  |  | 
|  | OutStreamer->pushSection(); | 
|  | OutStreamer->switchSection(CommandLine); | 
|  | OutStreamer->emitZeros(1); | 
|  | for (const MDNode *N : NMD->operands()) { | 
|  | assert(N->getNumOperands() == 1 && | 
|  | "llvm.commandline metadata entry can have only one operand"); | 
|  | const MDString *S = cast<MDString>(N->getOperand(0)); | 
|  | OutStreamer->emitBytes(S->getString()); | 
|  | OutStreamer->emitZeros(1); | 
|  | } | 
|  | OutStreamer->popSection(); | 
|  | } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // Emission and print routines | 
|  | // | 
|  |  | 
|  | /// Emit a byte directive and value. | 
|  | /// | 
|  | void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } | 
|  |  | 
|  | /// Emit a short directive and value. | 
|  | void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } | 
|  |  | 
|  | /// Emit a long directive and value. | 
|  | void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } | 
|  |  | 
|  | /// EmitSLEB128 - emit the specified signed leb128 value. | 
|  | void AsmPrinter::emitSLEB128(int64_t Value, const char *Desc) const { | 
|  | if (isVerbose() && Desc) | 
|  | OutStreamer->AddComment(Desc); | 
|  |  | 
|  | OutStreamer->emitSLEB128IntValue(Value); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitULEB128(uint64_t Value, const char *Desc, | 
|  | unsigned PadTo) const { | 
|  | if (isVerbose() && Desc) | 
|  | OutStreamer->AddComment(Desc); | 
|  |  | 
|  | OutStreamer->emitULEB128IntValue(Value, PadTo); | 
|  | } | 
|  |  | 
|  | /// Emit a long long directive and value. | 
|  | void AsmPrinter::emitInt64(uint64_t Value) const { | 
|  | OutStreamer->emitInt64(Value); | 
|  | } | 
|  |  | 
|  | /// Emit something like ".long Hi-Lo" where the size in bytes of the directive | 
|  | /// is specified by Size and Hi/Lo specify the labels. This implicitly uses | 
|  | /// .set if it avoids relocations. | 
|  | void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, | 
|  | unsigned Size) const { | 
|  | OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); | 
|  | } | 
|  |  | 
|  | /// Emit something like ".uleb128 Hi-Lo". | 
|  | void AsmPrinter::emitLabelDifferenceAsULEB128(const MCSymbol *Hi, | 
|  | const MCSymbol *Lo) const { | 
|  | OutStreamer->emitAbsoluteSymbolDiffAsULEB128(Hi, Lo); | 
|  | } | 
|  |  | 
|  | /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" | 
|  | /// where the size in bytes of the directive is specified by Size and Label | 
|  | /// specifies the label.  This implicitly uses .set if it is available. | 
|  | void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, | 
|  | unsigned Size, | 
|  | bool IsSectionRelative) const { | 
|  | if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { | 
|  | OutStreamer->emitCOFFSecRel32(Label, Offset); | 
|  | if (Size > 4) | 
|  | OutStreamer->emitZeros(Size - 4); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Emit Label+Offset (or just Label if Offset is zero) | 
|  | const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); | 
|  | if (Offset) | 
|  | Expr = MCBinaryExpr::createAdd( | 
|  | Expr, MCConstantExpr::create(Offset, OutContext), OutContext); | 
|  |  | 
|  | OutStreamer->emitValue(Expr, Size); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // EmitAlignment - Emit an alignment directive to the specified power of | 
|  | // two boundary.  If a global value is specified, and if that global has | 
|  | // an explicit alignment requested, it will override the alignment request | 
|  | // if required for correctness. | 
|  | void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV, | 
|  | unsigned MaxBytesToEmit) const { | 
|  | if (GV) | 
|  | Alignment = getGVAlignment(GV, GV->getDataLayout(), Alignment); | 
|  |  | 
|  | if (Alignment == Align(1)) | 
|  | return; // 1-byte aligned: no need to emit alignment. | 
|  |  | 
|  | if (getCurrentSection()->isText()) { | 
|  | const MCSubtargetInfo *STI = nullptr; | 
|  | if (this->MF) | 
|  | STI = &getSubtargetInfo(); | 
|  | else | 
|  | STI = TM.getMCSubtargetInfo(); | 
|  | OutStreamer->emitCodeAlignment(Alignment, STI, MaxBytesToEmit); | 
|  | } else | 
|  | OutStreamer->emitValueToAlignment(Alignment, 0, 1, MaxBytesToEmit); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Constant emission. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | const MCExpr *AsmPrinter::lowerConstant(const Constant *CV, | 
|  | const Constant *BaseCV, | 
|  | uint64_t Offset) { | 
|  | MCContext &Ctx = OutContext; | 
|  |  | 
|  | if (CV->isNullValue() || isa<UndefValue>(CV)) | 
|  | return MCConstantExpr::create(0, Ctx); | 
|  |  | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) | 
|  | return MCConstantExpr::create(CI->getZExtValue(), Ctx); | 
|  |  | 
|  | if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(CV)) | 
|  | return lowerConstantPtrAuth(*CPA); | 
|  |  | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) | 
|  | return MCSymbolRefExpr::create(getSymbol(GV), Ctx); | 
|  |  | 
|  | if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) | 
|  | return lowerBlockAddressConstant(*BA); | 
|  |  | 
|  | if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) | 
|  | return getObjFileLowering().lowerDSOLocalEquivalent( | 
|  | getSymbol(Equiv->getGlobalValue()), nullptr, 0, std::nullopt, TM); | 
|  |  | 
|  | if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV)) | 
|  | return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx); | 
|  |  | 
|  | const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); | 
|  | if (!CE) { | 
|  | llvm_unreachable("Unknown constant value to lower!"); | 
|  | } | 
|  |  | 
|  | // The constant expression opcodes are limited to those that are necessary | 
|  | // to represent relocations on supported targets. Expressions involving only | 
|  | // constant addresses are constant folded instead. | 
|  | switch (CE->getOpcode()) { | 
|  | default: | 
|  | break; // Error | 
|  | case Instruction::AddrSpaceCast: { | 
|  | const Constant *Op = CE->getOperand(0); | 
|  | unsigned DstAS = CE->getType()->getPointerAddressSpace(); | 
|  | unsigned SrcAS = Op->getType()->getPointerAddressSpace(); | 
|  | if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) | 
|  | return lowerConstant(Op); | 
|  |  | 
|  | break; // Error | 
|  | } | 
|  | case Instruction::GetElementPtr: { | 
|  | // Generate a symbolic expression for the byte address | 
|  | APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); | 
|  | cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); | 
|  |  | 
|  | const MCExpr *Base = lowerConstant(CE->getOperand(0)); | 
|  | if (!OffsetAI) | 
|  | return Base; | 
|  |  | 
|  | int64_t Offset = OffsetAI.getSExtValue(); | 
|  | return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), | 
|  | Ctx); | 
|  | } | 
|  |  | 
|  | case Instruction::Trunc: | 
|  | // We emit the value and depend on the assembler to truncate the generated | 
|  | // expression properly.  This is important for differences between | 
|  | // blockaddress labels.  Since the two labels are in the same function, it | 
|  | // is reasonable to treat their delta as a 32-bit value. | 
|  | [[fallthrough]]; | 
|  | case Instruction::BitCast: | 
|  | return lowerConstant(CE->getOperand(0), BaseCV, Offset); | 
|  |  | 
|  | case Instruction::IntToPtr: { | 
|  | const DataLayout &DL = getDataLayout(); | 
|  |  | 
|  | // Handle casts to pointers by changing them into casts to the appropriate | 
|  | // integer type.  This promotes constant folding and simplifies this code. | 
|  | Constant *Op = CE->getOperand(0); | 
|  | Op = ConstantFoldIntegerCast(Op, DL.getIntPtrType(CV->getType()), | 
|  | /*IsSigned*/ false, DL); | 
|  | if (Op) | 
|  | return lowerConstant(Op); | 
|  |  | 
|  | break; // Error | 
|  | } | 
|  |  | 
|  | case Instruction::PtrToInt: { | 
|  | const DataLayout &DL = getDataLayout(); | 
|  |  | 
|  | // Support only foldable casts to/from pointers that can be eliminated by | 
|  | // changing the pointer to the appropriately sized integer type. | 
|  | Constant *Op = CE->getOperand(0); | 
|  | Type *Ty = CE->getType(); | 
|  |  | 
|  | const MCExpr *OpExpr = lowerConstant(Op); | 
|  |  | 
|  | // We can emit the pointer value into this slot if the slot is an | 
|  | // integer slot equal to the size of the pointer. | 
|  | // | 
|  | // If the pointer is larger than the resultant integer, then | 
|  | // as with Trunc just depend on the assembler to truncate it. | 
|  | if (DL.getTypeAllocSize(Ty).getFixedValue() <= | 
|  | DL.getTypeAllocSize(Op->getType()).getFixedValue()) | 
|  | return OpExpr; | 
|  |  | 
|  | break; // Error | 
|  | } | 
|  |  | 
|  | case Instruction::Sub: { | 
|  | GlobalValue *LHSGV, *RHSGV; | 
|  | APInt LHSOffset, RHSOffset; | 
|  | DSOLocalEquivalent *DSOEquiv; | 
|  | if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, | 
|  | getDataLayout(), &DSOEquiv) && | 
|  | IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, | 
|  | getDataLayout())) { | 
|  | auto *LHSSym = getSymbol(LHSGV); | 
|  | auto *RHSSym = getSymbol(RHSGV); | 
|  | int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); | 
|  | std::optional<int64_t> PCRelativeOffset; | 
|  | if (getObjFileLowering().hasPLTPCRelative() && RHSGV == BaseCV) | 
|  | PCRelativeOffset = Offset; | 
|  |  | 
|  | // Try the generic symbol difference first. | 
|  | const MCExpr *Res = getObjFileLowering().lowerRelativeReference( | 
|  | LHSGV, RHSGV, Addend, PCRelativeOffset, TM); | 
|  |  | 
|  | // (ELF-specific) If the generic symbol difference does not apply, and | 
|  | // LHS is a dso_local_equivalent of a function, reference the PLT entry | 
|  | // instead. Note: A default visibility symbol is by default preemptible | 
|  | // during linking, and should not be referenced with PC-relative | 
|  | // relocations. Therefore, use a PLT relocation even if the function is | 
|  | // dso_local. | 
|  | if (DSOEquiv && TM.getTargetTriple().isOSBinFormatELF()) | 
|  | Res = getObjFileLowering().lowerDSOLocalEquivalent( | 
|  | LHSSym, RHSSym, Addend, PCRelativeOffset, TM); | 
|  |  | 
|  | // Otherwise, return LHS-RHS+Addend. | 
|  | if (!Res) { | 
|  | Res = | 
|  | MCBinaryExpr::createSub(MCSymbolRefExpr::create(LHSSym, Ctx), | 
|  | MCSymbolRefExpr::create(RHSSym, Ctx), Ctx); | 
|  | if (Addend != 0) | 
|  | Res = MCBinaryExpr::createAdd( | 
|  | Res, MCConstantExpr::create(Addend, Ctx), Ctx); | 
|  | } | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | const MCExpr *LHS = lowerConstant(CE->getOperand(0)); | 
|  | const MCExpr *RHS = lowerConstant(CE->getOperand(1)); | 
|  | return MCBinaryExpr::createSub(LHS, RHS, Ctx); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::Add: { | 
|  | const MCExpr *LHS = lowerConstant(CE->getOperand(0)); | 
|  | const MCExpr *RHS = lowerConstant(CE->getOperand(1)); | 
|  | return MCBinaryExpr::createAdd(LHS, RHS, Ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the code isn't optimized, there may be outstanding folding | 
|  | // opportunities. Attempt to fold the expression using DataLayout as a | 
|  | // last resort before giving up. | 
|  | Constant *C = ConstantFoldConstant(CE, getDataLayout()); | 
|  | if (C != CE) | 
|  | return lowerConstant(C); | 
|  |  | 
|  | // Otherwise report the problem to the user. | 
|  | std::string S; | 
|  | raw_string_ostream OS(S); | 
|  | OS << "Unsupported expression in static initializer: "; | 
|  | CE->printAsOperand(OS, /*PrintType=*/false, | 
|  | !MF ? nullptr : MF->getFunction().getParent()); | 
|  | report_fatal_error(Twine(S)); | 
|  | } | 
|  |  | 
|  | static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, | 
|  | AsmPrinter &AP, | 
|  | const Constant *BaseCV = nullptr, | 
|  | uint64_t Offset = 0, | 
|  | AsmPrinter::AliasMapTy *AliasList = nullptr); | 
|  |  | 
|  | static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); | 
|  | static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); | 
|  |  | 
|  | /// isRepeatedByteSequence - Determine whether the given value is | 
|  | /// composed of a repeated sequence of identical bytes and return the | 
|  | /// byte value.  If it is not a repeated sequence, return -1. | 
|  | static int isRepeatedByteSequence(const ConstantDataSequential *V) { | 
|  | StringRef Data = V->getRawDataValues(); | 
|  | assert(!Data.empty() && "Empty aggregates should be CAZ node"); | 
|  | char C = Data[0]; | 
|  | for (unsigned i = 1, e = Data.size(); i != e; ++i) | 
|  | if (Data[i] != C) return -1; | 
|  | return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. | 
|  | } | 
|  |  | 
|  | /// isRepeatedByteSequence - Determine whether the given value is | 
|  | /// composed of a repeated sequence of identical bytes and return the | 
|  | /// byte value.  If it is not a repeated sequence, return -1. | 
|  | static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); | 
|  | assert(Size % 8 == 0); | 
|  |  | 
|  | // Extend the element to take zero padding into account. | 
|  | APInt Value = CI->getValue().zext(Size); | 
|  | if (!Value.isSplat(8)) | 
|  | return -1; | 
|  |  | 
|  | return Value.zextOrTrunc(8).getZExtValue(); | 
|  | } | 
|  | if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { | 
|  | // Make sure all array elements are sequences of the same repeated | 
|  | // byte. | 
|  | assert(CA->getNumOperands() != 0 && "Should be a CAZ"); | 
|  | Constant *Op0 = CA->getOperand(0); | 
|  | int Byte = isRepeatedByteSequence(Op0, DL); | 
|  | if (Byte == -1) | 
|  | return -1; | 
|  |  | 
|  | // All array elements must be equal. | 
|  | for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) | 
|  | if (CA->getOperand(i) != Op0) | 
|  | return -1; | 
|  | return Byte; | 
|  | } | 
|  |  | 
|  | if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) | 
|  | return isRepeatedByteSequence(CDS); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static void emitGlobalAliasInline(AsmPrinter &AP, uint64_t Offset, | 
|  | AsmPrinter::AliasMapTy *AliasList) { | 
|  | if (AliasList) { | 
|  | auto AliasIt = AliasList->find(Offset); | 
|  | if (AliasIt != AliasList->end()) { | 
|  | for (const GlobalAlias *GA : AliasIt->second) | 
|  | AP.OutStreamer->emitLabel(AP.getSymbol(GA)); | 
|  | AliasList->erase(Offset); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void emitGlobalConstantDataSequential( | 
|  | const DataLayout &DL, const ConstantDataSequential *CDS, AsmPrinter &AP, | 
|  | AsmPrinter::AliasMapTy *AliasList) { | 
|  | // See if we can aggregate this into a .fill, if so, emit it as such. | 
|  | int Value = isRepeatedByteSequence(CDS, DL); | 
|  | if (Value != -1) { | 
|  | uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); | 
|  | // Don't emit a 1-byte object as a .fill. | 
|  | if (Bytes > 1) | 
|  | return AP.OutStreamer->emitFill(Bytes, Value); | 
|  | } | 
|  |  | 
|  | // If this can be emitted with .ascii/.asciz, emit it as such. | 
|  | if (CDS->isString()) | 
|  | return AP.OutStreamer->emitBytes(CDS->getAsString()); | 
|  |  | 
|  | // Otherwise, emit the values in successive locations. | 
|  | uint64_t ElementByteSize = CDS->getElementByteSize(); | 
|  | if (isa<IntegerType>(CDS->getElementType())) { | 
|  | for (uint64_t I = 0, E = CDS->getNumElements(); I != E; ++I) { | 
|  | emitGlobalAliasInline(AP, ElementByteSize * I, AliasList); | 
|  | if (AP.isVerbose()) | 
|  | AP.OutStreamer->getCommentOS() | 
|  | << format("0x%" PRIx64 "\n", CDS->getElementAsInteger(I)); | 
|  | AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(I), | 
|  | ElementByteSize); | 
|  | } | 
|  | } else { | 
|  | Type *ET = CDS->getElementType(); | 
|  | for (uint64_t I = 0, E = CDS->getNumElements(); I != E; ++I) { | 
|  | emitGlobalAliasInline(AP, ElementByteSize * I, AliasList); | 
|  | emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned Size = DL.getTypeAllocSize(CDS->getType()); | 
|  | unsigned EmittedSize = | 
|  | DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); | 
|  | assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); | 
|  | if (unsigned Padding = Size - EmittedSize) | 
|  | AP.OutStreamer->emitZeros(Padding); | 
|  | } | 
|  |  | 
|  | static void emitGlobalConstantArray(const DataLayout &DL, | 
|  | const ConstantArray *CA, AsmPrinter &AP, | 
|  | const Constant *BaseCV, uint64_t Offset, | 
|  | AsmPrinter::AliasMapTy *AliasList) { | 
|  | // See if we can aggregate some values.  Make sure it can be | 
|  | // represented as a series of bytes of the constant value. | 
|  | int Value = isRepeatedByteSequence(CA, DL); | 
|  |  | 
|  | if (Value != -1) { | 
|  | uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); | 
|  | AP.OutStreamer->emitFill(Bytes, Value); | 
|  | } else { | 
|  | for (unsigned I = 0, E = CA->getNumOperands(); I != E; ++I) { | 
|  | emitGlobalConstantImpl(DL, CA->getOperand(I), AP, BaseCV, Offset, | 
|  | AliasList); | 
|  | Offset += DL.getTypeAllocSize(CA->getOperand(I)->getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP); | 
|  |  | 
|  | static void emitGlobalConstantVector(const DataLayout &DL, const Constant *CV, | 
|  | AsmPrinter &AP, | 
|  | AsmPrinter::AliasMapTy *AliasList) { | 
|  | auto *VTy = cast<FixedVectorType>(CV->getType()); | 
|  | Type *ElementType = VTy->getElementType(); | 
|  | uint64_t ElementSizeInBits = DL.getTypeSizeInBits(ElementType); | 
|  | uint64_t ElementAllocSizeInBits = DL.getTypeAllocSizeInBits(ElementType); | 
|  | uint64_t EmittedSize; | 
|  | if (ElementSizeInBits != ElementAllocSizeInBits) { | 
|  | // If the allocation size of an element is different from the size in bits, | 
|  | // printing each element separately will insert incorrect padding. | 
|  | // | 
|  | // The general algorithm here is complicated; instead of writing it out | 
|  | // here, just use the existing code in ConstantFolding. | 
|  | Type *IntT = | 
|  | IntegerType::get(CV->getContext(), DL.getTypeSizeInBits(CV->getType())); | 
|  | ConstantInt *CI = dyn_cast_or_null<ConstantInt>(ConstantFoldConstant( | 
|  | ConstantExpr::getBitCast(const_cast<Constant *>(CV), IntT), DL)); | 
|  | if (!CI) { | 
|  | report_fatal_error( | 
|  | "Cannot lower vector global with unusual element type"); | 
|  | } | 
|  | emitGlobalAliasInline(AP, 0, AliasList); | 
|  | emitGlobalConstantLargeInt(CI, AP); | 
|  | EmittedSize = DL.getTypeStoreSize(CV->getType()); | 
|  | } else { | 
|  | for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { | 
|  | emitGlobalAliasInline(AP, DL.getTypeAllocSize(CV->getType()) * I, AliasList); | 
|  | emitGlobalConstantImpl(DL, CV->getAggregateElement(I), AP); | 
|  | } | 
|  | EmittedSize = DL.getTypeAllocSize(ElementType) * VTy->getNumElements(); | 
|  | } | 
|  |  | 
|  | unsigned Size = DL.getTypeAllocSize(CV->getType()); | 
|  | if (unsigned Padding = Size - EmittedSize) | 
|  | AP.OutStreamer->emitZeros(Padding); | 
|  | } | 
|  |  | 
|  | static void emitGlobalConstantStruct(const DataLayout &DL, | 
|  | const ConstantStruct *CS, AsmPrinter &AP, | 
|  | const Constant *BaseCV, uint64_t Offset, | 
|  | AsmPrinter::AliasMapTy *AliasList) { | 
|  | // Print the fields in successive locations. Pad to align if needed! | 
|  | uint64_t Size = DL.getTypeAllocSize(CS->getType()); | 
|  | const StructLayout *Layout = DL.getStructLayout(CS->getType()); | 
|  | uint64_t SizeSoFar = 0; | 
|  | for (unsigned I = 0, E = CS->getNumOperands(); I != E; ++I) { | 
|  | const Constant *Field = CS->getOperand(I); | 
|  |  | 
|  | // Print the actual field value. | 
|  | emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar, | 
|  | AliasList); | 
|  |  | 
|  | // Check if padding is needed and insert one or more 0s. | 
|  | uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); | 
|  | uint64_t PadSize = ((I == E - 1 ? Size : Layout->getElementOffset(I + 1)) - | 
|  | Layout->getElementOffset(I)) - | 
|  | FieldSize; | 
|  | SizeSoFar += FieldSize + PadSize; | 
|  |  | 
|  | // Insert padding - this may include padding to increase the size of the | 
|  | // current field up to the ABI size (if the struct is not packed) as well | 
|  | // as padding to ensure that the next field starts at the right offset. | 
|  | AP.OutStreamer->emitZeros(PadSize); | 
|  | } | 
|  | assert(SizeSoFar == Layout->getSizeInBytes() && | 
|  | "Layout of constant struct may be incorrect!"); | 
|  | } | 
|  |  | 
|  | static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { | 
|  | assert(ET && "Unknown float type"); | 
|  | APInt API = APF.bitcastToAPInt(); | 
|  |  | 
|  | // First print a comment with what we think the original floating-point value | 
|  | // should have been. | 
|  | if (AP.isVerbose()) { | 
|  | SmallString<8> StrVal; | 
|  | APF.toString(StrVal); | 
|  | ET->print(AP.OutStreamer->getCommentOS()); | 
|  | AP.OutStreamer->getCommentOS() << ' ' << StrVal << '\n'; | 
|  | } | 
|  |  | 
|  | // Now iterate through the APInt chunks, emitting them in endian-correct | 
|  | // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit | 
|  | // floats). | 
|  | unsigned NumBytes = API.getBitWidth() / 8; | 
|  | unsigned TrailingBytes = NumBytes % sizeof(uint64_t); | 
|  | const uint64_t *p = API.getRawData(); | 
|  |  | 
|  | // PPC's long double has odd notions of endianness compared to how LLVM | 
|  | // handles it: p[0] goes first for *big* endian on PPC. | 
|  | if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { | 
|  | int Chunk = API.getNumWords() - 1; | 
|  |  | 
|  | if (TrailingBytes) | 
|  | AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); | 
|  |  | 
|  | for (; Chunk >= 0; --Chunk) | 
|  | AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); | 
|  | } else { | 
|  | unsigned Chunk; | 
|  | for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) | 
|  | AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); | 
|  |  | 
|  | if (TrailingBytes) | 
|  | AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); | 
|  | } | 
|  |  | 
|  | // Emit the tail padding for the long double. | 
|  | const DataLayout &DL = AP.getDataLayout(); | 
|  | AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); | 
|  | } | 
|  |  | 
|  | static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { | 
|  | emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); | 
|  | } | 
|  |  | 
|  | static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { | 
|  | const DataLayout &DL = AP.getDataLayout(); | 
|  | unsigned BitWidth = CI->getBitWidth(); | 
|  |  | 
|  | // Copy the value as we may massage the layout for constants whose bit width | 
|  | // is not a multiple of 64-bits. | 
|  | APInt Realigned(CI->getValue()); | 
|  | uint64_t ExtraBits = 0; | 
|  | unsigned ExtraBitsSize = BitWidth & 63; | 
|  |  | 
|  | if (ExtraBitsSize) { | 
|  | // The bit width of the data is not a multiple of 64-bits. | 
|  | // The extra bits are expected to be at the end of the chunk of the memory. | 
|  | // Little endian: | 
|  | // * Nothing to be done, just record the extra bits to emit. | 
|  | // Big endian: | 
|  | // * Record the extra bits to emit. | 
|  | // * Realign the raw data to emit the chunks of 64-bits. | 
|  | if (DL.isBigEndian()) { | 
|  | // Basically the structure of the raw data is a chunk of 64-bits cells: | 
|  | //    0        1         BitWidth / 64 | 
|  | // [chunk1][chunk2] ... [chunkN]. | 
|  | // The most significant chunk is chunkN and it should be emitted first. | 
|  | // However, due to the alignment issue chunkN contains useless bits. | 
|  | // Realign the chunks so that they contain only useful information: | 
|  | // ExtraBits     0       1       (BitWidth / 64) - 1 | 
|  | //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] | 
|  | ExtraBitsSize = alignTo(ExtraBitsSize, 8); | 
|  | ExtraBits = Realigned.getRawData()[0] & | 
|  | (((uint64_t)-1) >> (64 - ExtraBitsSize)); | 
|  | if (BitWidth >= 64) | 
|  | Realigned.lshrInPlace(ExtraBitsSize); | 
|  | } else | 
|  | ExtraBits = Realigned.getRawData()[BitWidth / 64]; | 
|  | } | 
|  |  | 
|  | // We don't expect assemblers to support integer data directives | 
|  | // for more than 64 bits, so we emit the data in at most 64-bit | 
|  | // quantities at a time. | 
|  | const uint64_t *RawData = Realigned.getRawData(); | 
|  | for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { | 
|  | uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; | 
|  | AP.OutStreamer->emitIntValue(Val, 8); | 
|  | } | 
|  |  | 
|  | if (ExtraBitsSize) { | 
|  | // Emit the extra bits after the 64-bits chunks. | 
|  |  | 
|  | // Emit a directive that fills the expected size. | 
|  | uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); | 
|  | Size -= (BitWidth / 64) * 8; | 
|  | assert(Size && Size * 8 >= ExtraBitsSize && | 
|  | (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) | 
|  | == ExtraBits && "Directive too small for extra bits."); | 
|  | AP.OutStreamer->emitIntValue(ExtraBits, Size); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Transform a not absolute MCExpr containing a reference to a GOT | 
|  | /// equivalent global, by a target specific GOT pc relative access to the | 
|  | /// final symbol. | 
|  | static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, | 
|  | const Constant *BaseCst, | 
|  | uint64_t Offset) { | 
|  | // The global @foo below illustrates a global that uses a got equivalent. | 
|  | // | 
|  | //  @bar = global i32 42 | 
|  | //  @gotequiv = private unnamed_addr constant i32* @bar | 
|  | //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), | 
|  | //                             i64 ptrtoint (i32* @foo to i64)) | 
|  | //                        to i32) | 
|  | // | 
|  | // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually | 
|  | // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the | 
|  | // form: | 
|  | // | 
|  | //  foo = cstexpr, where | 
|  | //    cstexpr := <gotequiv> - "." + <cst> | 
|  | //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> | 
|  | // | 
|  | // After canonicalization by evaluateAsRelocatable `ME` turns into: | 
|  | // | 
|  | //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where | 
|  | //    gotpcrelcst := <offset from @foo base> + <cst> | 
|  | MCValue MV; | 
|  | if (!(*ME)->evaluateAsRelocatable(MV, nullptr) || MV.isAbsolute()) | 
|  | return; | 
|  | const MCSymbol *GOTEquivSym = MV.getAddSym(); | 
|  | if (!GOTEquivSym) | 
|  | return; | 
|  |  | 
|  | // Check that GOT equivalent symbol is cached. | 
|  | if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) | 
|  | return; | 
|  |  | 
|  | const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); | 
|  | if (!BaseGV) | 
|  | return; | 
|  |  | 
|  | // Check for a valid base symbol | 
|  | const MCSymbol *BaseSym = AP.getSymbol(BaseGV); | 
|  | const MCSymbol *SymB = MV.getSubSym(); | 
|  |  | 
|  | if (!SymB || BaseSym != SymB) | 
|  | return; | 
|  |  | 
|  | // Make sure to match: | 
|  | // | 
|  | //    gotpcrelcst := <offset from @foo base> + <cst> | 
|  | // | 
|  | int64_t GOTPCRelCst = Offset + MV.getConstant(); | 
|  | if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) | 
|  | return; | 
|  |  | 
|  | // Emit the GOT PC relative to replace the got equivalent global, i.e.: | 
|  | // | 
|  | //  bar: | 
|  | //    .long 42 | 
|  | //  gotequiv: | 
|  | //    .quad bar | 
|  | //  foo: | 
|  | //    .long gotequiv - "." + <cst> | 
|  | // | 
|  | // is replaced by the target specific equivalent to: | 
|  | // | 
|  | //  bar: | 
|  | //    .long 42 | 
|  | //  foo: | 
|  | //    .long bar@GOTPCREL+<gotpcrelcst> | 
|  | AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; | 
|  | const GlobalVariable *GV = Result.first; | 
|  | int NumUses = (int)Result.second; | 
|  | const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); | 
|  | const MCSymbol *FinalSym = AP.getSymbol(FinalGV); | 
|  | *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( | 
|  | FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); | 
|  |  | 
|  | // Update GOT equivalent usage information | 
|  | --NumUses; | 
|  | if (NumUses >= 0) | 
|  | AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); | 
|  | } | 
|  |  | 
|  | static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, | 
|  | AsmPrinter &AP, const Constant *BaseCV, | 
|  | uint64_t Offset, | 
|  | AsmPrinter::AliasMapTy *AliasList) { | 
|  | assert((!AliasList || AP.TM.getTargetTriple().isOSBinFormatXCOFF()) && | 
|  | "AliasList only expected for XCOFF"); | 
|  | emitGlobalAliasInline(AP, Offset, AliasList); | 
|  | uint64_t Size = DL.getTypeAllocSize(CV->getType()); | 
|  |  | 
|  | // Globals with sub-elements such as combinations of arrays and structs | 
|  | // are handled recursively by emitGlobalConstantImpl. Keep track of the | 
|  | // constant symbol base and the current position with BaseCV and Offset. | 
|  | if (!BaseCV && CV->hasOneUse()) | 
|  | BaseCV = dyn_cast<Constant>(CV->user_back()); | 
|  |  | 
|  | if (isa<ConstantAggregateZero>(CV)) { | 
|  | StructType *structType; | 
|  | if (AliasList && (structType = llvm::dyn_cast<StructType>(CV->getType()))) { | 
|  | unsigned numElements = {structType->getNumElements()}; | 
|  | if (numElements != 0) { | 
|  | // Handle cases of aliases to direct struct elements | 
|  | const StructLayout *Layout = DL.getStructLayout(structType); | 
|  | uint64_t SizeSoFar = 0; | 
|  | for (unsigned int i = 0; i < numElements - 1; ++i) { | 
|  | uint64_t GapToNext = Layout->getElementOffset(i + 1) - SizeSoFar; | 
|  | AP.OutStreamer->emitZeros(GapToNext); | 
|  | SizeSoFar += GapToNext; | 
|  | emitGlobalAliasInline(AP, Offset + SizeSoFar, AliasList); | 
|  | } | 
|  | AP.OutStreamer->emitZeros(Size - SizeSoFar); | 
|  | return; | 
|  | } | 
|  | } | 
|  | return AP.OutStreamer->emitZeros(Size); | 
|  | } | 
|  |  | 
|  | if (isa<UndefValue>(CV)) | 
|  | return AP.OutStreamer->emitZeros(Size); | 
|  |  | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { | 
|  | if (isa<VectorType>(CV->getType())) | 
|  | return emitGlobalConstantVector(DL, CV, AP, AliasList); | 
|  |  | 
|  | const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); | 
|  | if (StoreSize <= 8) { | 
|  | if (AP.isVerbose()) | 
|  | AP.OutStreamer->getCommentOS() | 
|  | << format("0x%" PRIx64 "\n", CI->getZExtValue()); | 
|  | AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); | 
|  | } else { | 
|  | emitGlobalConstantLargeInt(CI, AP); | 
|  | } | 
|  |  | 
|  | // Emit tail padding if needed | 
|  | if (Size != StoreSize) | 
|  | AP.OutStreamer->emitZeros(Size - StoreSize); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { | 
|  | if (isa<VectorType>(CV->getType())) | 
|  | return emitGlobalConstantVector(DL, CV, AP, AliasList); | 
|  | else | 
|  | return emitGlobalConstantFP(CFP, AP); | 
|  | } | 
|  |  | 
|  | if (isa<ConstantPointerNull>(CV)) { | 
|  | AP.OutStreamer->emitIntValue(0, Size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) | 
|  | return emitGlobalConstantDataSequential(DL, CDS, AP, AliasList); | 
|  |  | 
|  | if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) | 
|  | return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset, AliasList); | 
|  |  | 
|  | if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) | 
|  | return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset, AliasList); | 
|  |  | 
|  | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { | 
|  | // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of | 
|  | // vectors). | 
|  | if (CE->getOpcode() == Instruction::BitCast) | 
|  | return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); | 
|  |  | 
|  | if (Size > 8) { | 
|  | // If the constant expression's size is greater than 64-bits, then we have | 
|  | // to emit the value in chunks. Try to constant fold the value and emit it | 
|  | // that way. | 
|  | Constant *New = ConstantFoldConstant(CE, DL); | 
|  | if (New != CE) | 
|  | return emitGlobalConstantImpl(DL, New, AP); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<ConstantVector>(CV)) | 
|  | return emitGlobalConstantVector(DL, CV, AP, AliasList); | 
|  |  | 
|  | // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it | 
|  | // thread the streamer with EmitValue. | 
|  | const MCExpr *ME = AP.lowerConstant(CV, BaseCV, Offset); | 
|  |  | 
|  | // Since lowerConstant already folded and got rid of all IR pointer and | 
|  | // integer casts, detect GOT equivalent accesses by looking into the MCExpr | 
|  | // directly. | 
|  | if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) | 
|  | handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); | 
|  |  | 
|  | AP.OutStreamer->emitValue(ME, Size); | 
|  | } | 
|  |  | 
|  | /// EmitGlobalConstant - Print a general LLVM constant to the .s file. | 
|  | void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV, | 
|  | AliasMapTy *AliasList) { | 
|  | uint64_t Size = DL.getTypeAllocSize(CV->getType()); | 
|  | if (Size) | 
|  | emitGlobalConstantImpl(DL, CV, *this, nullptr, 0, AliasList); | 
|  | else if (MAI->hasSubsectionsViaSymbols()) { | 
|  | // If the global has zero size, emit a single byte so that two labels don't | 
|  | // look like they are at the same location. | 
|  | OutStreamer->emitIntValue(0, 1); | 
|  | } | 
|  | if (!AliasList) | 
|  | return; | 
|  | // TODO: These remaining aliases are not emitted in the correct location. Need | 
|  | // to handle the case where the alias offset doesn't refer to any sub-element. | 
|  | for (auto &AliasPair : *AliasList) { | 
|  | for (const GlobalAlias *GA : AliasPair.second) | 
|  | OutStreamer->emitLabel(getSymbol(GA)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { | 
|  | // Target doesn't support this yet! | 
|  | llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { | 
|  | if (Offset > 0) | 
|  | OS << '+' << Offset; | 
|  | else if (Offset < 0) | 
|  | OS << Offset; | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitNops(unsigned N) { | 
|  | MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); | 
|  | for (; N; --N) | 
|  | EmitToStreamer(*OutStreamer, Nop); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Symbol Lowering Routines. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { | 
|  | return OutContext.createTempSymbol(Name, true); | 
|  | } | 
|  |  | 
|  | MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { | 
|  | return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol( | 
|  | BA->getBasicBlock()); | 
|  | } | 
|  |  | 
|  | MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { | 
|  | return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB); | 
|  | } | 
|  |  | 
|  | const MCExpr *AsmPrinter::lowerBlockAddressConstant(const BlockAddress &BA) { | 
|  | return MCSymbolRefExpr::create(GetBlockAddressSymbol(&BA), OutContext); | 
|  | } | 
|  |  | 
|  | /// GetCPISymbol - Return the symbol for the specified constant pool entry. | 
|  | MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { | 
|  | if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment() || | 
|  | getSubtargetInfo().getTargetTriple().isUEFI()) { | 
|  | const MachineConstantPoolEntry &CPE = | 
|  | MF->getConstantPool()->getConstants()[CPID]; | 
|  | if (!CPE.isMachineConstantPoolEntry()) { | 
|  | const DataLayout &DL = MF->getDataLayout(); | 
|  | SectionKind Kind = CPE.getSectionKind(&DL); | 
|  | const Constant *C = CPE.Val.ConstVal; | 
|  | Align Alignment = CPE.Alignment; | 
|  | if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( | 
|  | getObjFileLowering().getSectionForConstant(DL, Kind, C, | 
|  | Alignment))) { | 
|  | if (MCSymbol *Sym = S->getCOMDATSymbol()) { | 
|  | if (Sym->isUndefined()) | 
|  | OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); | 
|  | return Sym; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const DataLayout &DL = getDataLayout(); | 
|  | return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + | 
|  | "CPI" + Twine(getFunctionNumber()) + "_" + | 
|  | Twine(CPID)); | 
|  | } | 
|  |  | 
|  | /// GetJTISymbol - Return the symbol for the specified jump table entry. | 
|  | MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { | 
|  | return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); | 
|  | } | 
|  |  | 
|  | /// GetJTSetSymbol - Return the symbol for the specified jump table .set | 
|  | /// FIXME: privatize to AsmPrinter. | 
|  | MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { | 
|  | const DataLayout &DL = getDataLayout(); | 
|  | return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + | 
|  | Twine(getFunctionNumber()) + "_" + | 
|  | Twine(UID) + "_set_" + Twine(MBBID)); | 
|  | } | 
|  |  | 
|  | MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, | 
|  | StringRef Suffix) const { | 
|  | return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); | 
|  | } | 
|  |  | 
|  | /// Return the MCSymbol for the specified ExternalSymbol. | 
|  | MCSymbol *AsmPrinter::GetExternalSymbolSymbol(const Twine &Sym) const { | 
|  | SmallString<60> NameStr; | 
|  | Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); | 
|  | return OutContext.getOrCreateSymbol(NameStr); | 
|  | } | 
|  |  | 
|  | /// PrintParentLoopComment - Print comments about parent loops of this one. | 
|  | static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, | 
|  | unsigned FunctionNumber) { | 
|  | if (!Loop) return; | 
|  | PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); | 
|  | OS.indent(Loop->getLoopDepth()*2) | 
|  | << "Parent Loop BB" << FunctionNumber << "_" | 
|  | << Loop->getHeader()->getNumber() | 
|  | << " Depth=" << Loop->getLoopDepth() << '\n'; | 
|  | } | 
|  |  | 
|  | /// PrintChildLoopComment - Print comments about child loops within | 
|  | /// the loop for this basic block, with nesting. | 
|  | static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, | 
|  | unsigned FunctionNumber) { | 
|  | // Add child loop information | 
|  | for (const MachineLoop *CL : *Loop) { | 
|  | OS.indent(CL->getLoopDepth()*2) | 
|  | << "Child Loop BB" << FunctionNumber << "_" | 
|  | << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() | 
|  | << '\n'; | 
|  | PrintChildLoopComment(OS, CL, FunctionNumber); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. | 
|  | static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, | 
|  | const MachineLoopInfo *LI, | 
|  | const AsmPrinter &AP) { | 
|  | // Add loop depth information | 
|  | const MachineLoop *Loop = LI->getLoopFor(&MBB); | 
|  | if (!Loop) return; | 
|  |  | 
|  | MachineBasicBlock *Header = Loop->getHeader(); | 
|  | assert(Header && "No header for loop"); | 
|  |  | 
|  | // If this block is not a loop header, just print out what is the loop header | 
|  | // and return. | 
|  | if (Header != &MBB) { | 
|  | AP.OutStreamer->AddComment("  in Loop: Header=BB" + | 
|  | Twine(AP.getFunctionNumber())+"_" + | 
|  | Twine(Loop->getHeader()->getNumber())+ | 
|  | " Depth="+Twine(Loop->getLoopDepth())); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, it is a loop header.  Print out information about child and | 
|  | // parent loops. | 
|  | raw_ostream &OS = AP.OutStreamer->getCommentOS(); | 
|  |  | 
|  | PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); | 
|  |  | 
|  | OS << "=>"; | 
|  | OS.indent(Loop->getLoopDepth()*2-2); | 
|  |  | 
|  | OS << "This "; | 
|  | if (Loop->isInnermost()) | 
|  | OS << "Inner "; | 
|  | OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; | 
|  |  | 
|  | PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); | 
|  | } | 
|  |  | 
|  | /// emitBasicBlockStart - This method prints the label for the specified | 
|  | /// MachineBasicBlock, an alignment (if present) and a comment describing | 
|  | /// it if appropriate. | 
|  | void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { | 
|  | // End the previous funclet and start a new one. | 
|  | if (MBB.isEHFuncletEntry()) { | 
|  | for (auto &Handler : Handlers) { | 
|  | Handler->endFunclet(); | 
|  | Handler->beginFunclet(MBB); | 
|  | } | 
|  | for (auto &Handler : EHHandlers) { | 
|  | Handler->endFunclet(); | 
|  | Handler->beginFunclet(MBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Switch to a new section if this basic block must begin a section. The | 
|  | // entry block is always placed in the function section and is handled | 
|  | // separately. | 
|  | if (MBB.isBeginSection() && !MBB.isEntryBlock()) { | 
|  | OutStreamer->switchSection( | 
|  | getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), | 
|  | MBB, TM)); | 
|  | CurrentSectionBeginSym = MBB.getSymbol(); | 
|  | } | 
|  |  | 
|  | for (auto &Handler : Handlers) | 
|  | Handler->beginCodeAlignment(MBB); | 
|  |  | 
|  | // Emit an alignment directive for this block, if needed. | 
|  | const Align Alignment = MBB.getAlignment(); | 
|  | if (Alignment != Align(1)) | 
|  | emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment()); | 
|  |  | 
|  | // If the block has its address taken, emit any labels that were used to | 
|  | // reference the block.  It is possible that there is more than one label | 
|  | // here, because multiple LLVM BB's may have been RAUW'd to this block after | 
|  | // the references were generated. | 
|  | if (MBB.isIRBlockAddressTaken()) { | 
|  | if (isVerbose()) | 
|  | OutStreamer->AddComment("Block address taken"); | 
|  |  | 
|  | BasicBlock *BB = MBB.getAddressTakenIRBlock(); | 
|  | assert(BB && BB->hasAddressTaken() && "Missing BB"); | 
|  | for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB)) | 
|  | OutStreamer->emitLabel(Sym); | 
|  | } else if (isVerbose() && MBB.isMachineBlockAddressTaken()) { | 
|  | OutStreamer->AddComment("Block address taken"); | 
|  | } else if (isVerbose() && MBB.isInlineAsmBrIndirectTarget()) { | 
|  | OutStreamer->AddComment("Inline asm indirect target"); | 
|  | } | 
|  |  | 
|  | // Print some verbose block comments. | 
|  | if (isVerbose()) { | 
|  | if (const BasicBlock *BB = MBB.getBasicBlock()) { | 
|  | if (BB->hasName()) { | 
|  | BB->printAsOperand(OutStreamer->getCommentOS(), | 
|  | /*PrintType=*/false, BB->getModule()); | 
|  | OutStreamer->getCommentOS() << '\n'; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(MLI != nullptr && "MachineLoopInfo should has been computed"); | 
|  | emitBasicBlockLoopComments(MBB, MLI, *this); | 
|  | } | 
|  |  | 
|  | // Print the main label for the block. | 
|  | if (shouldEmitLabelForBasicBlock(MBB)) { | 
|  | if (isVerbose() && MBB.hasLabelMustBeEmitted()) | 
|  | OutStreamer->AddComment("Label of block must be emitted"); | 
|  | OutStreamer->emitLabel(MBB.getSymbol()); | 
|  | } else { | 
|  | if (isVerbose()) { | 
|  | // NOTE: Want this comment at start of line, don't emit with AddComment. | 
|  | OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", | 
|  | false); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MBB.isEHContTarget() && | 
|  | MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { | 
|  | OutStreamer->emitLabel(MBB.getEHContSymbol()); | 
|  | } | 
|  |  | 
|  | // With BB sections, each basic block must handle CFI information on its own | 
|  | // if it begins a section (Entry block call is handled separately, next to | 
|  | // beginFunction). | 
|  | if (MBB.isBeginSection() && !MBB.isEntryBlock()) { | 
|  | for (auto &Handler : Handlers) | 
|  | Handler->beginBasicBlockSection(MBB); | 
|  | for (auto &Handler : EHHandlers) | 
|  | Handler->beginBasicBlockSection(MBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { | 
|  | // Check if CFI information needs to be updated for this MBB with basic block | 
|  | // sections. | 
|  | if (MBB.isEndSection()) { | 
|  | for (auto &Handler : Handlers) | 
|  | Handler->endBasicBlockSection(MBB); | 
|  | for (auto &Handler : EHHandlers) | 
|  | Handler->endBasicBlockSection(MBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, | 
|  | bool IsDefinition) const { | 
|  | MCSymbolAttr Attr = MCSA_Invalid; | 
|  |  | 
|  | switch (Visibility) { | 
|  | default: break; | 
|  | case GlobalValue::HiddenVisibility: | 
|  | if (IsDefinition) | 
|  | Attr = MAI->getHiddenVisibilityAttr(); | 
|  | else | 
|  | Attr = MAI->getHiddenDeclarationVisibilityAttr(); | 
|  | break; | 
|  | case GlobalValue::ProtectedVisibility: | 
|  | Attr = MAI->getProtectedVisibilityAttr(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Attr != MCSA_Invalid) | 
|  | OutStreamer->emitSymbolAttribute(Sym, Attr); | 
|  | } | 
|  |  | 
|  | bool AsmPrinter::shouldEmitLabelForBasicBlock( | 
|  | const MachineBasicBlock &MBB) const { | 
|  | // With `-fbasic-block-sections=`, a label is needed for every non-entry block | 
|  | // in the labels mode (option `=labels`) and every section beginning in the | 
|  | // sections mode (`=all` and `=list=`). | 
|  | if ((MF->getTarget().Options.BBAddrMap || MBB.isBeginSection()) && | 
|  | !MBB.isEntryBlock()) | 
|  | return true; | 
|  | // A label is needed for any block with at least one predecessor (when that | 
|  | // predecessor is not the fallthrough predecessor, or if it is an EH funclet | 
|  | // entry, or if a label is forced). | 
|  | return !MBB.pred_empty() && | 
|  | (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || | 
|  | MBB.hasLabelMustBeEmitted()); | 
|  | } | 
|  |  | 
|  | /// isBlockOnlyReachableByFallthough - Return true if the basic block has | 
|  | /// exactly one predecessor and the control transfer mechanism between | 
|  | /// the predecessor and this block is a fall-through. | 
|  | bool AsmPrinter:: | 
|  | isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { | 
|  | // If this is a landing pad, it isn't a fall through.  If it has no preds, | 
|  | // then nothing falls through to it. | 
|  | if (MBB->isEHPad() || MBB->pred_empty()) | 
|  | return false; | 
|  |  | 
|  | // If there isn't exactly one predecessor, it can't be a fall through. | 
|  | if (MBB->pred_size() > 1) | 
|  | return false; | 
|  |  | 
|  | // The predecessor has to be immediately before this block. | 
|  | MachineBasicBlock *Pred = *MBB->pred_begin(); | 
|  | if (!Pred->isLayoutSuccessor(MBB)) | 
|  | return false; | 
|  |  | 
|  | // If the block is completely empty, then it definitely does fall through. | 
|  | if (Pred->empty()) | 
|  | return true; | 
|  |  | 
|  | // Check the terminators in the previous blocks | 
|  | for (const auto &MI : Pred->terminators()) { | 
|  | // If it is not a simple branch, we are in a table somewhere. | 
|  | if (!MI.isBranch() || MI.isIndirectBranch()) | 
|  | return false; | 
|  |  | 
|  | // If we are the operands of one of the branches, this is not a fall | 
|  | // through. Note that targets with delay slots will usually bundle | 
|  | // terminators with the delay slot instruction. | 
|  | for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { | 
|  | if (OP->isJTI()) | 
|  | return false; | 
|  | if (OP->isMBB() && OP->getMBB() == MBB) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | GCMetadataPrinter *AsmPrinter::getOrCreateGCPrinter(GCStrategy &S) { | 
|  | if (!S.usesMetadata()) | 
|  | return nullptr; | 
|  |  | 
|  | auto [GCPI, Inserted] = GCMetadataPrinters.try_emplace(&S); | 
|  | if (!Inserted) | 
|  | return GCPI->second.get(); | 
|  |  | 
|  | auto Name = S.getName(); | 
|  |  | 
|  | for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : | 
|  | GCMetadataPrinterRegistry::entries()) | 
|  | if (Name == GCMetaPrinter.getName()) { | 
|  | std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); | 
|  | GMP->S = &S; | 
|  | GCPI->second = std::move(GMP); | 
|  | return GCPI->second.get(); | 
|  | } | 
|  |  | 
|  | report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitStackMaps() { | 
|  | GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); | 
|  | assert(MI && "AsmPrinter didn't require GCModuleInfo?"); | 
|  | bool NeedsDefault = false; | 
|  | if (MI->begin() == MI->end()) | 
|  | // No GC strategy, use the default format. | 
|  | NeedsDefault = true; | 
|  | else | 
|  | for (const auto &I : *MI) { | 
|  | if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I)) | 
|  | if (MP->emitStackMaps(SM, *this)) | 
|  | continue; | 
|  | // The strategy doesn't have printer or doesn't emit custom stack maps. | 
|  | // Use the default format. | 
|  | NeedsDefault = true; | 
|  | } | 
|  |  | 
|  | if (NeedsDefault) | 
|  | SM.serializeToStackMapSection(); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::addAsmPrinterHandler( | 
|  | std::unique_ptr<AsmPrinterHandler> Handler) { | 
|  | Handlers.insert(Handlers.begin(), std::move(Handler)); | 
|  | NumUserHandlers++; | 
|  | } | 
|  |  | 
|  | /// Pin vtables to this file. | 
|  | AsmPrinterHandler::~AsmPrinterHandler() = default; | 
|  |  | 
|  | void AsmPrinterHandler::markFunctionEnd() {} | 
|  |  | 
|  | // In the binary's "xray_instr_map" section, an array of these function entries | 
|  | // describes each instrumentation point.  When XRay patches your code, the index | 
|  | // into this table will be given to your handler as a patch point identifier. | 
|  | void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { | 
|  | auto Kind8 = static_cast<uint8_t>(Kind); | 
|  | Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); | 
|  | Out->emitBinaryData( | 
|  | StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); | 
|  | Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); | 
|  | auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); | 
|  | assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); | 
|  | Out->emitZeros(Padding); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitXRayTable() { | 
|  | if (Sleds.empty()) | 
|  | return; | 
|  |  | 
|  | auto PrevSection = OutStreamer->getCurrentSectionOnly(); | 
|  | const Function &F = MF->getFunction(); | 
|  | MCSection *InstMap = nullptr; | 
|  | MCSection *FnSledIndex = nullptr; | 
|  | const Triple &TT = TM.getTargetTriple(); | 
|  | // Use PC-relative addresses on all targets. | 
|  | if (TT.isOSBinFormatELF()) { | 
|  | auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); | 
|  | auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; | 
|  | StringRef GroupName; | 
|  | if (F.hasComdat()) { | 
|  | Flags |= ELF::SHF_GROUP; | 
|  | GroupName = F.getComdat()->getName(); | 
|  | } | 
|  | InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, | 
|  | Flags, 0, GroupName, F.hasComdat(), | 
|  | MCSection::NonUniqueID, LinkedToSym); | 
|  |  | 
|  | if (TM.Options.XRayFunctionIndex) | 
|  | FnSledIndex = OutContext.getELFSection( | 
|  | "xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, GroupName, F.hasComdat(), | 
|  | MCSection::NonUniqueID, LinkedToSym); | 
|  | } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { | 
|  | InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", | 
|  | MachO::S_ATTR_LIVE_SUPPORT, | 
|  | SectionKind::getReadOnlyWithRel()); | 
|  | if (TM.Options.XRayFunctionIndex) | 
|  | FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", | 
|  | MachO::S_ATTR_LIVE_SUPPORT, | 
|  | SectionKind::getReadOnly()); | 
|  | } else { | 
|  | llvm_unreachable("Unsupported target"); | 
|  | } | 
|  |  | 
|  | auto WordSizeBytes = MAI->getCodePointerSize(); | 
|  |  | 
|  | // Now we switch to the instrumentation map section. Because this is done | 
|  | // per-function, we are able to create an index entry that will represent the | 
|  | // range of sleds associated with a function. | 
|  | auto &Ctx = OutContext; | 
|  | MCSymbol *SledsStart = | 
|  | OutContext.createLinkerPrivateSymbol("xray_sleds_start"); | 
|  | OutStreamer->switchSection(InstMap); | 
|  | OutStreamer->emitLabel(SledsStart); | 
|  | for (const auto &Sled : Sleds) { | 
|  | MCSymbol *Dot = Ctx.createTempSymbol(); | 
|  | OutStreamer->emitLabel(Dot); | 
|  | OutStreamer->emitValueImpl( | 
|  | MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), | 
|  | MCSymbolRefExpr::create(Dot, Ctx), Ctx), | 
|  | WordSizeBytes); | 
|  | OutStreamer->emitValueImpl( | 
|  | MCBinaryExpr::createSub( | 
|  | MCSymbolRefExpr::create(CurrentFnBegin, Ctx), | 
|  | MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), | 
|  | MCConstantExpr::create(WordSizeBytes, Ctx), | 
|  | Ctx), | 
|  | Ctx), | 
|  | WordSizeBytes); | 
|  | Sled.emit(WordSizeBytes, OutStreamer.get()); | 
|  | } | 
|  | MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); | 
|  | OutStreamer->emitLabel(SledsEnd); | 
|  |  | 
|  | // We then emit a single entry in the index per function. We use the symbols | 
|  | // that bound the instrumentation map as the range for a specific function. | 
|  | // Each entry here will be 2 * word size aligned, as we're writing down two | 
|  | // pointers. This should work for both 32-bit and 64-bit platforms. | 
|  | if (FnSledIndex) { | 
|  | OutStreamer->switchSection(FnSledIndex); | 
|  | OutStreamer->emitCodeAlignment(Align(2 * WordSizeBytes), | 
|  | &getSubtargetInfo()); | 
|  | // For Mach-O, use an "l" symbol as the atom of this subsection. The label | 
|  | // difference uses a SUBTRACTOR external relocation which references the | 
|  | // symbol. | 
|  | MCSymbol *Dot = Ctx.createLinkerPrivateSymbol("xray_fn_idx"); | 
|  | OutStreamer->emitLabel(Dot); | 
|  | OutStreamer->emitValueImpl( | 
|  | MCBinaryExpr::createSub(MCSymbolRefExpr::create(SledsStart, Ctx), | 
|  | MCSymbolRefExpr::create(Dot, Ctx), Ctx), | 
|  | WordSizeBytes); | 
|  | OutStreamer->emitValueImpl(MCConstantExpr::create(Sleds.size(), Ctx), | 
|  | WordSizeBytes); | 
|  | OutStreamer->switchSection(PrevSection); | 
|  | } | 
|  | Sleds.clear(); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, | 
|  | SledKind Kind, uint8_t Version) { | 
|  | const Function &F = MI.getMF()->getFunction(); | 
|  | auto Attr = F.getFnAttribute("function-instrument"); | 
|  | bool LogArgs = F.hasFnAttribute("xray-log-args"); | 
|  | bool AlwaysInstrument = | 
|  | Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; | 
|  | if (Kind == SledKind::FUNCTION_ENTER && LogArgs) | 
|  | Kind = SledKind::LOG_ARGS_ENTER; | 
|  | Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, | 
|  | AlwaysInstrument, &F, Version}); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitPatchableFunctionEntries() { | 
|  | const Function &F = MF->getFunction(); | 
|  | unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; | 
|  | (void)F.getFnAttribute("patchable-function-prefix") | 
|  | .getValueAsString() | 
|  | .getAsInteger(10, PatchableFunctionPrefix); | 
|  | (void)F.getFnAttribute("patchable-function-entry") | 
|  | .getValueAsString() | 
|  | .getAsInteger(10, PatchableFunctionEntry); | 
|  | if (!PatchableFunctionPrefix && !PatchableFunctionEntry) | 
|  | return; | 
|  | const unsigned PointerSize = getPointerSize(); | 
|  | if (TM.getTargetTriple().isOSBinFormatELF()) { | 
|  | auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; | 
|  | const MCSymbolELF *LinkedToSym = nullptr; | 
|  | StringRef GroupName, SectionName; | 
|  |  | 
|  | if (F.hasFnAttribute("patchable-function-entry-section")) | 
|  | SectionName = F.getFnAttribute("patchable-function-entry-section") | 
|  | .getValueAsString(); | 
|  | if (SectionName.empty()) | 
|  | SectionName = "__patchable_function_entries"; | 
|  |  | 
|  | // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not | 
|  | // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. | 
|  | if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { | 
|  | Flags |= ELF::SHF_LINK_ORDER; | 
|  | if (F.hasComdat()) { | 
|  | Flags |= ELF::SHF_GROUP; | 
|  | GroupName = F.getComdat()->getName(); | 
|  | } | 
|  | LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); | 
|  | } | 
|  | OutStreamer->switchSection(OutContext.getELFSection( | 
|  | SectionName, ELF::SHT_PROGBITS, Flags, 0, GroupName, F.hasComdat(), | 
|  | MCSection::NonUniqueID, LinkedToSym)); | 
|  | emitAlignment(Align(PointerSize)); | 
|  | OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint16_t AsmPrinter::getDwarfVersion() const { | 
|  | return OutStreamer->getContext().getDwarfVersion(); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::setDwarfVersion(uint16_t Version) { | 
|  | OutStreamer->getContext().setDwarfVersion(Version); | 
|  | } | 
|  |  | 
|  | bool AsmPrinter::isDwarf64() const { | 
|  | return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; | 
|  | } | 
|  |  | 
|  | unsigned int AsmPrinter::getDwarfOffsetByteSize() const { | 
|  | return dwarf::getDwarfOffsetByteSize( | 
|  | OutStreamer->getContext().getDwarfFormat()); | 
|  | } | 
|  |  | 
|  | dwarf::FormParams AsmPrinter::getDwarfFormParams() const { | 
|  | return {getDwarfVersion(), uint8_t(MAI->getCodePointerSize()), | 
|  | OutStreamer->getContext().getDwarfFormat(), | 
|  | doesDwarfUseRelocationsAcrossSections()}; | 
|  | } | 
|  |  | 
|  | unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { | 
|  | return dwarf::getUnitLengthFieldByteSize( | 
|  | OutStreamer->getContext().getDwarfFormat()); | 
|  | } | 
|  |  | 
|  | std::tuple<const MCSymbol *, uint64_t, const MCSymbol *, | 
|  | codeview::JumpTableEntrySize> | 
|  | AsmPrinter::getCodeViewJumpTableInfo(int JTI, const MachineInstr *BranchInstr, | 
|  | const MCSymbol *BranchLabel) const { | 
|  | const auto TLI = MF->getSubtarget().getTargetLowering(); | 
|  | const auto BaseExpr = | 
|  | TLI->getPICJumpTableRelocBaseExpr(MF, JTI, MMI->getContext()); | 
|  | const auto Base = &cast<MCSymbolRefExpr>(BaseExpr)->getSymbol(); | 
|  |  | 
|  | // By default, for the architectures that support CodeView, | 
|  | // EK_LabelDifference32 is implemented as an Int32 from the base address. | 
|  | return std::make_tuple(Base, 0, BranchLabel, | 
|  | codeview::JumpTableEntrySize::Int32); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitCOFFReplaceableFunctionData(Module &M) { | 
|  | const Triple &TT = TM.getTargetTriple(); | 
|  | assert(TT.isOSBinFormatCOFF()); | 
|  |  | 
|  | bool IsTargetArm64EC = TT.isWindowsArm64EC(); | 
|  | SmallVector<char> Buf; | 
|  | SmallVector<MCSymbol *> FuncOverrideDefaultSymbols; | 
|  | bool SwitchedToDirectiveSection = false; | 
|  | for (const Function &F : M.functions()) { | 
|  | if (F.hasFnAttribute("loader-replaceable")) { | 
|  | if (!SwitchedToDirectiveSection) { | 
|  | OutStreamer->switchSection( | 
|  | OutContext.getObjectFileInfo()->getDrectveSection()); | 
|  | SwitchedToDirectiveSection = true; | 
|  | } | 
|  |  | 
|  | StringRef Name = F.getName(); | 
|  |  | 
|  | // For hybrid-patchable targets, strip the prefix so that we can mark | 
|  | // the real function as replaceable. | 
|  | if (IsTargetArm64EC && Name.ends_with(HybridPatchableTargetSuffix)) { | 
|  | Name = Name.drop_back(HybridPatchableTargetSuffix.size()); | 
|  | } | 
|  |  | 
|  | MCSymbol *FuncOverrideSymbol = | 
|  | MMI->getContext().getOrCreateSymbol(Name + "_$fo$"); | 
|  | OutStreamer->beginCOFFSymbolDef(FuncOverrideSymbol); | 
|  | OutStreamer->emitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_EXTERNAL); | 
|  | OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL); | 
|  | OutStreamer->endCOFFSymbolDef(); | 
|  |  | 
|  | MCSymbol *FuncOverrideDefaultSymbol = | 
|  | MMI->getContext().getOrCreateSymbol(Name + "_$fo_default$"); | 
|  | OutStreamer->beginCOFFSymbolDef(FuncOverrideDefaultSymbol); | 
|  | OutStreamer->emitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_EXTERNAL); | 
|  | OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL); | 
|  | OutStreamer->endCOFFSymbolDef(); | 
|  | FuncOverrideDefaultSymbols.push_back(FuncOverrideDefaultSymbol); | 
|  |  | 
|  | OutStreamer->emitBytes((Twine(" /ALTERNATENAME:") + | 
|  | FuncOverrideSymbol->getName() + "=" + | 
|  | FuncOverrideDefaultSymbol->getName()) | 
|  | .toStringRef(Buf)); | 
|  | Buf.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SwitchedToDirectiveSection) | 
|  | OutStreamer->popSection(); | 
|  |  | 
|  | if (FuncOverrideDefaultSymbols.empty()) | 
|  | return; | 
|  |  | 
|  | // MSVC emits the symbols for the default variables pointing at the start of | 
|  | // the .data section, but doesn't actually allocate any space for them. LLVM | 
|  | // can't do this, so have all of the variables pointing at a single byte | 
|  | // instead. | 
|  | OutStreamer->switchSection(OutContext.getObjectFileInfo()->getDataSection()); | 
|  | for (MCSymbol *Symbol : FuncOverrideDefaultSymbols) { | 
|  | OutStreamer->emitLabel(Symbol); | 
|  | } | 
|  | OutStreamer->emitZeros(1); | 
|  | OutStreamer->popSection(); | 
|  | } | 
|  |  | 
|  | void AsmPrinter::emitCOFFFeatureSymbol(Module &M) { | 
|  | const Triple &TT = TM.getTargetTriple(); | 
|  | assert(TT.isOSBinFormatCOFF()); | 
|  |  | 
|  | // Emit an absolute @feat.00 symbol. | 
|  | MCSymbol *S = MMI->getContext().getOrCreateSymbol(StringRef("@feat.00")); | 
|  | OutStreamer->beginCOFFSymbolDef(S); | 
|  | OutStreamer->emitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_STATIC); | 
|  | OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL); | 
|  | OutStreamer->endCOFFSymbolDef(); | 
|  | int64_t Feat00Value = 0; | 
|  |  | 
|  | if (TT.getArch() == Triple::x86) { | 
|  | // According to the PE-COFF spec, the LSB of this value marks the object | 
|  | // for "registered SEH".  This means that all SEH handler entry points | 
|  | // must be registered in .sxdata.  Use of any unregistered handlers will | 
|  | // cause the process to terminate immediately.  LLVM does not know how to | 
|  | // register any SEH handlers, so its object files should be safe. | 
|  | Feat00Value |= COFF::Feat00Flags::SafeSEH; | 
|  | } | 
|  |  | 
|  | if (M.getModuleFlag("cfguard")) { | 
|  | // Object is CFG-aware. | 
|  | Feat00Value |= COFF::Feat00Flags::GuardCF; | 
|  | } | 
|  |  | 
|  | if (M.getModuleFlag("ehcontguard")) { | 
|  | // Object also has EHCont. | 
|  | Feat00Value |= COFF::Feat00Flags::GuardEHCont; | 
|  | } | 
|  |  | 
|  | if (M.getModuleFlag("ms-kernel")) { | 
|  | // Object is compiled with /kernel. | 
|  | Feat00Value |= COFF::Feat00Flags::Kernel; | 
|  | } | 
|  |  | 
|  | OutStreamer->emitSymbolAttribute(S, MCSA_Global); | 
|  | OutStreamer->emitAssignment( | 
|  | S, MCConstantExpr::create(Feat00Value, MMI->getContext())); | 
|  | } |