| //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file defines the interfaces that PPC uses to lower LLVM code into a | 
 | // selection DAG. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H | 
 | #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H | 
 |  | 
 | #include "PPCInstrInfo.h" | 
 | #include "llvm/CodeGen/CallingConvLower.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineMemOperand.h" | 
 | #include "llvm/CodeGen/SelectionDAG.h" | 
 | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
 | #include "llvm/CodeGen/TargetLowering.h" | 
 | #include "llvm/CodeGen/ValueTypes.h" | 
 | #include "llvm/CodeGenTypes/MachineValueType.h" | 
 | #include "llvm/IR/Attributes.h" | 
 | #include "llvm/IR/CallingConv.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/InlineAsm.h" | 
 | #include "llvm/IR/Metadata.h" | 
 | #include "llvm/IR/Type.h" | 
 | #include <optional> | 
 | #include <utility> | 
 |  | 
 | namespace llvm { | 
 |  | 
 |   namespace PPCISD { | 
 |  | 
 |   // When adding a NEW PPCISD node please add it to the correct position in | 
 |   // the enum. The order of elements in this enum matters! | 
 |   // Values that are added between FIRST_MEMORY_OPCODE and LAST_MEMORY_OPCODE | 
 |   // are considered memory opcodes and are treated differently than other | 
 |   // entries. | 
 |   enum NodeType : unsigned { | 
 |     // Start the numbering where the builtin ops and target ops leave off. | 
 |     FIRST_NUMBER = ISD::BUILTIN_OP_END, | 
 |  | 
 |     /// FSEL - Traditional three-operand fsel node. | 
 |     /// | 
 |     FSEL, | 
 |  | 
 |     /// XSMAXC[DQ]P, XSMINC[DQ]P - C-type min/max instructions. | 
 |     XSMAXC, | 
 |     XSMINC, | 
 |  | 
 |     /// FCFID - The FCFID instruction, taking an f64 operand and producing | 
 |     /// and f64 value containing the FP representation of the integer that | 
 |     /// was temporarily in the f64 operand. | 
 |     FCFID, | 
 |  | 
 |     /// Newer FCFID[US] integer-to-floating-point conversion instructions for | 
 |     /// unsigned integers and single-precision outputs. | 
 |     FCFIDU, | 
 |     FCFIDS, | 
 |     FCFIDUS, | 
 |  | 
 |     /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64 | 
 |     /// operand, producing an f64 value containing the integer representation | 
 |     /// of that FP value. | 
 |     FCTIDZ, | 
 |     FCTIWZ, | 
 |  | 
 |     /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for | 
 |     /// unsigned integers with round toward zero. | 
 |     FCTIDUZ, | 
 |     FCTIWUZ, | 
 |  | 
 |     /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in | 
 |     /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer. | 
 |     VEXTS, | 
 |  | 
 |     /// Reciprocal estimate instructions (unary FP ops). | 
 |     FRE, | 
 |     FRSQRTE, | 
 |  | 
 |     /// Test instruction for software square root. | 
 |     FTSQRT, | 
 |  | 
 |     /// Square root instruction. | 
 |     FSQRT, | 
 |  | 
 |     /// VPERM - The PPC VPERM Instruction. | 
 |     /// | 
 |     VPERM, | 
 |  | 
 |     /// XXSPLT - The PPC VSX splat instructions | 
 |     /// | 
 |     XXSPLT, | 
 |  | 
 |     /// XXSPLTI_SP_TO_DP - The PPC VSX splat instructions for immediates for | 
 |     /// converting immediate single precision numbers to double precision | 
 |     /// vector or scalar. | 
 |     XXSPLTI_SP_TO_DP, | 
 |  | 
 |     /// XXSPLTI32DX - The PPC XXSPLTI32DX instruction. | 
 |     /// | 
 |     XXSPLTI32DX, | 
 |  | 
 |     /// VECINSERT - The PPC vector insert instruction | 
 |     /// | 
 |     VECINSERT, | 
 |  | 
 |     /// VECSHL - The PPC vector shift left instruction | 
 |     /// | 
 |     VECSHL, | 
 |  | 
 |     /// XXPERMDI - The PPC XXPERMDI instruction | 
 |     /// | 
 |     XXPERMDI, | 
 |     XXPERM, | 
 |  | 
 |     /// The CMPB instruction (takes two operands of i32 or i64). | 
 |     CMPB, | 
 |  | 
 |     /// Hi/Lo - These represent the high and low 16-bit parts of a global | 
 |     /// address respectively.  These nodes have two operands, the first of | 
 |     /// which must be a TargetGlobalAddress, and the second of which must be a | 
 |     /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C', | 
 |     /// though these are usually folded into other nodes. | 
 |     Hi, | 
 |     Lo, | 
 |  | 
 |     /// The following two target-specific nodes are used for calls through | 
 |     /// function pointers in the 64-bit SVR4 ABI. | 
 |  | 
 |     /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX) | 
 |     /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to | 
 |     /// compute an allocation on the stack. | 
 |     DYNALLOC, | 
 |  | 
 |     /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to | 
 |     /// compute an offset from native SP to the address  of the most recent | 
 |     /// dynamic alloca. | 
 |     DYNAREAOFFSET, | 
 |  | 
 |     /// To avoid stack clash, allocation is performed by block and each block is | 
 |     /// probed. | 
 |     PROBED_ALLOCA, | 
 |  | 
 |     /// The result of the mflr at function entry, used for PIC code. | 
 |     GlobalBaseReg, | 
 |  | 
 |     /// These nodes represent PPC shifts. | 
 |     /// | 
 |     /// For scalar types, only the last `n + 1` bits of the shift amounts | 
 |     /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc. | 
 |     /// for exact behaviors. | 
 |     /// | 
 |     /// For vector types, only the last n bits are used. See vsld. | 
 |     SRL, | 
 |     SRA, | 
 |     SHL, | 
 |  | 
 |     /// These nodes represent PPC arithmetic operations with carry. | 
 |     ADDC, | 
 |     ADDE, | 
 |     SUBC, | 
 |     SUBE, | 
 |  | 
 |     /// FNMSUB - Negated multiply-subtract instruction. | 
 |     FNMSUB, | 
 |  | 
 |     /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign | 
 |     /// word and shift left immediate. | 
 |     EXTSWSLI, | 
 |  | 
 |     /// The combination of sra[wd]i and addze used to implemented signed | 
 |     /// integer division by a power of 2. The first operand is the dividend, | 
 |     /// and the second is the constant shift amount (representing the | 
 |     /// divisor). | 
 |     SRA_ADDZE, | 
 |  | 
 |     /// CALL - A direct function call. | 
 |     /// CALL_NOP is a call with the special NOP which follows 64-bit | 
 |     /// CALL_NOTOC the caller does not use the TOC. | 
 |     /// SVR4 calls and 32-bit/64-bit AIX calls. | 
 |     CALL, | 
 |     CALL_NOP, | 
 |     CALL_NOTOC, | 
 |  | 
 |     /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a | 
 |     /// MTCTR instruction. | 
 |     MTCTR, | 
 |  | 
 |     /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a | 
 |     /// BCTRL instruction. | 
 |     BCTRL, | 
 |  | 
 |     /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl | 
 |     /// instruction and the TOC reload required on 64-bit ELF, 32-bit AIX | 
 |     /// and 64-bit AIX. | 
 |     BCTRL_LOAD_TOC, | 
 |  | 
 |     /// The variants that implicitly define rounding mode for calls with | 
 |     /// strictfp semantics. | 
 |     CALL_RM, | 
 |     CALL_NOP_RM, | 
 |     CALL_NOTOC_RM, | 
 |     BCTRL_RM, | 
 |     BCTRL_LOAD_TOC_RM, | 
 |  | 
 |     /// Return with a glue operand, matched by 'blr' | 
 |     RET_GLUE, | 
 |  | 
 |     /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction. | 
 |     /// This copies the bits corresponding to the specified CRREG into the | 
 |     /// resultant GPR.  Bits corresponding to other CR regs are undefined. | 
 |     MFOCRF, | 
 |  | 
 |     /// Direct move from a VSX register to a GPR | 
 |     MFVSR, | 
 |  | 
 |     /// Direct move from a GPR to a VSX register (algebraic) | 
 |     MTVSRA, | 
 |  | 
 |     /// Direct move from a GPR to a VSX register (zero) | 
 |     MTVSRZ, | 
 |  | 
 |     /// Direct move of 2 consecutive GPR to a VSX register. | 
 |     BUILD_FP128, | 
 |  | 
 |     /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and | 
 |     /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is | 
 |     /// unsupported for this target. | 
 |     /// Merge 2 GPRs to a single SPE register. | 
 |     BUILD_SPE64, | 
 |  | 
 |     /// Extract SPE register component, second argument is high or low. | 
 |     EXTRACT_SPE, | 
 |  | 
 |     /// Extract a subvector from signed integer vector and convert to FP. | 
 |     /// It is primarily used to convert a (widened) illegal integer vector | 
 |     /// type to a legal floating point vector type. | 
 |     /// For example v2i32 -> widened to v4i32 -> v2f64 | 
 |     SINT_VEC_TO_FP, | 
 |  | 
 |     /// Extract a subvector from unsigned integer vector and convert to FP. | 
 |     /// As with SINT_VEC_TO_FP, used for converting illegal types. | 
 |     UINT_VEC_TO_FP, | 
 |  | 
 |     /// PowerPC instructions that have SCALAR_TO_VECTOR semantics tend to | 
 |     /// place the value into the least significant element of the most | 
 |     /// significant doubleword in the vector. This is not element zero for | 
 |     /// anything smaller than a doubleword on either endianness. This node has | 
 |     /// the same semantics as SCALAR_TO_VECTOR except that the value remains in | 
 |     /// the aforementioned location in the vector register. | 
 |     SCALAR_TO_VECTOR_PERMUTED, | 
 |  | 
 |     // FIXME: Remove these once the ANDI glue bug is fixed: | 
 |     /// i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the | 
 |     /// eq or gt bit of CR0 after executing andi. x, 1. This is used to | 
 |     /// implement truncation of i32 or i64 to i1. | 
 |     ANDI_rec_1_EQ_BIT, | 
 |     ANDI_rec_1_GT_BIT, | 
 |  | 
 |     // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit | 
 |     // target (returns (Lo, Hi)). It takes a chain operand. | 
 |     READ_TIME_BASE, | 
 |  | 
 |     // EH_SJLJ_SETJMP - SjLj exception handling setjmp. | 
 |     EH_SJLJ_SETJMP, | 
 |  | 
 |     // EH_SJLJ_LONGJMP - SjLj exception handling longjmp. | 
 |     EH_SJLJ_LONGJMP, | 
 |  | 
 |     /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP* | 
 |     /// instructions.  For lack of better number, we use the opcode number | 
 |     /// encoding for the OPC field to identify the compare.  For example, 838 | 
 |     /// is VCMPGTSH. | 
 |     VCMP, | 
 |  | 
 |     /// RESVEC, OUTFLAG = VCMP_rec(LHS, RHS, OPC) - Represents one of the | 
 |     /// altivec VCMP*_rec instructions.  For lack of better number, we use the | 
 |     /// opcode number encoding for the OPC field to identify the compare.  For | 
 |     /// example, 838 is VCMPGTSH. | 
 |     VCMP_rec, | 
 |  | 
 |     /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This | 
 |     /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the | 
 |     /// condition register to branch on, OPC is the branch opcode to use (e.g. | 
 |     /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is | 
 |     /// an optional input flag argument. | 
 |     COND_BRANCH, | 
 |  | 
 |     /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based | 
 |     /// loops. | 
 |     BDNZ, | 
 |     BDZ, | 
 |  | 
 |     /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding | 
 |     /// towards zero.  Used only as part of the long double-to-int | 
 |     /// conversion sequence. | 
 |     FADDRTZ, | 
 |  | 
 |     /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register. | 
 |     MFFS, | 
 |  | 
 |     /// TC_RETURN - A tail call return. | 
 |     ///   operand #0 chain | 
 |     ///   operand #1 callee (register or absolute) | 
 |     ///   operand #2 stack adjustment | 
 |     ///   operand #3 optional in flag | 
 |     TC_RETURN, | 
 |  | 
 |     /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls | 
 |     CR6SET, | 
 |     CR6UNSET, | 
 |  | 
 |     /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS | 
 |     /// for non-position independent code on PPC32. | 
 |     PPC32_GOT, | 
 |  | 
 |     /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and | 
 |     /// local dynamic TLS and position indendepent code on PPC32. | 
 |     PPC32_PICGOT, | 
 |  | 
 |     /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec | 
 |     /// TLS model, produces an ADDIS8 instruction that adds the GOT | 
 |     /// base to sym\@got\@tprel\@ha. | 
 |     ADDIS_GOT_TPREL_HA, | 
 |  | 
 |     /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec | 
 |     /// TLS model, produces a LD instruction with base register G8RReg | 
 |     /// and offset sym\@got\@tprel\@l.  This completes the addition that | 
 |     /// finds the offset of "sym" relative to the thread pointer. | 
 |     LD_GOT_TPREL_L, | 
 |  | 
 |     /// G8RC = ADD_TLS G8RReg, Symbol - Can be used by the initial-exec | 
 |     /// and local-exec TLS models, produces an ADD instruction that adds | 
 |     /// the contents of G8RReg to the thread pointer.  Symbol contains a | 
 |     /// relocation sym\@tls which is to be replaced by the thread pointer | 
 |     /// and identifies to the linker that the instruction is part of a | 
 |     /// TLS sequence. | 
 |     ADD_TLS, | 
 |  | 
 |     /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS | 
 |     /// model, produces an ADDIS8 instruction that adds the GOT base | 
 |     /// register to sym\@got\@tlsgd\@ha. | 
 |     ADDIS_TLSGD_HA, | 
 |  | 
 |     /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS | 
 |     /// model, produces an ADDI8 instruction that adds G8RReg to | 
 |     /// sym\@got\@tlsgd\@l and stores the result in X3.  Hidden by | 
 |     /// ADDIS_TLSGD_L_ADDR until after register assignment. | 
 |     ADDI_TLSGD_L, | 
 |  | 
 |     /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS | 
 |     /// model, produces a call to __tls_get_addr(sym\@tlsgd).  Hidden by | 
 |     /// ADDIS_TLSGD_L_ADDR until after register assignment. | 
 |     GET_TLS_ADDR, | 
 |  | 
 |     /// %x3 = GET_TPOINTER - Used for the local- and initial-exec TLS model on | 
 |     /// 32-bit AIX, produces a call to .__get_tpointer to retrieve the thread | 
 |     /// pointer. At the end of the call, the thread pointer is found in R3. | 
 |     GET_TPOINTER, | 
 |  | 
 |     /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that | 
 |     /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following | 
 |     /// register assignment. | 
 |     ADDI_TLSGD_L_ADDR, | 
 |  | 
 |     /// GPRC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY | 
 |     /// G8RC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY | 
 |     /// Op that combines two register copies of TOC entries | 
 |     /// (region handle into R3 and variable offset into R4) followed by a | 
 |     /// GET_TLS_ADDR node which will be expanded to a call to .__tls_get_addr. | 
 |     /// This node is used in 64-bit mode as well (in which case the result is | 
 |     /// G8RC and inputs are X3/X4). | 
 |     TLSGD_AIX, | 
 |  | 
 |     /// %x3 = GET_TLS_MOD_AIX _$TLSML - For the AIX local-dynamic TLS model, | 
 |     /// produces a call to .__tls_get_mod(_$TLSML\@ml). | 
 |     GET_TLS_MOD_AIX, | 
 |  | 
 |     /// [GP|G8]RC = TLSLD_AIX, TOC_ENTRY(module handle) | 
 |     /// Op that requires a single input of the module handle TOC entry in R3, | 
 |     /// and generates a GET_TLS_MOD_AIX node which will be expanded into a call | 
 |     /// to .__tls_get_mod. This node is used in both 32-bit and 64-bit modes. | 
 |     /// The only difference is the register class. | 
 |     TLSLD_AIX, | 
 |  | 
 |     /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS | 
 |     /// model, produces an ADDIS8 instruction that adds the GOT base | 
 |     /// register to sym\@got\@tlsld\@ha. | 
 |     ADDIS_TLSLD_HA, | 
 |  | 
 |     /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS | 
 |     /// model, produces an ADDI8 instruction that adds G8RReg to | 
 |     /// sym\@got\@tlsld\@l and stores the result in X3.  Hidden by | 
 |     /// ADDIS_TLSLD_L_ADDR until after register assignment. | 
 |     ADDI_TLSLD_L, | 
 |  | 
 |     /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS | 
 |     /// model, produces a call to __tls_get_addr(sym\@tlsld).  Hidden by | 
 |     /// ADDIS_TLSLD_L_ADDR until after register assignment. | 
 |     GET_TLSLD_ADDR, | 
 |  | 
 |     /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that | 
 |     /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion | 
 |     /// following register assignment. | 
 |     ADDI_TLSLD_L_ADDR, | 
 |  | 
 |     /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS | 
 |     /// model, produces an ADDIS8 instruction that adds X3 to | 
 |     /// sym\@dtprel\@ha. | 
 |     ADDIS_DTPREL_HA, | 
 |  | 
 |     /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS | 
 |     /// model, produces an ADDI8 instruction that adds G8RReg to | 
 |     /// sym\@got\@dtprel\@l. | 
 |     ADDI_DTPREL_L, | 
 |  | 
 |     /// G8RC = PADDI_DTPREL %x3, Symbol - For the pc-rel based local-dynamic TLS | 
 |     /// model, produces a PADDI8 instruction that adds X3 to sym\@dtprel. | 
 |     PADDI_DTPREL, | 
 |  | 
 |     /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded | 
 |     /// during instruction selection to optimize a BUILD_VECTOR into | 
 |     /// operations on splats.  This is necessary to avoid losing these | 
 |     /// optimizations due to constant folding. | 
 |     VADD_SPLAT, | 
 |  | 
 |     /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little | 
 |     /// endian.  Maps to an xxswapd instruction that corrects an lxvd2x | 
 |     /// or stxvd2x instruction.  The chain is necessary because the | 
 |     /// sequence replaces a load and needs to provide the same number | 
 |     /// of outputs. | 
 |     XXSWAPD, | 
 |  | 
 |     /// An SDNode for swaps that are not associated with any loads/stores | 
 |     /// and thereby have no chain. | 
 |     SWAP_NO_CHAIN, | 
 |  | 
 |     /// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or | 
 |     /// lower (IDX=1) half of v4f32 to v2f64. | 
 |     FP_EXTEND_HALF, | 
 |  | 
 |     /// MAT_PCREL_ADDR = Materialize a PC Relative address. This can be done | 
 |     /// either through an add like PADDI or through a PC Relative load like | 
 |     /// PLD. | 
 |     MAT_PCREL_ADDR, | 
 |  | 
 |     /// TLS_DYNAMIC_MAT_PCREL_ADDR = Materialize a PC Relative address for | 
 |     /// TLS global address when using dynamic access models. This can be done | 
 |     /// through an add like PADDI. | 
 |     TLS_DYNAMIC_MAT_PCREL_ADDR, | 
 |  | 
 |     /// TLS_LOCAL_EXEC_MAT_ADDR = Materialize an address for TLS global address | 
 |     /// when using local exec access models, and when prefixed instructions are | 
 |     /// available. This is used with ADD_TLS to produce an add like PADDI. | 
 |     TLS_LOCAL_EXEC_MAT_ADDR, | 
 |  | 
 |     /// ACC_BUILD = Build an accumulator register from 4 VSX registers. | 
 |     ACC_BUILD, | 
 |  | 
 |     /// PAIR_BUILD = Build a vector pair register from 2 VSX registers. | 
 |     PAIR_BUILD, | 
 |  | 
 |     /// EXTRACT_VSX_REG = Extract one of the underlying vsx registers of | 
 |     /// an accumulator or pair register. This node is needed because | 
 |     /// EXTRACT_SUBVECTOR expects the input and output vectors to have the same | 
 |     /// element type. | 
 |     EXTRACT_VSX_REG, | 
 |  | 
 |     /// XXMFACC = This corresponds to the xxmfacc instruction. | 
 |     XXMFACC, | 
 |  | 
 |     // Constrained conversion from floating point to int | 
 |     FIRST_STRICTFP_OPCODE, | 
 |     STRICT_FCTIDZ = FIRST_STRICTFP_OPCODE, | 
 |     STRICT_FCTIWZ, | 
 |     STRICT_FCTIDUZ, | 
 |     STRICT_FCTIWUZ, | 
 |  | 
 |     /// Constrained integer-to-floating-point conversion instructions. | 
 |     STRICT_FCFID, | 
 |     STRICT_FCFIDU, | 
 |     STRICT_FCFIDS, | 
 |     STRICT_FCFIDUS, | 
 |  | 
 |     /// Constrained floating point add in round-to-zero mode. | 
 |     STRICT_FADDRTZ, | 
 |     LAST_STRICTFP_OPCODE = STRICT_FADDRTZ, | 
 |  | 
 |     /// SETBC - The ISA 3.1 (P10) SETBC instruction. | 
 |     SETBC, | 
 |  | 
 |     /// SETBCR - The ISA 3.1 (P10) SETBCR instruction. | 
 |     SETBCR, | 
 |  | 
 |     /// VSRQ - The ISA 3.1 (P10) Vector Shift right quadword instruction | 
 |     VSRQ, | 
 |  | 
 |     // NOTE: The nodes below may require PC-Rel specific patterns if the | 
 |     // address could be PC-Relative. When adding new nodes below, consider | 
 |     // whether or not the address can be PC-Relative and add the corresponding | 
 |     // PC-relative patterns and tests. | 
 |  | 
 |     /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a | 
 |     /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of | 
 |     /// the GPRC input, then stores it through Ptr.  Type can be either i16 or | 
 |     /// i32. | 
 |     FIRST_MEMORY_OPCODE, | 
 |     STBRX = FIRST_MEMORY_OPCODE, | 
 |  | 
 |     /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a | 
 |     /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it, | 
 |     /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16 | 
 |     /// or i32. | 
 |     LBRX, | 
 |  | 
 |     /// STFIWX - The STFIWX instruction.  The first operand is an input token | 
 |     /// chain, then an f64 value to store, then an address to store it to. | 
 |     STFIWX, | 
 |  | 
 |     /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point | 
 |     /// load which sign-extends from a 32-bit integer value into the | 
 |     /// destination 64-bit register. | 
 |     LFIWAX, | 
 |  | 
 |     /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point | 
 |     /// load which zero-extends from a 32-bit integer value into the | 
 |     /// destination 64-bit register. | 
 |     LFIWZX, | 
 |  | 
 |     /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an | 
 |     /// integer smaller than 64 bits into a VSR. The integer is zero-extended. | 
 |     /// This can be used for converting loaded integers to floating point. | 
 |     LXSIZX, | 
 |  | 
 |     /// STXSIX - The STXSI[bh]X instruction. The first operand is an input | 
 |     /// chain, then an f64 value to store, then an address to store it to, | 
 |     /// followed by a byte-width for the store. | 
 |     STXSIX, | 
 |  | 
 |     /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian. | 
 |     /// Maps directly to an lxvd2x instruction that will be followed by | 
 |     /// an xxswapd. | 
 |     LXVD2X, | 
 |  | 
 |     /// LXVRZX - Load VSX Vector Rightmost and Zero Extend | 
 |     /// This node represents v1i128 BUILD_VECTOR of a zero extending load | 
 |     /// instruction from <byte, halfword, word, or doubleword> to i128. | 
 |     /// Allows utilization of the Load VSX Vector Rightmost Instructions. | 
 |     LXVRZX, | 
 |  | 
 |     /// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian. | 
 |     /// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on | 
 |     /// the vector type to load vector in big-endian element order. | 
 |     LOAD_VEC_BE, | 
 |  | 
 |     /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a | 
 |     /// v2f32 value into the lower half of a VSR register. | 
 |     LD_VSX_LH, | 
 |  | 
 |     /// VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory | 
 |     /// instructions such as LXVDSX, LXVWSX. | 
 |     LD_SPLAT, | 
 |  | 
 |     /// VSRC, CHAIN = ZEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory | 
 |     /// that zero-extends. | 
 |     ZEXT_LD_SPLAT, | 
 |  | 
 |     /// VSRC, CHAIN = SEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory | 
 |     /// that sign-extends. | 
 |     SEXT_LD_SPLAT, | 
 |  | 
 |     /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian. | 
 |     /// Maps directly to an stxvd2x instruction that will be preceded by | 
 |     /// an xxswapd. | 
 |     STXVD2X, | 
 |  | 
 |     /// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian. | 
 |     /// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on | 
 |     /// the vector type to store vector in big-endian element order. | 
 |     STORE_VEC_BE, | 
 |  | 
 |     /// Store scalar integers from VSR. | 
 |     ST_VSR_SCAL_INT, | 
 |  | 
 |     /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes | 
 |     /// except they ensure that the compare input is zero-extended for | 
 |     /// sub-word versions because the atomic loads zero-extend. | 
 |     ATOMIC_CMP_SWAP_8, | 
 |     ATOMIC_CMP_SWAP_16, | 
 |  | 
 |     /// CHAIN,Glue = STORE_COND CHAIN, GPR, Ptr | 
 |     /// The store conditional instruction ST[BHWD]ARX that produces a glue | 
 |     /// result to attach it to a conditional branch. | 
 |     STORE_COND, | 
 |  | 
 |     /// GPRC = TOC_ENTRY GA, TOC | 
 |     /// Loads the entry for GA from the TOC, where the TOC base is given by | 
 |     /// the last operand. | 
 |     TOC_ENTRY, | 
 |     LAST_MEMORY_OPCODE = TOC_ENTRY, | 
 |   }; | 
 |  | 
 |   } // end namespace PPCISD | 
 |  | 
 |   /// Define some predicates that are used for node matching. | 
 |   namespace PPC { | 
 |  | 
 |     /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a | 
 |     /// VPKUHUM instruction. | 
 |     bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, | 
 |                               SelectionDAG &DAG); | 
 |  | 
 |     /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a | 
 |     /// VPKUWUM instruction. | 
 |     bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, | 
 |                               SelectionDAG &DAG); | 
 |  | 
 |     /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a | 
 |     /// VPKUDUM instruction. | 
 |     bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, | 
 |                               SelectionDAG &DAG); | 
 |  | 
 |     /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for | 
 |     /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). | 
 |     bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, | 
 |                             unsigned ShuffleKind, SelectionDAG &DAG); | 
 |  | 
 |     /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for | 
 |     /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). | 
 |     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, | 
 |                             unsigned ShuffleKind, SelectionDAG &DAG); | 
 |  | 
 |     /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for | 
 |     /// a VMRGEW or VMRGOW instruction | 
 |     bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, | 
 |                              unsigned ShuffleKind, SelectionDAG &DAG); | 
 |     /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable | 
 |     /// for a XXSLDWI instruction. | 
 |     bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, | 
 |                               bool &Swap, bool IsLE); | 
 |  | 
 |     /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable | 
 |     /// for a XXBRH instruction. | 
 |     bool isXXBRHShuffleMask(ShuffleVectorSDNode *N); | 
 |  | 
 |     /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable | 
 |     /// for a XXBRW instruction. | 
 |     bool isXXBRWShuffleMask(ShuffleVectorSDNode *N); | 
 |  | 
 |     /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable | 
 |     /// for a XXBRD instruction. | 
 |     bool isXXBRDShuffleMask(ShuffleVectorSDNode *N); | 
 |  | 
 |     /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable | 
 |     /// for a XXBRQ instruction. | 
 |     bool isXXBRQShuffleMask(ShuffleVectorSDNode *N); | 
 |  | 
 |     /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable | 
 |     /// for a XXPERMDI instruction. | 
 |     bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, | 
 |                               bool &Swap, bool IsLE); | 
 |  | 
 |     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the | 
 |     /// shift amount, otherwise return -1. | 
 |     int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, | 
 |                             SelectionDAG &DAG); | 
 |  | 
 |     /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand | 
 |     /// specifies a splat of a single element that is suitable for input to | 
 |     /// VSPLTB/VSPLTH/VSPLTW. | 
 |     bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize); | 
 |  | 
 |     /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by | 
 |     /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any | 
 |     /// shuffle of v4f32/v4i32 vectors that just inserts one element from one | 
 |     /// vector into the other. This function will also set a couple of | 
 |     /// output parameters for how much the source vector needs to be shifted and | 
 |     /// what byte number needs to be specified for the instruction to put the | 
 |     /// element in the desired location of the target vector. | 
 |     bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, | 
 |                          unsigned &InsertAtByte, bool &Swap, bool IsLE); | 
 |  | 
 |     /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is | 
 |     /// appropriate for PPC mnemonics (which have a big endian bias - namely | 
 |     /// elements are counted from the left of the vector register). | 
 |     unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, | 
 |                                         SelectionDAG &DAG); | 
 |  | 
 |     /// get_VSPLTI_elt - If this is a build_vector of constants which can be | 
 |     /// formed by using a vspltis[bhw] instruction of the specified element | 
 |     /// size, return the constant being splatted.  The ByteSize field indicates | 
 |     /// the number of bytes of each element [124] -> [bhw]. | 
 |     SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG); | 
 |  | 
 |     // Flags for computing the optimal addressing mode for loads and stores. | 
 |     enum MemOpFlags { | 
 |       MOF_None = 0, | 
 |  | 
 |       // Extension mode for integer loads. | 
 |       MOF_SExt = 1, | 
 |       MOF_ZExt = 1 << 1, | 
 |       MOF_NoExt = 1 << 2, | 
 |  | 
 |       // Address computation flags. | 
 |       MOF_NotAddNorCst = 1 << 5,      // Not const. or sum of ptr and scalar. | 
 |       MOF_RPlusSImm16 = 1 << 6,       // Reg plus signed 16-bit constant. | 
 |       MOF_RPlusLo = 1 << 7,           // Reg plus signed 16-bit relocation | 
 |       MOF_RPlusSImm16Mult4 = 1 << 8,  // Reg plus 16-bit signed multiple of 4. | 
 |       MOF_RPlusSImm16Mult16 = 1 << 9, // Reg plus 16-bit signed multiple of 16. | 
 |       MOF_RPlusSImm34 = 1 << 10,      // Reg plus 34-bit signed constant. | 
 |       MOF_RPlusR = 1 << 11,           // Sum of two variables. | 
 |       MOF_PCRel = 1 << 12,            // PC-Relative relocation. | 
 |       MOF_AddrIsSImm32 = 1 << 13,     // A simple 32-bit constant. | 
 |  | 
 |       // The in-memory type. | 
 |       MOF_SubWordInt = 1 << 15, | 
 |       MOF_WordInt = 1 << 16, | 
 |       MOF_DoubleWordInt = 1 << 17, | 
 |       MOF_ScalarFloat = 1 << 18, // Scalar single or double precision. | 
 |       MOF_Vector = 1 << 19,      // Vector types and quad precision scalars. | 
 |       MOF_Vector256 = 1 << 20, | 
 |  | 
 |       // Subtarget features. | 
 |       MOF_SubtargetBeforeP9 = 1 << 22, | 
 |       MOF_SubtargetP9 = 1 << 23, | 
 |       MOF_SubtargetP10 = 1 << 24, | 
 |       MOF_SubtargetSPE = 1 << 25 | 
 |     }; | 
 |  | 
 |     // The addressing modes for loads and stores. | 
 |     enum AddrMode { | 
 |       AM_None, | 
 |       AM_DForm, | 
 |       AM_DSForm, | 
 |       AM_DQForm, | 
 |       AM_PrefixDForm, | 
 |       AM_XForm, | 
 |       AM_PCRel | 
 |     }; | 
 |   } // end namespace PPC | 
 |  | 
 |   class PPCTargetLowering : public TargetLowering { | 
 |     const PPCSubtarget &Subtarget; | 
 |  | 
 |   public: | 
 |     explicit PPCTargetLowering(const PPCTargetMachine &TM, | 
 |                                const PPCSubtarget &STI); | 
 |  | 
 |     /// getTargetNodeName() - This method returns the name of a target specific | 
 |     /// DAG node. | 
 |     const char *getTargetNodeName(unsigned Opcode) const override; | 
 |  | 
 |     bool isSelectSupported(SelectSupportKind Kind) const override { | 
 |       // PowerPC does not support scalar condition selects on vectors. | 
 |       return (Kind != SelectSupportKind::ScalarCondVectorVal); | 
 |     } | 
 |  | 
 |     /// getPreferredVectorAction - The code we generate when vector types are | 
 |     /// legalized by promoting the integer element type is often much worse | 
 |     /// than code we generate if we widen the type for applicable vector types. | 
 |     /// The issue with promoting is that the vector is scalaraized, individual | 
 |     /// elements promoted and then the vector is rebuilt. So say we load a pair | 
 |     /// of v4i8's and shuffle them. This will turn into a mess of 8 extending | 
 |     /// loads, moves back into VSR's (or memory ops if we don't have moves) and | 
 |     /// then the VPERM for the shuffle. All in all a very slow sequence. | 
 |     TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) | 
 |       const override { | 
 |       // Default handling for scalable and single-element vectors. | 
 |       if (VT.isScalableVector() || VT.getVectorNumElements() == 1) | 
 |         return TargetLoweringBase::getPreferredVectorAction(VT); | 
 |  | 
 |       // Split and promote vNi1 vectors so we don't produce v256i1/v512i1 | 
 |       // types as those are only for MMA instructions. | 
 |       if (VT.getScalarSizeInBits() == 1 && VT.getSizeInBits() > 16) | 
 |         return TypeSplitVector; | 
 |       if (VT.getScalarSizeInBits() == 1) | 
 |         return TypePromoteInteger; | 
 |  | 
 |       // Widen vectors that have reasonably sized elements. | 
 |       if (VT.getScalarSizeInBits() % 8 == 0) | 
 |         return TypeWidenVector; | 
 |       return TargetLoweringBase::getPreferredVectorAction(VT); | 
 |     } | 
 |  | 
 |     bool useSoftFloat() const override; | 
 |  | 
 |     bool hasSPE() const; | 
 |  | 
 |     MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override { | 
 |       return MVT::i32; | 
 |     } | 
 |  | 
 |     bool isCheapToSpeculateCttz(Type *Ty) const override { | 
 |       return true; | 
 |     } | 
 |  | 
 |     bool isCheapToSpeculateCtlz(Type *Ty) const override { | 
 |       return true; | 
 |     } | 
 |  | 
 |     bool | 
 |     shallExtractConstSplatVectorElementToStore(Type *VectorTy, | 
 |                                                unsigned ElemSizeInBits, | 
 |                                                unsigned &Index) const override; | 
 |  | 
 |     bool isCtlzFast() const override { | 
 |       return true; | 
 |     } | 
 |  | 
 |     bool isEqualityCmpFoldedWithSignedCmp() const override { | 
 |       return false; | 
 |     } | 
 |  | 
 |     bool hasAndNotCompare(SDValue) const override { | 
 |       return true; | 
 |     } | 
 |  | 
 |     bool preferIncOfAddToSubOfNot(EVT VT) const override; | 
 |  | 
 |     bool convertSetCCLogicToBitwiseLogic(EVT VT) const override { | 
 |       return VT.isScalarInteger(); | 
 |     } | 
 |  | 
 |     SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, | 
 |                                  bool OptForSize, NegatibleCost &Cost, | 
 |                                  unsigned Depth = 0) const override; | 
 |  | 
 |     /// getSetCCResultType - Return the ISD::SETCC ValueType | 
 |     EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, | 
 |                            EVT VT) const override; | 
 |  | 
 |     /// Return true if target always benefits from combining into FMA for a | 
 |     /// given value type. This must typically return false on targets where FMA | 
 |     /// takes more cycles to execute than FADD. | 
 |     bool enableAggressiveFMAFusion(EVT VT) const override; | 
 |  | 
 |     /// getPreIndexedAddressParts - returns true by value, base pointer and | 
 |     /// offset pointer and addressing mode by reference if the node's address | 
 |     /// can be legally represented as pre-indexed load / store address. | 
 |     bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, | 
 |                                    SDValue &Offset, | 
 |                                    ISD::MemIndexedMode &AM, | 
 |                                    SelectionDAG &DAG) const override; | 
 |  | 
 |     /// SelectAddressEVXRegReg - Given the specified addressed, check to see if | 
 |     /// it can be more efficiently represented as [r+imm]. | 
 |     bool SelectAddressEVXRegReg(SDValue N, SDValue &Base, SDValue &Index, | 
 |                                 SelectionDAG &DAG) const; | 
 |  | 
 |     /// SelectAddressRegReg - Given the specified addressed, check to see if it | 
 |     /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment | 
 |     /// is non-zero, only accept displacement which is not suitable for [r+imm]. | 
 |     /// Returns false if it can be represented by [r+imm], which are preferred. | 
 |     bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index, | 
 |                              SelectionDAG &DAG, | 
 |                              MaybeAlign EncodingAlignment = std::nullopt) const; | 
 |  | 
 |     /// SelectAddressRegImm - Returns true if the address N can be represented | 
 |     /// by a base register plus a signed 16-bit displacement [r+imm], and if it | 
 |     /// is not better represented as reg+reg. If \p EncodingAlignment is | 
 |     /// non-zero, only accept displacements suitable for instruction encoding | 
 |     /// requirement, i.e. multiples of 4 for DS form. | 
 |     bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base, | 
 |                              SelectionDAG &DAG, | 
 |                              MaybeAlign EncodingAlignment) const; | 
 |     bool SelectAddressRegImm34(SDValue N, SDValue &Disp, SDValue &Base, | 
 |                                SelectionDAG &DAG) const; | 
 |  | 
 |     /// SelectAddressRegRegOnly - Given the specified addressed, force it to be | 
 |     /// represented as an indexed [r+r] operation. | 
 |     bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index, | 
 |                                  SelectionDAG &DAG) const; | 
 |  | 
 |     /// SelectAddressPCRel - Represent the specified address as pc relative to | 
 |     /// be represented as [pc+imm] | 
 |     bool SelectAddressPCRel(SDValue N, SDValue &Base) const; | 
 |  | 
 |     Sched::Preference getSchedulingPreference(SDNode *N) const override; | 
 |  | 
 |     /// LowerOperation - Provide custom lowering hooks for some operations. | 
 |     /// | 
 |     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; | 
 |  | 
 |     /// ReplaceNodeResults - Replace the results of node with an illegal result | 
 |     /// type with new values built out of custom code. | 
 |     /// | 
 |     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results, | 
 |                             SelectionDAG &DAG) const override; | 
 |  | 
 |     SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const; | 
 |     SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const; | 
 |  | 
 |     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; | 
 |  | 
 |     SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, | 
 |                           SmallVectorImpl<SDNode *> &Created) const override; | 
 |  | 
 |     Register getRegisterByName(const char* RegName, LLT VT, | 
 |                                const MachineFunction &MF) const override; | 
 |  | 
 |     void computeKnownBitsForTargetNode(const SDValue Op, | 
 |                                        KnownBits &Known, | 
 |                                        const APInt &DemandedElts, | 
 |                                        const SelectionDAG &DAG, | 
 |                                        unsigned Depth = 0) const override; | 
 |  | 
 |     Align getPrefLoopAlignment(MachineLoop *ML) const override; | 
 |  | 
 |     bool shouldInsertFencesForAtomic(const Instruction *I) const override { | 
 |       return true; | 
 |     } | 
 |  | 
 |     Value *emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, Value *Addr, | 
 |                           AtomicOrdering Ord) const override; | 
 |  | 
 |     Value *emitStoreConditional(IRBuilderBase &Builder, Value *Val, Value *Addr, | 
 |                                 AtomicOrdering Ord) const override; | 
 |  | 
 |     Instruction *emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, | 
 |                                   AtomicOrdering Ord) const override; | 
 |     Instruction *emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, | 
 |                                    AtomicOrdering Ord) const override; | 
 |  | 
 |     bool shouldInlineQuadwordAtomics() const; | 
 |  | 
 |     TargetLowering::AtomicExpansionKind | 
 |     shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override; | 
 |  | 
 |     TargetLowering::AtomicExpansionKind | 
 |     shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override; | 
 |  | 
 |     Value *emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, | 
 |                                         AtomicRMWInst *AI, Value *AlignedAddr, | 
 |                                         Value *Incr, Value *Mask, | 
 |                                         Value *ShiftAmt, | 
 |                                         AtomicOrdering Ord) const override; | 
 |     Value *emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder, | 
 |                                             AtomicCmpXchgInst *CI, | 
 |                                             Value *AlignedAddr, Value *CmpVal, | 
 |                                             Value *NewVal, Value *Mask, | 
 |                                             AtomicOrdering Ord) const override; | 
 |  | 
 |     MachineBasicBlock * | 
 |     EmitInstrWithCustomInserter(MachineInstr &MI, | 
 |                                 MachineBasicBlock *MBB) const override; | 
 |     MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI, | 
 |                                         MachineBasicBlock *MBB, | 
 |                                         unsigned AtomicSize, | 
 |                                         unsigned BinOpcode, | 
 |                                         unsigned CmpOpcode = 0, | 
 |                                         unsigned CmpPred = 0) const; | 
 |     MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI, | 
 |                                                 MachineBasicBlock *MBB, | 
 |                                                 bool is8bit, | 
 |                                                 unsigned Opcode, | 
 |                                                 unsigned CmpOpcode = 0, | 
 |                                                 unsigned CmpPred = 0) const; | 
 |  | 
 |     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI, | 
 |                                         MachineBasicBlock *MBB) const; | 
 |  | 
 |     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI, | 
 |                                          MachineBasicBlock *MBB) const; | 
 |  | 
 |     MachineBasicBlock *emitProbedAlloca(MachineInstr &MI, | 
 |                                         MachineBasicBlock *MBB) const; | 
 |  | 
 |     bool hasInlineStackProbe(const MachineFunction &MF) const override; | 
 |  | 
 |     unsigned getStackProbeSize(const MachineFunction &MF) const; | 
 |  | 
 |     ConstraintType getConstraintType(StringRef Constraint) const override; | 
 |  | 
 |     /// Examine constraint string and operand type and determine a weight value. | 
 |     /// The operand object must already have been set up with the operand type. | 
 |     ConstraintWeight getSingleConstraintMatchWeight( | 
 |       AsmOperandInfo &info, const char *constraint) const override; | 
 |  | 
 |     std::pair<unsigned, const TargetRegisterClass *> | 
 |     getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, | 
 |                                  StringRef Constraint, MVT VT) const override; | 
 |  | 
 |     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate | 
 |     /// function arguments in the caller parameter area. | 
 |     Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const override; | 
 |  | 
 |     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops | 
 |     /// vector.  If it is invalid, don't add anything to Ops. | 
 |     void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, | 
 |                                       std::vector<SDValue> &Ops, | 
 |                                       SelectionDAG &DAG) const override; | 
 |  | 
 |     InlineAsm::ConstraintCode | 
 |     getInlineAsmMemConstraint(StringRef ConstraintCode) const override { | 
 |       if (ConstraintCode == "es") | 
 |         return InlineAsm::ConstraintCode::es; | 
 |       else if (ConstraintCode == "Q") | 
 |         return InlineAsm::ConstraintCode::Q; | 
 |       else if (ConstraintCode == "Z") | 
 |         return InlineAsm::ConstraintCode::Z; | 
 |       else if (ConstraintCode == "Zy") | 
 |         return InlineAsm::ConstraintCode::Zy; | 
 |       return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); | 
 |     } | 
 |  | 
 |     void CollectTargetIntrinsicOperands(const CallInst &I, | 
 |                                  SmallVectorImpl<SDValue> &Ops, | 
 |                                  SelectionDAG &DAG) const override; | 
 |  | 
 |     /// isLegalAddressingMode - Return true if the addressing mode represented | 
 |     /// by AM is legal for this target, for a load/store of the specified type. | 
 |     bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, | 
 |                                Type *Ty, unsigned AS, | 
 |                                Instruction *I = nullptr) const override; | 
 |  | 
 |     /// isLegalICmpImmediate - Return true if the specified immediate is legal | 
 |     /// icmp immediate, that is the target has icmp instructions which can | 
 |     /// compare a register against the immediate without having to materialize | 
 |     /// the immediate into a register. | 
 |     bool isLegalICmpImmediate(int64_t Imm) const override; | 
 |  | 
 |     /// isLegalAddImmediate - Return true if the specified immediate is legal | 
 |     /// add immediate, that is the target has add instructions which can | 
 |     /// add a register and the immediate without having to materialize | 
 |     /// the immediate into a register. | 
 |     bool isLegalAddImmediate(int64_t Imm) const override; | 
 |  | 
 |     /// isTruncateFree - Return true if it's free to truncate a value of | 
 |     /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in | 
 |     /// register X1 to i32 by referencing its sub-register R1. | 
 |     bool isTruncateFree(Type *Ty1, Type *Ty2) const override; | 
 |     bool isTruncateFree(EVT VT1, EVT VT2) const override; | 
 |  | 
 |     bool isZExtFree(SDValue Val, EVT VT2) const override; | 
 |  | 
 |     bool isFPExtFree(EVT DestVT, EVT SrcVT) const override; | 
 |  | 
 |     /// Returns true if it is beneficial to convert a load of a constant | 
 |     /// to just the constant itself. | 
 |     bool shouldConvertConstantLoadToIntImm(const APInt &Imm, | 
 |                                            Type *Ty) const override; | 
 |  | 
 |     bool convertSelectOfConstantsToMath(EVT VT) const override { | 
 |       return true; | 
 |     } | 
 |  | 
 |     bool decomposeMulByConstant(LLVMContext &Context, EVT VT, | 
 |                                 SDValue C) const override; | 
 |  | 
 |     bool isDesirableToTransformToIntegerOp(unsigned Opc, | 
 |                                            EVT VT) const override { | 
 |       // Only handle float load/store pair because float(fpr) load/store | 
 |       // instruction has more cycles than integer(gpr) load/store in PPC. | 
 |       if (Opc != ISD::LOAD && Opc != ISD::STORE) | 
 |         return false; | 
 |       if (VT != MVT::f32 && VT != MVT::f64) | 
 |         return false; | 
 |  | 
 |       return true; | 
 |     } | 
 |  | 
 |     // Returns true if the address of the global is stored in TOC entry. | 
 |     bool isAccessedAsGotIndirect(SDValue N) const; | 
 |  | 
 |     bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override; | 
 |  | 
 |     bool getTgtMemIntrinsic(IntrinsicInfo &Info, | 
 |                             const CallInst &I, | 
 |                             MachineFunction &MF, | 
 |                             unsigned Intrinsic) const override; | 
 |  | 
 |     /// It returns EVT::Other if the type should be determined using generic | 
 |     /// target-independent logic. | 
 |     EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, | 
 |                             const AttributeList &FuncAttributes) const override; | 
 |  | 
 |     /// Is unaligned memory access allowed for the given type, and is it fast | 
 |     /// relative to software emulation. | 
 |     bool allowsMisalignedMemoryAccesses( | 
 |         EVT VT, unsigned AddrSpace, Align Alignment = Align(1), | 
 |         MachineMemOperand::Flags Flags = MachineMemOperand::MONone, | 
 |         unsigned *Fast = nullptr) const override; | 
 |  | 
 |     /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster | 
 |     /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be | 
 |     /// expanded to FMAs when this method returns true, otherwise fmuladd is | 
 |     /// expanded to fmul + fadd. | 
 |     bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, | 
 |                                     EVT VT) const override; | 
 |  | 
 |     bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const override; | 
 |  | 
 |     /// isProfitableToHoist - Check if it is profitable to hoist instruction | 
 |     /// \p I to its dominator block. | 
 |     /// For example, it is not profitable if \p I and it's only user can form a | 
 |     /// FMA instruction, because Powerpc prefers FMADD. | 
 |     bool isProfitableToHoist(Instruction *I) const override; | 
 |  | 
 |     const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override; | 
 |  | 
 |     // Should we expand the build vector with shuffles? | 
 |     bool | 
 |     shouldExpandBuildVectorWithShuffles(EVT VT, | 
 |                                         unsigned DefinedValues) const override; | 
 |  | 
 |     // Keep the zero-extensions for arguments to libcalls. | 
 |     bool shouldKeepZExtForFP16Conv() const override { return true; } | 
 |  | 
 |     /// createFastISel - This method returns a target-specific FastISel object, | 
 |     /// or null if the target does not support "fast" instruction selection. | 
 |     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo, | 
 |                              const TargetLibraryInfo *LibInfo) const override; | 
 |  | 
 |     /// Returns true if an argument of type Ty needs to be passed in a | 
 |     /// contiguous block of registers in calling convention CallConv. | 
 |     bool functionArgumentNeedsConsecutiveRegisters( | 
 |         Type *Ty, CallingConv::ID CallConv, bool isVarArg, | 
 |         const DataLayout &DL) const override { | 
 |       // We support any array type as "consecutive" block in the parameter | 
 |       // save area.  The element type defines the alignment requirement and | 
 |       // whether the argument should go in GPRs, FPRs, or VRs if available. | 
 |       // | 
 |       // Note that clang uses this capability both to implement the ELFv2 | 
 |       // homogeneous float/vector aggregate ABI, and to avoid having to use | 
 |       // "byval" when passing aggregates that might fully fit in registers. | 
 |       return Ty->isArrayTy(); | 
 |     } | 
 |  | 
 |     /// If a physical register, this returns the register that receives the | 
 |     /// exception address on entry to an EH pad. | 
 |     Register | 
 |     getExceptionPointerRegister(const Constant *PersonalityFn) const override; | 
 |  | 
 |     /// If a physical register, this returns the register that receives the | 
 |     /// exception typeid on entry to a landing pad. | 
 |     Register | 
 |     getExceptionSelectorRegister(const Constant *PersonalityFn) const override; | 
 |  | 
 |     /// Override to support customized stack guard loading. | 
 |     bool useLoadStackGuardNode(const Module &M) const override; | 
 |  | 
 |     bool isFPImmLegal(const APFloat &Imm, EVT VT, | 
 |                       bool ForCodeSize) const override; | 
 |  | 
 |     unsigned getJumpTableEncoding() const override; | 
 |     bool isJumpTableRelative() const override; | 
 |     SDValue getPICJumpTableRelocBase(SDValue Table, | 
 |                                      SelectionDAG &DAG) const override; | 
 |     const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF, | 
 |                                                unsigned JTI, | 
 |                                                MCContext &Ctx) const override; | 
 |  | 
 |     /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), | 
 |     /// compute the address flags of the node, get the optimal address mode | 
 |     /// based on the flags, and set the Base and Disp based on the address mode. | 
 |     PPC::AddrMode SelectOptimalAddrMode(const SDNode *Parent, SDValue N, | 
 |                                         SDValue &Disp, SDValue &Base, | 
 |                                         SelectionDAG &DAG, | 
 |                                         MaybeAlign Align) const; | 
 |     /// SelectForceXFormMode - Given the specified address, force it to be | 
 |     /// represented as an indexed [r+r] operation (an XForm instruction). | 
 |     PPC::AddrMode SelectForceXFormMode(SDValue N, SDValue &Disp, SDValue &Base, | 
 |                                        SelectionDAG &DAG) const; | 
 |  | 
 |     bool splitValueIntoRegisterParts( | 
 |         SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, | 
 |         unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) | 
 |         const override; | 
 |     /// Structure that collects some common arguments that get passed around | 
 |     /// between the functions for call lowering. | 
 |     struct CallFlags { | 
 |       const CallingConv::ID CallConv; | 
 |       const bool IsTailCall : 1; | 
 |       const bool IsVarArg : 1; | 
 |       const bool IsPatchPoint : 1; | 
 |       const bool IsIndirect : 1; | 
 |       const bool HasNest : 1; | 
 |       const bool NoMerge : 1; | 
 |  | 
 |       CallFlags(CallingConv::ID CC, bool IsTailCall, bool IsVarArg, | 
 |                 bool IsPatchPoint, bool IsIndirect, bool HasNest, bool NoMerge) | 
 |           : CallConv(CC), IsTailCall(IsTailCall), IsVarArg(IsVarArg), | 
 |             IsPatchPoint(IsPatchPoint), IsIndirect(IsIndirect), | 
 |             HasNest(HasNest), NoMerge(NoMerge) {} | 
 |     }; | 
 |  | 
 |     CCAssignFn *ccAssignFnForCall(CallingConv::ID CC, bool Return, | 
 |                                   bool IsVarArg) const; | 
 |     bool supportsTailCallFor(const CallBase *CB) const; | 
 |  | 
 |     bool hasMultipleConditionRegisters(EVT VT) const override; | 
 |  | 
 |   private: | 
 |     struct ReuseLoadInfo { | 
 |       SDValue Ptr; | 
 |       SDValue Chain; | 
 |       SDValue ResChain; | 
 |       MachinePointerInfo MPI; | 
 |       bool IsDereferenceable = false; | 
 |       bool IsInvariant = false; | 
 |       Align Alignment; | 
 |       AAMDNodes AAInfo; | 
 |       const MDNode *Ranges = nullptr; | 
 |  | 
 |       ReuseLoadInfo() = default; | 
 |  | 
 |       MachineMemOperand::Flags MMOFlags() const { | 
 |         MachineMemOperand::Flags F = MachineMemOperand::MONone; | 
 |         if (IsDereferenceable) | 
 |           F |= MachineMemOperand::MODereferenceable; | 
 |         if (IsInvariant) | 
 |           F |= MachineMemOperand::MOInvariant; | 
 |         return F; | 
 |       } | 
 |     }; | 
 |  | 
 |     // Map that relates a set of common address flags to PPC addressing modes. | 
 |     std::map<PPC::AddrMode, SmallVector<unsigned, 16>> AddrModesMap; | 
 |     void initializeAddrModeMap(); | 
 |  | 
 |     bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI, | 
 |                              SelectionDAG &DAG, | 
 |                              ISD::LoadExtType ET = ISD::NON_EXTLOAD) const; | 
 |  | 
 |     void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, | 
 |                                 SelectionDAG &DAG, const SDLoc &dl) const; | 
 |     SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG, | 
 |                                      const SDLoc &dl) const; | 
 |  | 
 |     bool directMoveIsProfitable(const SDValue &Op) const; | 
 |     SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG, | 
 |                                      const SDLoc &dl) const; | 
 |  | 
 |     SDValue LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, | 
 |                                  const SDLoc &dl) const; | 
 |  | 
 |     SDValue LowerTRUNCATEVector(SDValue Op, SelectionDAG &DAG) const; | 
 |  | 
 |     SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const; | 
 |     SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const; | 
 |  | 
 |     bool IsEligibleForTailCallOptimization( | 
 |         const GlobalValue *CalleeGV, CallingConv::ID CalleeCC, | 
 |         CallingConv::ID CallerCC, bool isVarArg, | 
 |         const SmallVectorImpl<ISD::InputArg> &Ins) const; | 
 |  | 
 |     bool IsEligibleForTailCallOptimization_64SVR4( | 
 |         const GlobalValue *CalleeGV, CallingConv::ID CalleeCC, | 
 |         CallingConv::ID CallerCC, const CallBase *CB, bool isVarArg, | 
 |         const SmallVectorImpl<ISD::OutputArg> &Outs, | 
 |         const SmallVectorImpl<ISD::InputArg> &Ins, const Function *CallerFunc, | 
 |         bool isCalleeExternalSymbol) const; | 
 |  | 
 |     bool isEligibleForTCO(const GlobalValue *CalleeGV, CallingConv::ID CalleeCC, | 
 |                           CallingConv::ID CallerCC, const CallBase *CB, | 
 |                           bool isVarArg, | 
 |                           const SmallVectorImpl<ISD::OutputArg> &Outs, | 
 |                           const SmallVectorImpl<ISD::InputArg> &Ins, | 
 |                           const Function *CallerFunc, | 
 |                           bool isCalleeExternalSymbol) const; | 
 |  | 
 |     SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff, | 
 |                                          SDValue Chain, SDValue &LROpOut, | 
 |                                          SDValue &FPOpOut, | 
 |                                          const SDLoc &dl) const; | 
 |  | 
 |     SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, SDValue GA) const; | 
 |  | 
 |     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerGlobalTLSAddressAIX(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerGlobalTLSAddressLinux(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerSSUBO(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, | 
 |                            const SDLoc &dl) const; | 
 |     SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerFunnelShift(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerVPERM(SDValue Op, SelectionDAG &DAG, ArrayRef<int> PermMask, | 
 |                        EVT VT, SDValue V1, SDValue V2) const; | 
 |     SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerIS_FPCLASS(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerADDSUBO_CARRY(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerADDSUBO(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue lowerToLibCall(const char *LibCallName, SDValue Op, | 
 |                            SelectionDAG &DAG) const; | 
 |     SDValue lowerLibCallBasedOnType(const char *LibCallFloatName, | 
 |                                     const char *LibCallDoubleName, SDValue Op, | 
 |                                     SelectionDAG &DAG) const; | 
 |     bool isLowringToMASSFiniteSafe(SDValue Op) const; | 
 |     bool isLowringToMASSSafe(SDValue Op) const; | 
 |     bool isScalarMASSConversionEnabled() const; | 
 |     SDValue lowerLibCallBase(const char *LibCallDoubleName, | 
 |                              const char *LibCallFloatName, | 
 |                              const char *LibCallDoubleNameFinite, | 
 |                              const char *LibCallFloatNameFinite, SDValue Op, | 
 |                              SelectionDAG &DAG) const; | 
 |     SDValue lowerPow(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue lowerSin(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue lowerCos(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue lowerLog(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue lowerLog10(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue lowerExp(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerROTL(SDValue Op, SelectionDAG &DAG) const; | 
 |  | 
 |     SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerDMFVectorLoad(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerDMFVectorStore(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue DMFInsert1024(const SmallVectorImpl<SDValue> &Pairs, | 
 |                           const SDLoc &dl, SelectionDAG &DAG) const; | 
 |  | 
 |     SDValue LowerCallResult(SDValue Chain, SDValue InGlue, | 
 |                             CallingConv::ID CallConv, bool isVarArg, | 
 |                             const SmallVectorImpl<ISD::InputArg> &Ins, | 
 |                             const SDLoc &dl, SelectionDAG &DAG, | 
 |                             SmallVectorImpl<SDValue> &InVals) const; | 
 |  | 
 |     SDValue FinishCall(CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, | 
 |                        SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, | 
 |                        SDValue InGlue, SDValue Chain, SDValue CallSeqStart, | 
 |                        SDValue &Callee, int SPDiff, unsigned NumBytes, | 
 |                        const SmallVectorImpl<ISD::InputArg> &Ins, | 
 |                        SmallVectorImpl<SDValue> &InVals, | 
 |                        const CallBase *CB) const; | 
 |  | 
 |     SDValue | 
 |     LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | 
 |                          const SmallVectorImpl<ISD::InputArg> &Ins, | 
 |                          const SDLoc &dl, SelectionDAG &DAG, | 
 |                          SmallVectorImpl<SDValue> &InVals) const override; | 
 |  | 
 |     SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, | 
 |                       SmallVectorImpl<SDValue> &InVals) const override; | 
 |  | 
 |     bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, | 
 |                         bool isVarArg, | 
 |                         const SmallVectorImpl<ISD::OutputArg> &Outs, | 
 |                         LLVMContext &Context, const Type *RetTy) const override; | 
 |  | 
 |     SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | 
 |                         const SmallVectorImpl<ISD::OutputArg> &Outs, | 
 |                         const SmallVectorImpl<SDValue> &OutVals, | 
 |                         const SDLoc &dl, SelectionDAG &DAG) const override; | 
 |  | 
 |     SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, | 
 |                               SelectionDAG &DAG, SDValue ArgVal, | 
 |                               const SDLoc &dl) const; | 
 |  | 
 |     SDValue LowerFormalArguments_AIX( | 
 |         SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | 
 |         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, | 
 |         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const; | 
 |     SDValue LowerFormalArguments_64SVR4( | 
 |         SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | 
 |         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, | 
 |         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const; | 
 |     SDValue LowerFormalArguments_32SVR4( | 
 |         SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | 
 |         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, | 
 |         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const; | 
 |  | 
 |     SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, | 
 |                                        SDValue CallSeqStart, | 
 |                                        ISD::ArgFlagsTy Flags, SelectionDAG &DAG, | 
 |                                        const SDLoc &dl) const; | 
 |  | 
 |     SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags, | 
 |                              const SmallVectorImpl<ISD::OutputArg> &Outs, | 
 |                              const SmallVectorImpl<SDValue> &OutVals, | 
 |                              const SmallVectorImpl<ISD::InputArg> &Ins, | 
 |                              const SDLoc &dl, SelectionDAG &DAG, | 
 |                              SmallVectorImpl<SDValue> &InVals, | 
 |                              const CallBase *CB) const; | 
 |     SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags, | 
 |                              const SmallVectorImpl<ISD::OutputArg> &Outs, | 
 |                              const SmallVectorImpl<SDValue> &OutVals, | 
 |                              const SmallVectorImpl<ISD::InputArg> &Ins, | 
 |                              const SDLoc &dl, SelectionDAG &DAG, | 
 |                              SmallVectorImpl<SDValue> &InVals, | 
 |                              const CallBase *CB) const; | 
 |     SDValue LowerCall_AIX(SDValue Chain, SDValue Callee, CallFlags CFlags, | 
 |                           const SmallVectorImpl<ISD::OutputArg> &Outs, | 
 |                           const SmallVectorImpl<SDValue> &OutVals, | 
 |                           const SmallVectorImpl<ISD::InputArg> &Ins, | 
 |                           const SDLoc &dl, SelectionDAG &DAG, | 
 |                           SmallVectorImpl<SDValue> &InVals, | 
 |                           const CallBase *CB) const; | 
 |  | 
 |     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const; | 
 |     SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const; | 
 |  | 
 |     SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const; | 
 |     SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const; | 
 |     SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const; | 
 |     SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const; | 
 |     SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const; | 
 |     SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const; | 
 |     SDValue combineVectorShift(SDNode *N, DAGCombinerInfo &DCI) const; | 
 |     SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const; | 
 |     SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const; | 
 |     SDValue combineMUL(SDNode *N, DAGCombinerInfo &DCI) const; | 
 |     SDValue combineADD(SDNode *N, DAGCombinerInfo &DCI) const; | 
 |     SDValue combineFMALike(SDNode *N, DAGCombinerInfo &DCI) const; | 
 |     SDValue combineTRUNCATE(SDNode *N, DAGCombinerInfo &DCI) const; | 
 |     SDValue combineSetCC(SDNode *N, DAGCombinerInfo &DCI) const; | 
 |     SDValue combineVectorShuffle(ShuffleVectorSDNode *SVN, | 
 |                                  SelectionDAG &DAG) const; | 
 |     SDValue combineVReverseMemOP(ShuffleVectorSDNode *SVN, LSBaseSDNode *LSBase, | 
 |                                  DAGCombinerInfo &DCI) const; | 
 |  | 
 |     /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces | 
 |     /// SETCC with integer subtraction when (1) there is a legal way of doing it | 
 |     /// (2) keeping the result of comparison in GPR has performance benefit. | 
 |     SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const; | 
 |  | 
 |     SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, | 
 |                             int &RefinementSteps, bool &UseOneConstNR, | 
 |                             bool Reciprocal) const override; | 
 |     SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, | 
 |                              int &RefinementSteps) const override; | 
 |     SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, | 
 |                              const DenormalMode &Mode) const override; | 
 |     SDValue getSqrtResultForDenormInput(SDValue Operand, | 
 |                                         SelectionDAG &DAG) const override; | 
 |     unsigned combineRepeatedFPDivisors() const override; | 
 |  | 
 |     SDValue | 
 |     combineElementTruncationToVectorTruncation(SDNode *N, | 
 |                                                DAGCombinerInfo &DCI) const; | 
 |  | 
 |     /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be | 
 |     /// handled by the VINSERTH instruction introduced in ISA 3.0. This is | 
 |     /// essentially any shuffle of v8i16 vectors that just inserts one element | 
 |     /// from one vector into the other. | 
 |     SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const; | 
 |  | 
 |     /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be | 
 |     /// handled by the VINSERTB instruction introduced in ISA 3.0. This is | 
 |     /// essentially v16i8 vector version of VINSERTH. | 
 |     SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const; | 
 |  | 
 |     /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be | 
 |     /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1. | 
 |     SDValue lowerToXXSPLTI32DX(ShuffleVectorSDNode *N, SelectionDAG &DAG) const; | 
 |  | 
 |     // Return whether the call instruction can potentially be optimized to a | 
 |     // tail call. This will cause the optimizers to attempt to move, or | 
 |     // duplicate return instructions to help enable tail call optimizations. | 
 |     bool mayBeEmittedAsTailCall(const CallInst *CI) const override; | 
 |     bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override; | 
 |  | 
 |     /// getAddrModeForFlags - Based on the set of address flags, select the most | 
 |     /// optimal instruction format to match by. | 
 |     PPC::AddrMode getAddrModeForFlags(unsigned Flags) const; | 
 |  | 
 |     /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute | 
 |     /// the address flags of the load/store instruction that is to be matched. | 
 |     /// The address flags are stored in a map, which is then searched | 
 |     /// through to determine the optimal load/store instruction format. | 
 |     unsigned computeMOFlags(const SDNode *Parent, SDValue N, | 
 |                             SelectionDAG &DAG) const; | 
 |   }; // end class PPCTargetLowering | 
 |  | 
 |   namespace PPC { | 
 |  | 
 |     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo, | 
 |                              const TargetLibraryInfo *LibInfo); | 
 |  | 
 |   } // end namespace PPC | 
 |  | 
 |   bool isIntS16Immediate(SDNode *N, int16_t &Imm); | 
 |   bool isIntS16Immediate(SDValue Op, int16_t &Imm); | 
 |   bool isIntS34Immediate(SDNode *N, int64_t &Imm); | 
 |   bool isIntS34Immediate(SDValue Op, int64_t &Imm); | 
 |  | 
 |   bool convertToNonDenormSingle(APInt &ArgAPInt); | 
 |   bool convertToNonDenormSingle(APFloat &ArgAPFloat); | 
 |   bool checkConvertToNonDenormSingle(APFloat &ArgAPFloat); | 
 |  | 
 | } // end namespace llvm | 
 |  | 
 | #endif // LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H |