| // RUN: mlir-opt --transform-interpreter --cse -split-input-file %s | FileCheck %s |
| |
| func.func @simple_matmul(%arg0 : tensor<?x?xf32>, %arg1 : tensor<?x?xf32>, |
| %arg2 : tensor<?x?xf32>) -> tensor<?x?xf32> { |
| %0 = linalg.matmul ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>) |
| outs(%arg2 : tensor<?x?xf32>) -> tensor<?x?xf32> |
| return %0 : tensor<?x?xf32> |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { |
| %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 |
| : (!transform.any_op) -> !transform.any_op |
| %a, %b, %c = transform.structured.tile_using_for %matmul [10, 20] |
| : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) |
| transform.yield |
| } |
| } |
| // CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0)[s0] -> (10, -d0 + s0)> |
| // CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0)[s0] -> (20, -d0 + s0)> |
| // CHECK-LABEL: func.func @simple_matmul( |
| // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<?x?xf32> |
| // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<?x?xf32> |
| // CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<?x?xf32> |
| // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index |
| // CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index |
| // CHECK-DAG: %[[C10:.+]] = arith.constant 10 : index |
| // CHECK-DAG: %[[M:.+]] = tensor.dim %[[ARG0]], %[[C0]] |
| // CHECK-DAG: %[[K:.+]] = tensor.dim %[[ARG0]], %[[C1]] |
| // CHECK-DAG: %[[N:.+]] = tensor.dim %[[ARG1]], %[[C1]] |
| // CHECK: %[[OUTER:[a-zA-Z0-9]+]] = scf.for %[[IV0:[a-zA-Z0-9]+]] = %[[C0]] to %[[M]] step %[[C10]] |
| // CHECK-SAME: iter_args(%[[INIT0:.+]] = %[[ARG2]]) |
| // CHECK-DAG: %[[C20:.+]] = arith.constant 20 : index |
| // CHECK: %[[INNER:[a-zA-Z0-9]+]] = scf.for %[[IV1:[a-zA-Z0-9]+]] = %[[C0]] to %[[N]] step %[[C20]] |
| // CHECK-SAME: iter_args(%[[INIT1:.+]] = %[[INIT0]]) |
| // CHECK-DAG: %[[TS_Y:.+]] = affine.min #[[$MAP0]](%[[IV0]])[%[[M]]] |
| // CHECK: %[[TS_X:.+]] = affine.min #[[$MAP1]](%[[IV1]])[%[[N]]] |
| // CHECK-DAG: %[[LHS_TILE:.+]] = tensor.extract_slice %[[ARG0]] |
| // CHECK-SAME: [%[[IV0]], 0] [%[[TS_Y]], %[[K]]] [1, 1] |
| // CHECK-DAG: %[[RHS_TILE:.+]] = tensor.extract_slice %[[ARG1]] |
| // CHECK-SAME: [0, %[[IV1]]] [%[[K]], %[[TS_X]]] [1, 1] |
| // CHECK-DAG: %[[INIT_TILE:.+]] = tensor.extract_slice %[[INIT1]] |
| // CHECK-SAME: [%[[IV0]], %[[IV1]]] [%[[TS_Y]], %[[TS_X]]] [1, 1] |
| // CHECK: %[[GEMM_TILE:.+]] = linalg.matmul |
| // CHECK-SAME: ins(%[[LHS_TILE]], %[[RHS_TILE]] : |
| // CHECK-SAME: outs(%[[INIT_TILE]] : |
| // CHECK: %[[UPDATE:.+]] = tensor.insert_slice %[[GEMM_TILE]] into %[[INIT1]] |
| // CHECK-SAME: [%[[IV0]], %[[IV1]]] [%[[TS_Y]], %[[TS_X]]] [1, 1] |
| // CHECK: scf.yield %[[UPDATE]] |
| // CHECK: scf.yield %[[INNER]] |
| // CHECK: return %[[OUTER]] |
| |
| // ----- |
| |
| func.func @simple_matmul_memref(%arg0 : memref<?x?xf32>, %arg1 : memref<?x?xf32>, |
| %arg2 : memref<?x?xf32>) { |
| linalg.matmul ins(%arg0, %arg1 : memref<?x?xf32>, memref<?x?xf32>) |
| outs(%arg2 : memref<?x?xf32>) |
| return |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { |
| %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 |
| : (!transform.any_op) -> !transform.any_op |
| %a, %b, %c, %d = transform.structured.tile_using_for %matmul [10, 20, 30] |
| : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op) |
| transform.yield |
| } |
| } |
| // CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0)[s0] -> (10, -d0 + s0)> |
| // CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0)[s0] -> (20, -d0 + s0)> |
| // CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0)[s0] -> (30, -d0 + s0)> |
| // CHECK-LABEL: func.func @simple_matmul_memref( |
| // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: memref<?x?xf32> |
| // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: memref<?x?xf32> |
| // CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: memref<?x?xf32> |
| // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index |
| // CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index |
| // CHECK-DAG: %[[C10:.+]] = arith.constant 10 : index |
| // CHECK-DAG: %[[M:.+]] = memref.dim %[[ARG0]], %[[C0]] |
| // CHECK-DAG: %[[K:.+]] = memref.dim %[[ARG0]], %[[C1]] |
| // CHECK-DAG: %[[N:.+]] = memref.dim %[[ARG1]], %[[C1]] |
| // CHECK: scf.for %[[IV0:[a-zA-Z0-9]+]] = %[[C0]] to %[[M]] step %[[C10]] |
| // CHECK-DAG: %[[C20:.+]] = arith.constant 20 : index |
| // CHECK: scf.for %[[IV1:[a-zA-Z0-9]+]] = %[[C0]] to %[[N]] step %[[C20]] |
| // CHECK-DAG: %[[C30:.+]] = arith.constant 30 : index |
| // CHECK: scf.for %[[IV2:[a-zA-Z0-9]+]] = %[[C0]] to %[[K]] step %[[C30]] |
| // CHECK-DAG: %[[TS_M:.+]] = affine.min #[[$MAP0]](%[[IV0]])[%[[M]]] |
| // CHECK-DAG: %[[TS_N:.+]] = affine.min #[[$MAP1]](%[[IV1]])[%[[N]]] |
| // CHECK-DAG: %[[TS_K:.+]] = affine.min #[[$MAP2]](%[[IV2]])[%[[K]]] |
| // CHECK-DAG: %[[LHS_TILE:.+]] = memref.subview %[[ARG0]] |
| // CHECK-SAME: [%[[IV0]], %[[IV2]]] [%[[TS_M]], %[[TS_K]]] [1, 1] |
| // CHECK-DAG: %[[RHS_TILE:.+]] = memref.subview %[[ARG1]] |
| // CHECK-SAME: [%[[IV2]], %[[IV1]]] [%[[TS_K]], %[[TS_N]]] [1, 1] |
| // CHECK-DAG: %[[OUT_TILE:.+]] = memref.subview %[[ARG2]] |
| // CHECK-SAME: [%[[IV0]], %[[IV1]]] [%[[TS_M]], %[[TS_N]]] [1, 1] |
| // CHECK: linalg.matmul |
| // CHECK-SAME: ins(%[[LHS_TILE]], %[[RHS_TILE]] : |
| // CHECK-SAME: outs(%[[OUT_TILE]] : |
| |
| // ----- |
| |
| #map0 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> |
| #map1 = affine_map<(d0, d1, d2) -> (d0, d2, d1)> |
| #map2 = affine_map<(d0, d1, d2) -> (d2, d0, d1)> |
| func.func @multi_result(%arg0 : tensor<128x200x300xf32>) -> (tensor<128x300x200xf32>, tensor<300x128x200xf32>) { |
| %init0 = tensor.empty() : tensor<128x300x200xf32> |
| %init1 = tensor.empty() : tensor<300x128x200xf32> |
| %0:2 = linalg.generic { |
| indexing_maps = [#map0, #map1, #map2], |
| iterator_types = ["parallel", "parallel", "parallel"]} |
| ins(%arg0 : tensor<128x200x300xf32>) |
| outs(%init0, %init1 : tensor<128x300x200xf32>, tensor<300x128x200xf32>) { |
| ^bb0(%b0 : f32, %b1 : f32, %b2 : f32): |
| linalg.yield %b0, %b0 : f32, f32 |
| } -> (tensor<128x300x200xf32>, tensor<300x128x200xf32>) |
| return %0#0, %0#1 : tensor<128x300x200xf32>, tensor<300x128x200xf32> |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { |
| %generic = transform.structured.match ops{["linalg.generic"]} in %arg1 |
| : (!transform.any_op) -> !transform.any_op |
| %a, %b, %c = transform.structured.tile_using_for %generic [10, 0, 20] |
| : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) |
| transform.yield |
| } |
| } |
| // CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0) -> (10, -d0 + 128)> |
| // CHECK-LABEL: func.func @multi_result( |
| // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<128x200x300xf32>) |
| // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index |
| // CHECK-DAG: %[[C10:.+]] = arith.constant 10 : index |
| // CHECK-DAG: %[[C128:.+]] = arith.constant 128 : index |
| // CHECK-DAG: %[[INIT0:.+]] = tensor.empty() |
| // CHECK-DAG: %[[INIT1:.+]] = tensor.empty() |
| // CHECK: %[[OUTER:[a-zA-Z0-9]+]]:2 = scf.for %[[IV0:[a-zA-Z0-9]+]] = %[[C0]] to %[[C128]] step %[[C10]] |
| // CHECK-SAME: iter_args(%[[ARG1:[a-zA-Z0-9]+]] = %[[INIT0]], %[[ARG2:[a-zA-Z0-9]+]] = %[[INIT1]]) |
| // CHECK-DAG: %[[C300:.+]] = arith.constant 300 : index |
| // CHECK-DAG: %[[C20:.+]] = arith.constant 20 : index |
| // CHECK: %[[INNER:[a-zA-Z0-9]+]]:2 = scf.for %[[IV1:[a-zA-Z0-9]+]] = %[[C0]] to %[[C300]] step %[[C20]] |
| // CHECK-SAME: iter_args(%[[ARG3:[a-zA-Z0-9]+]] = %[[ARG1]], %[[ARG4:[a-zA-Z0-9]+]] = %[[ARG2]]) |
| // CHECK-DAG: %[[TS_Y:.+]] = affine.min #[[$MAP0]](%[[IV0]]) |
| // CHECK-DAG: %[[ARG_TILE:.+]] = tensor.extract_slice %[[ARG0]] |
| // CHECK-SAME: [%[[IV0]], 0, %[[IV1]]] [%[[TS_Y]], 200, 20] [1, 1, 1] |
| // CHECK-DAG: %[[INIT0_TILE:.+]] = tensor.extract_slice %[[ARG3]] |
| // CHECK-SAME: [%[[IV0]], %[[IV1]], 0] [%[[TS_Y]], 20, 200] [1, 1, 1] |
| // CHECK-DAG: %[[INIT1_TILE:.+]] = tensor.extract_slice %[[ARG4]] |
| // CHECK-SAME: [%[[IV1]], %[[IV0]], 0] [20, %[[TS_Y]], 200] [1, 1, 1] |
| // CHECK: %[[RESULT_TILE:.+]]:2 = linalg.generic |
| // CHECK-SAME: ins(%[[ARG_TILE]] : |
| // CHECK-SAME: outs(%[[INIT0_TILE]], %[[INIT1_TILE]] : |
| // CHECK: %[[UPDATE0:.+]] = tensor.insert_slice %[[RESULT_TILE]]#0 into %[[ARG3]] |
| // CHECK-SAME: [%[[IV0]], %[[IV1]], 0] [%[[TS_Y]], 20, 200] [1, 1, 1] |
| // CHECK: %[[UPDATE1:.+]] = tensor.insert_slice %[[RESULT_TILE]]#1 into %[[ARG4]] |
| // CHECK-SAME: [%[[IV1]], %[[IV0]], 0] [20, %[[TS_Y]], 200] [1, 1, 1] |
| // CHECK: scf.yield %[[UPDATE0]], %[[UPDATE1]] |
| // CHECK: scf.yield %[[INNER]]#0, %[[INNER]]#1 |
| // CHECK: return %[[OUTER]]#0, %[[OUTER]]#1 |
| |
| // ----- |
| |
| func.func @conv2D(%arg0 : tensor<?x?x?x?xf32>, %arg1 : tensor<?x?x?x?xf32>, |
| %arg2 : tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32> { |
| %0 = linalg.conv_2d_nhwc_hwcf { |
| strides = dense<[2, 3]> : tensor<2xi64>, |
| dilation = dense<[4, 5]> : tensor<2xi64>} |
| ins(%arg0, %arg1 : tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>) |
| outs(%arg2 : tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32> |
| return %0 : tensor<?x?x?x?xf32> |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { |
| %conv = transform.structured.match ops{["linalg.conv_2d_nhwc_hwcf"]} in %arg1 |
| : (!transform.any_op) -> !transform.any_op |
| %a, %b, %c, %d = transform.structured.tile_using_for %conv [0, 0, 0, 0, 10, 20, 30] |
| : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op) |
| transform.yield |
| } |
| } |
| // CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0)[s0] -> (10, -d0 + s0)> |
| // CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0)[s0] -> (20, -d0 + s0)> |
| // CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0)[s0] -> (30, -d0 + s0)> |
| // CHECK-DAG: #[[$MAP3:.+]] = affine_map<(d0)[s0] -> (d0 + s0 * 2 - 2)> |
| // CHECK-DAG: #[[$MAP4:.+]] = affine_map<(d0)[s0] -> (d0 + s0 * 3 - 3)> |
| // CHECK-LABEL: func.func @conv2D( |
| // CHECK-SAME: %[[INPUT:[a-zA-Z0-9]+]]: tensor<?x?x?x?xf32> |
| // CHECK-SAME: %[[FILTER:[a-zA-Z0-9]+]]: tensor<?x?x?x?xf32> |
| // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: tensor<?x?x?x?xf32> |
| // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index |
| // CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index |
| // CHECK-DAG: %[[C2:.+]] = arith.constant 2 : index |
| // CHECK-DAG: %[[C3:.+]] = arith.constant 3 : index |
| // CHECK-DAG: %[[C10:.+]] = arith.constant 10 : index |
| // CHECK-DAG: %[[N:.+]] = tensor.dim %[[INPUT]], %[[C0]] |
| // CHECK-DAG: %[[C:.+]] = tensor.dim %[[INPUT]], %[[C3]] |
| // CHECK-DAG: %[[P:.+]] = tensor.dim %[[FILTER]], %[[C0]] |
| // CHECK-DAG: %[[Q:.+]] = tensor.dim %[[FILTER]], %[[C1]] |
| // CHECK-DAG: %[[F:.+]] = tensor.dim %[[FILTER]], %[[C3]] |
| // CHECK-DAG: %[[R:.+]] = tensor.dim %[[INIT]], %[[C1]] |
| // CHECK-DAG: %[[S:.+]] = tensor.dim %[[INIT]], %[[C2]] |
| // CHECK: scf.for %[[IV0:[a-zA-Z0-9]+]] = %[[C0]] to %[[P]] step %[[C10]] |
| // CHECK-SAME: iter_args(%[[INIT0:.+]] = %[[INIT]]) |
| // CHECK-DAG: %[[C20:.+]] = arith.constant 20 : index |
| // CHECK: scf.for %[[IV1:[a-zA-Z0-9]+]] = %[[C0]] to %[[Q]] step %[[C20]] |
| // CHECK-SAME: iter_args(%[[INIT1:.+]] = %[[INIT0]]) |
| // CHECK-DAG: %[[C30:.+]] = arith.constant 30 : index |
| // CHECK: scf.for %[[IV2:[a-zA-Z0-9]+]] = %[[C0]] to %[[C]] step %[[C30]] |
| // CHECK-SAME: iter_args(%[[INIT2:.+]] = %[[INIT1]]) |
| // CHECK-DAG: %[[TS_P:.+]] = affine.min #[[$MAP0]](%[[IV0]])[%[[P]]] |
| // CHECK-DAG: %[[TS_Q:.+]] = affine.min #[[$MAP1]](%[[IV1]])[%[[Q]]] |
| // CHECK-DAG: %[[TS_C:.+]] = affine.min #[[$MAP2]](%[[IV2]])[%[[C]]] |
| // CHECK-DAG: %[[TS_H:.+]] = affine.apply #[[$MAP3]](%[[TS_P]])[%[[R]]] |
| // CHECK-DAG: %[[TS_W:.+]] = affine.apply #[[$MAP4]](%[[TS_Q]])[%[[S]]] |
| // CHECK-DAG: %[[INPUT_TILE:.+]] = tensor.extract_slice %[[INPUT]] |
| // CHECK-SAME: [0, %[[IV0]], %[[IV1]], %[[IV2]]] [%[[N]], %[[TS_H]], %[[TS_W]], %[[TS_C]]] |
| // CHECK-DAG: %[[FILTER_TILE:.+]] = tensor.extract_slice %[[FILTER]] |
| // CHECK-SAME: [%[[IV0]], %[[IV1]], %[[IV2]], 0] [%[[TS_P]], %[[TS_Q]], %[[TS_C]], %[[F]]] |
| // CHECK-DAG: %[[INIT_TILE:.+]] = tensor.extract_slice %[[INIT2]] |
| // CHECK-SAME: [0, 0, 0, 0] [%[[N]], %[[R]], %[[S]], %[[F]]] |
| // CHECK: %[[CONV_TILE:.+]] = linalg.conv_2d_nhwc_hwcf |
| // CHECK-SAME: dilation = dense<[4, 5]> : tensor<2xi64>, strides = dense<[2, 3]> : tensor<2xi64> |
| // CHECK-SAME: ins(%[[INPUT_TILE]], %[[FILTER_TILE]] : |
| // CHECK-SAME: outs(%[[INIT_TILE]] : |
| // CHECK: tensor.insert_slice %[[CONV_TILE]] into %[[INIT2]] |
| // CHECK-SAME: [0, 0, 0, 0] [%[[N]], %[[R]], %[[S]], %[[F]]] |
| |
| // ----- |
| |
| func.func @indexed_semantics(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> tensor<?x?xf32> { |
| // Check that we correctly amend "linalg.index" results. |
| |
| %0 = linalg.generic { |
| indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, |
| affine_map<(d0, d1) -> (d0, d1)>], |
| iterator_types = ["parallel", "parallel"]} |
| ins(%arg0: tensor<?x?xf32>) |
| outs(%arg1: tensor<?x?xf32>) { |
| ^bb0(%arg2: f32, %arg3: f32): |
| %1 = linalg.index 0 : index |
| %2 = linalg.index 1 : index |
| %3 = arith.addi %1, %2 : index |
| %4 = arith.index_cast %3 : index to i64 |
| %5 = arith.uitofp %4 : i64 to f32 |
| %6 = arith.addf %5, %arg2 : f32 |
| linalg.yield %6 : f32 |
| } -> (tensor<?x?xf32>) |
| return %0 : tensor<?x?xf32> |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { |
| %generic = transform.structured.match ops{["linalg.generic"]} in %arg1 |
| : (!transform.any_op) -> !transform.any_op |
| %a, %b, %c = transform.structured.tile_using_for %generic [10, 20] |
| : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) |
| transform.yield |
| } |
| } |
| // CHECK: #[[$MAP_ADD:.+]] = affine_map<(d0, d1) -> (d0 + d1)> |
| // CHECK-LABEL: @indexed_semantics |
| // CHECK: scf.for %[[I0:.+]] = %{{.*}} to %{{.*}} step %{{.*}} |
| // CHECK: scf.for %[[I1:.+]] = %{{.*}} to %{{.*}} step %{{.*}} |
| // CHECK: %[[INDEX0:.+]] = linalg.index 0 |
| // CHECK: %[[INDEX0_AMENDED:.+]] = affine.apply #[[$MAP_ADD]](%[[INDEX0]], %[[I0]]) |
| // CHECK: %[[INDEX1:.+]] = linalg.index 1 |
| // CHECK: %[[INDEX1_AMENDED:.+]] = affine.apply #[[$MAP_ADD]](%[[INDEX1]], %[[I1]]) |
| // CHECK: arith.addi %[[INDEX0_AMENDED]], %[[INDEX1_AMENDED]] |
| |
| // ----- |
| |
| func.func @interchange_matmul(%arg0 : tensor<?x?xf32>, %arg1 : tensor<?x?xf32>, |
| %arg2 : tensor<?x?xf32>) -> tensor<?x?xf32> { |
| %0 = linalg.matmul ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>) |
| outs(%arg2 : tensor<?x?xf32>) -> tensor<?x?xf32> |
| return %0 : tensor<?x?xf32> |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { |
| %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 |
| : (!transform.any_op) -> !transform.any_op |
| %a, %b, %c, %d = transform.structured.tile_using_for %matmul [10, 20, 30] interchange = [1, 2, 0] |
| : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op) |
| transform.yield |
| } |
| } |
| // CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0)[s0] -> (20, -d0 + s0)> |
| // CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0)[s0] -> (30, -d0 + s0)> |
| // CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0)[s0] -> (10, -d0 + s0)> |
| // CHECK-LABEL: func.func @interchange_matmul( |
| // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<?x?xf32> |
| // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<?x?xf32> |
| // CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<?x?xf32> |
| // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index |
| // CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index |
| // CHECK-DAG: %[[C20:.+]] = arith.constant 20 : index |
| // CHECK-DAG: %[[M:.+]] = tensor.dim %[[ARG0]], %[[C0]] |
| // CHECK-DAG: %[[K:.+]] = tensor.dim %[[ARG0]], %[[C1]] |
| // CHECK-DAG: %[[N:.+]] = tensor.dim %[[ARG1]], %[[C1]] |
| // CHECK: %[[OUTER:[a-zA-Z0-9]+]] = scf.for %[[IV0:[a-zA-Z0-9]+]] = %[[C0]] to %[[N]] step %[[C20]] |
| // CHECK-SAME: iter_args(%[[INIT0:.+]] = %[[ARG2]]) |
| // CHECK-DAG: %[[C30:.+]] = arith.constant 30 : index |
| // CHECK: %[[INNER1:[a-zA-Z0-9]+]] = scf.for %[[IV1:[a-zA-Z0-9]+]] = %[[C0]] to %[[K]] step %[[C30]] |
| // CHECK-SAME: iter_args(%[[INIT1:.+]] = %[[INIT0]]) |
| // CHECK-DAG: %[[C10:.+]] = arith.constant 10 : index |
| // CHECK: %[[INNER2:[a-zA-Z0-9]+]] = scf.for %[[IV2:[a-zA-Z0-9]+]] = %[[C0]] to %[[M]] step %[[C10]] |
| // CHECK-SAME: iter_args(%[[INIT2:.+]] = %[[INIT1]]) |
| // CHECK-DAG: %[[TS_N:.+]] = affine.min #[[$MAP0]](%[[IV0]])[%[[N]]] |
| // CHECK-DAG: %[[TS_K:.+]] = affine.min #[[$MAP1]](%[[IV1]])[%[[K]]] |
| // CHECK-DAG: %[[TS_M:.+]] = affine.min #[[$MAP2]](%[[IV2]])[%[[M]]] |
| // CHECK-DAG: %[[LHS_TILE:.+]] = tensor.extract_slice %[[ARG0]] |
| // CHECK-SAME: [%[[IV2]], %[[IV1]]] [%[[TS_M]], %[[TS_K]]] [1, 1] |
| // CHECK-DAG: %[[RHS_TILE:.+]] = tensor.extract_slice %[[ARG1]] |
| // CHECK-SAME: [%[[IV1]], %[[IV0]]] [%[[TS_K]], %[[TS_N]]] [1, 1] |
| // CHECK-DAG: %[[INIT_TILE:.+]] = tensor.extract_slice %[[INIT2]] |
| // CHECK-SAME: [%[[IV2]], %[[IV0]]] [%[[TS_M]], %[[TS_N]]] [1, 1] |
| // CHECK: %[[GEMM_TILE:.+]] = linalg.matmul |
| // CHECK-SAME: ins(%[[LHS_TILE]], %[[RHS_TILE]] : |
| // CHECK-SAME: outs(%[[INIT_TILE]] : |
| // CHECK: %[[UPDATE:.+]] = tensor.insert_slice %[[GEMM_TILE]] into %[[INIT2]] |
| // CHECK-SAME: [%[[IV2]], %[[IV0]]] [%[[TS_M]], %[[TS_N]]] [1, 1] |
| // CHECK: scf.yield %[[UPDATE]] |
| // CHECK: scf.yield %[[INNER2]] |
| // CHECK: scf.yield %[[INNER1]] |
| // CHECK: return %[[OUTER]] |
| |
| // ----- |
| |
| func.func @linalg_copy_matmul(%a: memref<?x?xf32>, %b: memref<?x?xf32>) { |
| linalg.copy ins(%a : memref<?x?xf32>) outs(%b : memref<?x?xf32>) |
| return |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { |
| %copy = transform.structured.match ops{["linalg.copy"]} in %arg1 |
| : (!transform.any_op) -> !transform.any_op |
| %a, %b, %c = transform.structured.tile_using_for %copy [10, 20] |
| : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) |
| transform.yield |
| } |
| } |
| // CHECK-LABEL: func @linalg_copy_matmul( |
| // CHECK: scf.for |
| // CHECK: scf.for |
| // CHECK: memref.subview |
| // CHECK: memref.subview |
| // CHECK: linalg.copy |
| |
| // ----- |
| |
| func.func @check_scalar_operation(%arg0 : tensor<f32>) -> tensor<f32> { |
| %init = tensor.empty() : tensor<f32> |
| %0 = linalg.generic { |
| indexing_maps = [affine_map<() -> ()>, affine_map<() -> ()>], |
| iterator_types = []} |
| ins(%arg0 : tensor<f32>) outs(%init : tensor<f32>){ |
| ^bb0(%b0 : f32, %b1 : f32): |
| %1 = arith.mulf %b0, %b0 : f32 |
| linalg.yield %1 : f32 |
| } -> tensor<f32> |
| return %0 : tensor<f32> |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { |
| %generic = transform.structured.match ops{["linalg.generic"]} in %arg1 |
| : (!transform.any_op) -> !transform.any_op |
| %a = transform.structured.tile_using_for %generic [] |
| : (!transform.any_op) -> (!transform.any_op) |
| transform.yield |
| } |
| } |
| // CHECK-LABEL: func @check_scalar_operation |
| // CHECK-NOT: scf.for |
| // CHECK: linalg.generic |
| |
| // ----- |
| |
| func.func @check_scalar_memref_operation(%arg0 : memref<f32>, %arg1 : memref<f32>){ |
| linalg.generic { |
| indexing_maps = [affine_map<() -> ()>, affine_map<() -> ()>], |
| iterator_types = []} |
| ins(%arg0 : memref<f32>) outs(%arg1 : memref<f32>){ |
| ^bb0(%b0 : f32, %b1 : f32): |
| %1 = arith.mulf %b0, %b0 : f32 |
| linalg.yield %1 : f32 |
| } |
| return |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { |
| %generic = transform.structured.match ops{["linalg.generic"]} in %arg1 |
| : (!transform.any_op) -> !transform.any_op |
| %a = transform.structured.tile_using_for %generic [] |
| : (!transform.any_op) -> (!transform.any_op) |
| transform.yield |
| } |
| } |
| // CHECK-LABEL: func @check_scalar_memref_operation |
| // CHECK-NOT: scf.for |
| // CHECK: linalg.generic |