| //-------------------------------------------------------------------------------------------------- |
| // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. |
| // |
| // Set-up that's shared across all tests in this directory. In principle, this |
| // config could be moved to lit.local.cfg. However, there are downstream users that |
| // do not use these LIT config files. Hence why this is kept inline. |
| // |
| // DEFINE: %{sparsifier_opts} = enable-runtime-library=true |
| // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} |
| // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" |
| // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" |
| // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils |
| // DEFINE: %{run_opts} = -e main -entry-point-result=void |
| // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} |
| // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} |
| // |
| // DEFINE: %{env} = |
| //-------------------------------------------------------------------------------------------------- |
| |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation and vectorization. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation and VLA vectorization. |
| // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} |
| |
| #SparseVector = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }> |
| |
| #trait_mul_s = { |
| indexing_maps = [ |
| affine_map<(i) -> (i)> // x (out) |
| ], |
| iterator_types = ["parallel"], |
| doc = "x(i) = x(i) * 2.0" |
| } |
| |
| module { |
| func.func @main() { |
| %f1 = arith.constant 1.0 : f32 |
| %f2 = arith.constant 2.0 : f32 |
| %f3 = arith.constant 3.0 : f32 |
| %f4 = arith.constant 4.0 : f32 |
| %c0 = arith.constant 0 : index |
| %c1 = arith.constant 1 : index |
| %c3 = arith.constant 3 : index |
| %c8 = arith.constant 8 : index |
| %c1023 = arith.constant 1023 : index |
| |
| // Build the sparse vector from straightline code. |
| %0 = tensor.empty() : tensor<1024xf32, #SparseVector> |
| %1 = tensor.insert %f1 into %0[%c0] : tensor<1024xf32, #SparseVector> |
| %2 = tensor.insert %f2 into %1[%c1] : tensor<1024xf32, #SparseVector> |
| %3 = tensor.insert %f3 into %2[%c3] : tensor<1024xf32, #SparseVector> |
| %4 = tensor.insert %f4 into %3[%c1023] : tensor<1024xf32, #SparseVector> |
| %5 = sparse_tensor.load %4 hasInserts : tensor<1024xf32, #SparseVector> |
| |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 4 |
| // CHECK-NEXT: dim = ( 1024 ) |
| // CHECK-NEXT: lvl = ( 1024 ) |
| // CHECK-NEXT: pos[0] : ( 0, 4, |
| // CHECK-NEXT: crd[0] : ( 0, 1, 3, 1023, |
| // CHECK-NEXT: values : ( 1, 2, 3, 4, |
| // CHECK-NEXT: ---- |
| // |
| sparse_tensor.print %5 : tensor<1024xf32, #SparseVector> |
| |
| // Build another sparse vector in a loop. |
| %6 = tensor.empty() : tensor<1024xf32, #SparseVector> |
| %7 = scf.for %i = %c0 to %c8 step %c1 iter_args(%vin = %6) -> tensor<1024xf32, #SparseVector> { |
| %ii = arith.muli %i, %c3 : index |
| %vout = tensor.insert %f1 into %vin[%ii] : tensor<1024xf32, #SparseVector> |
| scf.yield %vout : tensor<1024xf32, #SparseVector> |
| } |
| %8 = sparse_tensor.load %7 hasInserts : tensor<1024xf32, #SparseVector> |
| |
| // |
| // CHECK-NEXT: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 8 |
| // CHECK-NEXT: dim = ( 1024 ) |
| // CHECK-NEXT: lvl = ( 1024 ) |
| // CHECK-NEXT: pos[0] : ( 0, 8, |
| // CHECK-NEXT: crd[0] : ( 0, 3, 6, 9, 12, 15, 18, 21, |
| // CHECK-NEXT: values : ( 1, 1, 1, 1, 1, 1, 1, 1, |
| // CHECK-NEXT: ---- |
| // |
| sparse_tensor.print %8 : tensor<1024xf32, #SparseVector> |
| |
| // Free resources. |
| bufferization.dealloc_tensor %5 : tensor<1024xf32, #SparseVector> |
| bufferization.dealloc_tensor %8 : tensor<1024xf32, #SparseVector> |
| return |
| } |
| } |