blob: 59c3e49264dbe160ffc2271f85f2402f1da15443 [file] [log] [blame]
//===- LoopEmitter.h --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_UTILS_LOOPEMITTER_H_
#define MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_UTILS_LOOPEMITTER_H_
#include <vector>
#include "SparseTensorIterator.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/SparseTensor/Utils/Merger.h"
#include "mlir/IR/PatternMatch.h"
namespace mlir {
namespace sparse_tensor {
// A compressed <tensor id, level> pair.
using TensorLevel = unsigned;
//
// SparseTensorLoopEmiter class, manages sparse tensors and helps to
// generate loop structure to (co)-iterate sparse tensors.
//
// An example usage:
// To generate the following loops over T1<?x?> and T2<?x?>
//
// for i in TENSOR_1_0 {
// for j : TENSOR_2_0 {
// for k : TENSOR_1_1 {}
// for k : TENSOR_2_1 {}
// }
// }
//
// One can use
//
// LoopEmiter loopEmiter({T1, T1});
// loopEmiter.initializeLoopEmit();
// loopEmiter.enterLoopOverTensorAtLvl(T1, 0);
// loopEmiter.enterLoopOverTensorAtLvl(T2, 0);
// loopEmiter.enterLoopOverTensorAtLvl(T1, 1);
// loopEmiter.exitCurrentLoop();
// loopEmiter.enterLoopOverTensorAtLvl(T2, 1);
// loopEmiter.exitCurrentLoop(); // exit k
// loopEmiter.exitCurrentLoop(); // exit j
// loopEmiter.exitCurrentLoop(); // exit i
//
class LoopEmitter {
public:
/// Optional callback function to setup dense output tensors when
/// initializing the loop emitter (e.g., to fill a dense output with zeros).
using OutputUpdater = function_ref<Value(OpBuilder &builder, Location loc,
Value memref, Value tensor)>;
/// Optional callback function to set the bound for the synthetic tensor,
/// which essentially is the dense loop bound.
using SynTensorBoundSetter =
function_ref<Value(OpBuilder &builder, Location loc, Level lvl)>;
// Map from [tid, lvl] to a list of dependent [LoopId, coeffecient] for
// subscript expressions on sparse tensors.
//
// E.g., for affine index (2 * d0 + d1), it depends on loop d0 and d1 (for
// affine expression reduction) and uses 2 and 1 for coefficients on d0, d1
// respectively. If the list is empty, it means that there is no affine
// expression on the input [tid, lvl].
//
// NOTE: LoopEmitter assumes that the loop id is consistent with the loop
// order, i.e., loop `d0` will be generated before loop `d1`.
using DependentLvlGetter =
function_ref<std::vector<std::pair<LoopId, unsigned>>(TensorId, Level)>;
LoopEmitter() = default;
/// Takes an array of input tensors, which the generated loops will
/// iterate over. Each tensor is given a `TensorId` (numerically equal
/// to the position of that tensor `Value` in the array). Setting
/// `isSparseOut` indicates that the sparse output tensor is empty,
/// so the loop emitter will generate loops over it according to the
/// level-sizes.
void
initialize(ValueRange tensors, StringAttr loopTag = nullptr,
bool hasOutput = false, bool isSparseOut = false,
unsigned numLoops = 0, DependentLvlGetter getter = nullptr,
SparseEmitStrategy emitStrategy = SparseEmitStrategy::kFunctional);
explicit LoopEmitter(
ValueRange tensors, StringAttr loopTag = nullptr, bool hasOutput = false,
bool isSparseOut = false, unsigned numLoops = 0,
DependentLvlGetter getter = nullptr,
SparseEmitStrategy emitStrategy = SparseEmitStrategy::kFunctional);
/// Starts a loop emitting session by generating all the buffers needed
/// for iterating over the tensors.
void initializeLoopEmit(OpBuilder &builder, Location loc,
OutputUpdater updater = nullptr,
SynTensorBoundSetter synSetter = nullptr);
/// Generates code to compute an affine expression whose variables are
/// `LoopId`s (i.e., `a.cast<AffineDimExpr>().getPosition()` is a valid
/// `LoopId`).
Value genAffine(OpBuilder &builder, Location loc, AffineExpr a);
/// Enters a new loop sequence, the loops within the same sequence starts
/// from the break points of previous loop instead of starting over from 0.
/// e.g.,
/// {
/// // loop sequence start.
/// p0 = while(xxx)
/// ...
/// break p0
///
/// // Starts loop from p0
/// for (i = p0; i < end; i++)
/// ...
/// // loop sequence end.
/// }
void enterNewLoopSeq(OpBuilder &builder, Location loc,
ArrayRef<TensorLevel> tidLvls);
/// Exits the current loop sequence, this will reset universal index to 0.
void exitCurrentLoopSeq(OpBuilder &builder, Location loc);
/// Emits the address for a dense level based on the value evaluated by the
/// provided affine expression.
void locateLvlAtAffineAddress(OpBuilder &builder, Location loc,
TensorLevel tidLvl, AffineExpr lvlExpr);
// TODO: Get rid of `lvls` in the argument list? Track the level we
// are currently at internally. Then it would be enterNextLvlForTensor.
// Still need a way to specify the lvl for non-annotated tensors though,
// as those can be accessed out of order.
//
/// Emits a co-iteration loop over a set of tensors.
/// Emits loop over tensor_tid_lvl, it assumes that loops between
/// tensor_tid_[0, lvl - 1] have already been generated.
/// The function will also perform in-place update on the `reduc` vector to
/// return the reduction variable used inside the generated loop.
Operation *enterCoIterationOverTensorsAtLvls(
OpBuilder &builder, Location loc, ArrayRef<TensorLevel> tidLvls,
MutableArrayRef<Value> reduc = {}, bool isParallel = false,
bool needsUniv = false);
/// Generates code to exit the current loop (e.g., generates yields, forwards
/// loop induction variables, etc).
void exitCurrentLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc = {});
/// Get the range of values for all induction variables.
auto getLoopIVsRange() const {
return llvm::map_range(loopStack, [](const LoopInfo &li) { return li.iv; });
}
/// Fills the out-parameter with the loop induction variables for all
/// loops in the current loop-stack.
SmallVector<Value> getLoopIVs() const {
return llvm::to_vector(getLoopIVsRange());
}
/// Gets the current depth of the loop-stack.
LoopId getCurrentDepth() const { return llvm::range_size(getLoopIVsRange()); }
/// Gets loop induction variable for the given loop
Value getLoopIV(LoopId n) const {
if (n >= getCurrentDepth())
return Value();
auto it = getLoopIVsRange().begin();
std::advance(it, n);
return *it;
}
/// Gets the total number of manifest tensors (excluding the synthetic
/// tensor).
unsigned getNumManifestTensors() const { return tensors.size(); }
/// Gets the total number of tensors that loopEmitter is operating on.
unsigned getNumTensors() const {
// Manifest tensors with one synthetic tensor at the end.
return getNumManifestTensors() + 1;
}
/// Gets the TensorId for synthetic tensor.
TensorId getSynTensorId() const { return tensors.size(); }
/// Gets the TensorId for output tensor.
TensorId getOutTensorId() const {
assert(hasOutput);
return getNumManifestTensors() - 1;
}
/// Compresses a TensorId and Level into a TensorLevel.
TensorLevel makeTensorLevel(TensorId t, Level l) const {
return l * getNumTensors() + t;
}
/// De-compresses a TensorLevel back to a pair of TensorId and Level.
std::pair<TensorId, Level> unpackTensorLevel(TensorLevel tidLvl) const {
unsigned nt = getNumTensors();
return std::make_pair(tidLvl % nt, tidLvl / nt);
}
/// Converts a range of TensorLevel to a range of std::pair<TensorId, Level>
template <class ContainerTy>
auto unpackTensorLevelRange(ContainerTy &&c) const {
using EltTy = decltype(*c.begin());
static_assert(std::is_same_v<llvm::remove_cvref_t<EltTy>, TensorLevel>,
"Must be unpacking a TensorLevel range");
return llvm::map_range(std::forward<ContainerTy>(c), [this](EltTy tl) {
return this->unpackTensorLevel(tl);
});
}
///
/// Getters.
///
SmallVector<Value> getValPosits(TensorId tid) const {
SmallVector<Value> batchCrds = iters[tid].back().back()->getBatchCrds();
Value lastLvlPos = iters[tid].back().back()->getCurPosition().first;
batchCrds.push_back(lastLvlPos);
return batchCrds;
};
Value getCoord(TensorId tid, Level lvl) const {
return getCurIterator(tid, lvl).getCrd();
};
const std::vector<Value> &getValBuffer() const { return valBuffer; };
constexpr static llvm::StringLiteral getLoopEmitterLoopAttrName() {
return llvm::StringLiteral("Emitted from");
}
private:
///
/// Structure definitions that hold different kinds of loops information.
///
// LoopInfo stores information of a loop generated by LoopEmitter. E.g.,
// the set of tensors levels that the loop is iterating over.
struct LoopInfo final {
LoopInfo(ArrayRef<TensorLevel> tidLvls, Operation *loop, Block *userBlock,
Value iv, StringAttr loopTag)
: tidLvls(tidLvls), loop(loop), userCodeBlock(userBlock), iv(iv) {
// Attached a special tag to loop emitter generated loop.
if (loopTag)
loop->setAttr(LoopEmitter::getLoopEmitterLoopAttrName(), loopTag);
}
// The set of <tensor, lvl>, with *only* trivial index expressions, that are
// used as the condition for the generated loop. Extra information is
// required for levels with non-tivial index expressions, which is
// maintained by the sliceDrivenInfo array below.
const llvm::SmallVector<TensorLevel> tidLvls;
const Operation *loop; // the loop operation
Block *const userCodeBlock; // the block holding users' generated code.
const Value iv; // the induction variable for the loop
};
void categorizeIterators(ArrayRef<TensorLevel> tidLvls,
SmallVectorImpl<SparseIterator *> &raIters,
SmallVectorImpl<SparseIterator *> &spIters);
///
/// LoopEmitter internal helper functions.
///
using LoopBodyBuilder = llvm::function_ref<void(OpBuilder &, Location, Value,
MutableArrayRef<Value>)>;
/// Whether the list of the sparse condition should be iterated by for loop.
bool shouldIteratedByForLoop(ArrayRef<SparseIterator *> spIters);
/// Generates instructions to compute the coordinate of tensors[tid][lvl]
/// under the current loop context. The final argument is the
/// collapsed-output level, whereas this function handles converting
/// that to the uncollapsed-input level
Value genSparseCrd(OpBuilder &builder, Location loc, TensorId tid,
Level dstLvl);
bool isSynTensor(TensorId tid) const { return tid == getSynTensorId(); }
bool isOutputTensor(TensorId tid) const {
return hasOutput && tid == getOutTensorId();
}
bool isSparseOutput(TensorId tid) const {
return isOutputTensor(tid) && isSparseOut;
}
bool isValidLevel(TensorId tid, Level lvl) const {
return tid < lvls.size() && lvl < lvls[tid].size();
}
/// Prepares loop for iterating over `tensor[lvl]`, under the assumption
/// that `tensor[0...lvl-1]` loops have already been set up.
void prepareLoopOverTensorAtLvl(OpBuilder &builder, Location loc,
TensorId tid, Level lvl);
/// Emits a for loop to iterate over a tensor level with the provided
/// lower bound `lo` and upper bound `hi`. Apart from iterating just
/// single tensor level, for loops can be used for slice-driven loop on
/// dense level too.
/// Returns a pair: the loop generated and the value for the induction
/// variable.
std::pair<Operation *, Value>
emitForLoopOverTensorAtLvl(OpBuilder &builder, Location loc,
SparseIterator &iter, MutableArrayRef<Value> reduc,
bool isParallel);
/// Emits a while loop to co-iterate over a list of sparse condition, or
/// (complex) single sparse condition that can not be handled by for loop
/// (e.g., index reduction loop).
/// Returns a pair: the loop generated and the value for the induction
/// variable (which is the minimum coordinate of all the tensor that being
/// iterated).
std::pair<Operation *, Value>
emitWhileLoopOverTensorsAtLvls(OpBuilder &builder, Location loc,
ArrayRef<SparseIterator *> iters,
MutableArrayRef<Value> reduc, bool needsUniv);
/// Exits a for loop, returns the reduction results, e.g.,
/// For sequential for loops:
/// %ret = for () {
/// ...
/// %val = addi %args, %c
/// yield %val
/// }
/// For parallel loops, the following generated code by users:
/// %ret = parallel () init(%args) {
/// ...
/// %val = op %args, %c
/// }
/// will be transformed into
/// %ret = parallel () init(%args) {
/// ...
/// scf.reduce(%c) bb0(%0, %1){
/// %val = op %0, %1
/// scf.reduce.return %val
/// }
/// }
/// NOTE: only one instruction will be moved into reduce block,
/// transformation will fail if multiple instructions are used to compute
/// the reduction value. Return %ret to user, while %val is provided by
/// users (`reduc`).
void exitForLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc);
/// Exits a while loop, returns the reduction results.
void exitWhileLoop(OpBuilder &builder, Location loc,
MutableArrayRef<Value> reduc);
//
// Slice-driven loop related methods.
//
void initSubSectIterator(OpBuilder &builder, Location loc);
/// Get the reduced number of contraints on tensor[tid][lvl].
unsigned redDepOnLevel(TensorId tid, Level lvl) const {
return levelReducedDep[tid][lvl];
};
SparseIterator &getCurIterator(TensorId tid, Level lvl) const {
if (dependentLvlMap[tid][lvl].empty())
return *iters[tid][lvl].back();
assert(redDepOnLevel(tid, lvl) >= 1);
return *iters[tid][lvl][redDepOnLevel(tid, lvl) - 1];
}
std::unique_ptr<SparseIterator>
makeLevelIterator(OpBuilder &builder, Location loc, TensorId tid, Level l);
/// A optional string attribute that should be attached to the loop
/// generated by loop emitter, it might help following passes to identify
/// loops that operates on sparse tensors more easily.
StringAttr loopTag;
/// Whether the loop emitter needs to treat the last tensor as the output
/// tensor.
bool hasOutput;
bool isSparseOut;
SparseEmitStrategy emitStrategy;
//
// Fields which have `numTensor` many entries.
//
/// Input and (optional) output tensors.
std::vector<Value> tensors;
std::vector<Value> loopHighs;
std::vector<std::vector<std::unique_ptr<SparseTensorLevel>>> lvls;
std::vector<std::vector<std::vector<std::unique_ptr<SparseIterator>>>> iters;
std::vector<Value> valBuffer; // to_value
// Map from [tid, level] to a list of dependent [tidlevel, coefficient].
// See comments for `DependentLvlGetter`.
std::vector<std::vector<std::vector<std::pair<LoopId, unsigned>>>>
dependentLvlMap;
// The (size, stride) for each conceptual slice used for index reduction
// loops.
std::vector<std::vector<std::vector<std::pair<Value, unsigned>>>> sliceMeta;
// The number of reduced dependencies on a tensor level so far.
std::vector<std::vector<unsigned>> levelReducedDep;
//
// Fields which have at most `numLoops` many entries.
//
/// Loop Stack, stores the information of all the nested loops that are
/// alive.
std::vector<LoopInfo> loopStack;
// Loop Sequence Stack, stores the universal index for the current loop
// sequence. and a list of tid level that the loop sequence traverse.
std::vector<std::pair<Value, std::vector<TensorLevel>>> loopSeqStack;
};
} // namespace sparse_tensor
} // namespace mlir
#endif // MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_UTILS_LOOPEMITTER_H_