blob: b6c6dd17dbe3b619ea10254ce31f6a41d466e4f5 [file] [log] [blame]
//===-- InlayHintTests.cpp -------------------------------*- C++ -*-------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Annotations.h"
#include "InlayHints.h"
#include "Protocol.h"
#include "TestTU.h"
#include "TestWorkspace.h"
#include "XRefs.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace clang {
namespace clangd {
std::ostream &operator<<(std::ostream &Stream, const InlayHint &Hint) {
return Stream << Hint.label;
}
namespace {
using ::testing::UnorderedElementsAre;
std::vector<InlayHint> hintsOfKind(ParsedAST &AST, InlayHintKind Kind) {
std::vector<InlayHint> Result;
for (auto &Hint : inlayHints(AST)) {
if (Hint.kind == Kind)
Result.push_back(Hint);
}
return Result;
}
struct ExpectedHint {
std::string Label;
std::string RangeName;
friend std::ostream &operator<<(std::ostream &Stream,
const ExpectedHint &Hint) {
return Stream << Hint.RangeName << ": " << Hint.Label;
}
};
MATCHER_P2(HintMatcher, Expected, Code, "") {
return arg.label == Expected.Label &&
arg.range == Code.range(Expected.RangeName);
}
template <typename... ExpectedHints>
void assertHints(InlayHintKind Kind, llvm::StringRef AnnotatedSource,
ExpectedHints... Expected) {
Annotations Source(AnnotatedSource);
TestTU TU = TestTU::withCode(Source.code());
TU.ExtraArgs.push_back("-std=c++14");
auto AST = TU.build();
EXPECT_THAT(hintsOfKind(AST, Kind),
UnorderedElementsAre(HintMatcher(Expected, Source)...));
}
template <typename... ExpectedHints>
void assertParameterHints(llvm::StringRef AnnotatedSource,
ExpectedHints... Expected) {
assertHints(InlayHintKind::ParameterHint, AnnotatedSource, Expected...);
}
template <typename... ExpectedHints>
void assertTypeHints(llvm::StringRef AnnotatedSource,
ExpectedHints... Expected) {
assertHints(InlayHintKind::TypeHint, AnnotatedSource, Expected...);
}
TEST(ParameterHints, Smoke) {
assertParameterHints(R"cpp(
void foo(int param);
void bar() {
foo($param[[42]]);
}
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, NoName) {
// No hint for anonymous parameter.
assertParameterHints(R"cpp(
void foo(int);
void bar() {
foo(42);
}
)cpp");
}
TEST(ParameterHints, NameInDefinition) {
// Parameter name picked up from definition if necessary.
assertParameterHints(R"cpp(
void foo(int);
void bar() {
foo($param[[42]]);
}
void foo(int param) {};
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, NameMismatch) {
// Prefer name from declaration.
assertParameterHints(R"cpp(
void foo(int good);
void bar() {
foo($good[[42]]);
}
void foo(int bad) {};
)cpp",
ExpectedHint{"good: ", "good"});
}
TEST(ParameterHints, Operator) {
// No hint for operator call with operator syntax.
assertParameterHints(R"cpp(
struct S {};
void operator+(S lhs, S rhs);
void bar() {
S a, b;
a + b;
}
)cpp");
}
TEST(ParameterHints, Macros) {
// Handling of macros depends on where the call's argument list comes from.
// If it comes from a macro definition, there's nothing to hint
// at the invocation site.
assertParameterHints(R"cpp(
void foo(int param);
#define ExpandsToCall() foo(42)
void bar() {
ExpandsToCall();
}
)cpp");
// The argument expression being a macro invocation shouldn't interfere
// with hinting.
assertParameterHints(R"cpp(
#define PI 3.14
void foo(double param);
void bar() {
foo($param[[PI]]);
}
)cpp",
ExpectedHint{"param: ", "param"});
// If the whole argument list comes from a macro parameter, hint it.
assertParameterHints(R"cpp(
void abort();
#define ASSERT(expr) if (!expr) abort()
int foo(int param);
void bar() {
ASSERT(foo($param[[42]]) == 0);
}
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, ConstructorParens) {
assertParameterHints(R"cpp(
struct S {
S(int param);
};
void bar() {
S obj($param[[42]]);
}
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, ConstructorBraces) {
assertParameterHints(R"cpp(
struct S {
S(int param);
};
void bar() {
S obj{$param[[42]]};
}
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, ConstructorStdInitList) {
// Do not show hints for std::initializer_list constructors.
assertParameterHints(R"cpp(
namespace std {
template <typename> class initializer_list {};
}
struct S {
S(std::initializer_list<int> param);
};
void bar() {
S obj{42, 43};
}
)cpp");
}
TEST(ParameterHints, MemberInit) {
assertParameterHints(R"cpp(
struct S {
S(int param);
};
struct T {
S member;
T() : member($param[[42]]) {}
};
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, ImplicitConstructor) {
assertParameterHints(R"cpp(
struct S {
S(int param);
};
void bar(S);
S foo() {
// Do not show hint for implicit constructor call in argument.
bar(42);
// Do not show hint for implicit constructor call in return.
return 42;
}
)cpp");
}
TEST(ParameterHints, ArgMatchesParam) {
assertParameterHints(R"cpp(
void foo(int param);
struct S {
static const int param = 42;
};
void bar() {
int param = 42;
// Do not show redundant "param: param".
foo(param);
// But show it if the argument is qualified.
foo($param[[S::param]]);
}
struct A {
int param;
void bar() {
// Do not show "param: param" for member-expr.
foo(param);
}
};
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, LeadingUnderscore) {
assertParameterHints(R"cpp(
void foo(int p1, int _p2, int __p3);
void bar() {
foo($p1[[41]], $p2[[42]], $p3[[43]]);
}
)cpp",
ExpectedHint{"p1: ", "p1"}, ExpectedHint{"p2: ", "p2"},
ExpectedHint{"p3: ", "p3"});
}
TEST(ParameterHints, DependentCalls) {
assertParameterHints(R"cpp(
template <typename T>
void nonmember(T par1);
template <typename T>
struct A {
void member(T par2);
static void static_member(T par3);
};
void overload(int anInt);
void overload(double aDouble);
template <typename T>
struct S {
void bar(A<T> a, T t) {
nonmember($par1[[t]]);
a.member($par2[[t]]);
A<T>::static_member($par3[[t]]);
// We don't want to arbitrarily pick between
// "anInt" or "aDouble", so just show no hint.
overload(T{});
}
};
)cpp",
ExpectedHint{"par1: ", "par1"},
ExpectedHint{"par2: ", "par2"},
ExpectedHint{"par3: ", "par3"});
}
TEST(ParameterHints, VariadicFunction) {
assertParameterHints(R"cpp(
template <typename... T>
void foo(int fixed, T... variadic);
void bar() {
foo($fixed[[41]], 42, 43);
}
)cpp",
ExpectedHint{"fixed: ", "fixed"});
}
TEST(ParameterHints, VarargsFunction) {
assertParameterHints(R"cpp(
void foo(int fixed, ...);
void bar() {
foo($fixed[[41]], 42, 43);
}
)cpp",
ExpectedHint{"fixed: ", "fixed"});
}
TEST(ParameterHints, CopyOrMoveConstructor) {
// Do not show hint for parameter of copy or move constructor.
assertParameterHints(R"cpp(
struct S {
S();
S(const S& other);
S(S&& other);
};
void bar() {
S a;
S b(a); // copy
S c(S()); // move
}
)cpp");
}
TEST(ParameterHints, AggregateInit) {
// FIXME: This is not implemented yet, but it would be a natural
// extension to show member names as hints here.
assertParameterHints(R"cpp(
struct Point {
int x;
int y;
};
void bar() {
Point p{41, 42};
}
)cpp");
}
TEST(ParameterHints, UserDefinedLiteral) {
// Do not hint call to user-defined literal operator.
assertParameterHints(R"cpp(
long double operator"" _w(long double param);
void bar() {
1.2_w;
}
)cpp");
}
TEST(ParameterHints, ParamNameComment) {
// Do not hint an argument which already has a comment
// with the parameter name preceding it.
assertParameterHints(R"cpp(
void foo(int param);
void bar() {
foo(/*param*/42);
foo( /* param = */ 42);
foo(/* the answer */$param[[42]]);
}
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, SetterFunctions) {
assertParameterHints(R"cpp(
struct S {
void setParent(S* parent);
void set_parent(S* parent);
void setTimeout(int timeoutMillis);
void setTimeoutMillis(int timeout_millis);
};
void bar() {
S s;
// Parameter name matches setter name - omit hint.
s.setParent(nullptr);
// Support snake_case
s.set_parent(nullptr);
// Parameter name may contain extra info - show hint.
s.setTimeout($timeoutMillis[[120]]);
// FIXME: Ideally we'd want to omit this.
s.setTimeoutMillis($timeout_millis[[120]]);
}
)cpp",
ExpectedHint{"timeoutMillis: ", "timeoutMillis"},
ExpectedHint{"timeout_millis: ", "timeout_millis"});
}
TEST(ParameterHints, IncludeAtNonGlobalScope) {
Annotations FooInc(R"cpp(
void bar() { foo(42); }
)cpp");
Annotations FooCC(R"cpp(
struct S {
void foo(int param);
#include "foo.inc"
};
)cpp");
TestWorkspace Workspace;
Workspace.addSource("foo.inc", FooInc.code());
Workspace.addMainFile("foo.cc", FooCC.code());
auto AST = Workspace.openFile("foo.cc");
ASSERT_TRUE(bool(AST));
// Ensure the hint for the call in foo.inc is NOT materialized in foo.cc.
EXPECT_EQ(hintsOfKind(*AST, InlayHintKind::ParameterHint).size(), 0u);
}
TEST(TypeHints, Smoke) {
assertTypeHints(R"cpp(
auto $waldo[[waldo]] = 42;
)cpp",
ExpectedHint{": int", "waldo"});
}
TEST(TypeHints, Decorations) {
assertTypeHints(R"cpp(
int x = 42;
auto* $var1[[var1]] = &x;
auto&& $var2[[var2]] = x;
const auto& $var3[[var3]] = x;
)cpp",
ExpectedHint{": int *", "var1"},
ExpectedHint{": int &", "var2"},
ExpectedHint{": const int &", "var3"});
}
TEST(TypeHints, DecltypeAuto) {
assertTypeHints(R"cpp(
int x = 42;
int& y = x;
decltype(auto) $z[[z]] = y;
)cpp",
ExpectedHint{": int &", "z"});
}
TEST(TypeHints, NoQualifiers) {
assertTypeHints(R"cpp(
namespace A {
namespace B {
struct S1 {};
S1 foo();
auto $x[[x]] = foo();
struct S2 {
template <typename T>
struct Inner {};
};
S2::Inner<int> bar();
auto $y[[y]] = bar();
}
}
)cpp",
ExpectedHint{": S1", "x"},
// FIXME: We want to suppress scope specifiers
// here because we are into the whole
// brevity thing, but the ElaboratedType
// printer does not honor the SuppressScope
// flag by design, so we need to extend the
// PrintingPolicy to support this use case.
ExpectedHint{": S2::Inner<int>", "y"});
}
TEST(TypeHints, Lambda) {
// Do not print something overly verbose like the lambda's location.
// Show hints for init-captures (but not regular captures).
assertTypeHints(R"cpp(
void f() {
int cap = 42;
auto $L[[L]] = [cap, $init[[init]] = 1 + 1](int a) {
return a + cap + init;
};
}
)cpp",
ExpectedHint{": (lambda)", "L"},
ExpectedHint{": int", "init"});
}
// Structured bindings tests.
// Note, we hint the individual bindings, not the aggregate.
TEST(TypeHints, StructuredBindings_PublicStruct) {
assertTypeHints(R"cpp(
// Struct with public fields.
struct Point {
int x;
int y;
};
Point foo();
auto [$x[[x]], $y[[y]]] = foo();
)cpp",
ExpectedHint{": int", "x"}, ExpectedHint{": int", "y"});
}
TEST(TypeHints, StructuredBindings_Array) {
assertTypeHints(R"cpp(
int arr[2];
auto [$x[[x]], $y[[y]]] = arr;
)cpp",
ExpectedHint{": int", "x"}, ExpectedHint{": int", "y"});
}
TEST(TypeHints, StructuredBindings_TupleLike) {
assertTypeHints(R"cpp(
// Tuple-like type.
struct IntPair {
int a;
int b;
};
namespace std {
template <typename T>
struct tuple_size {};
template <>
struct tuple_size<IntPair> {
constexpr static unsigned value = 2;
};
template <unsigned I, typename T>
struct tuple_element {};
template <unsigned I>
struct tuple_element<I, IntPair> {
using type = int;
};
}
template <unsigned I>
int get(const IntPair& p) {
if constexpr (I == 0) {
return p.a;
} else if constexpr (I == 1) {
return p.b;
}
}
IntPair bar();
auto [$x[[x]], $y[[y]]] = bar();
)cpp",
ExpectedHint{": int", "x"}, ExpectedHint{": int", "y"});
}
TEST(TypeHints, StructuredBindings_NoInitializer) {
assertTypeHints(R"cpp(
// No initializer (ill-formed).
// Do not show useless "NULL TYPE" hint.
auto [x, y]; /*error-ok*/
)cpp");
}
TEST(TypeHints, ReturnTypeDeduction) {
assertTypeHints(
R"cpp(
auto f1(int x$ret1a[[)]]; // Hint forward declaration too
auto f1(int x$ret1b[[)]] { return x + 1; }
// Include pointer operators in hint
int s;
auto& f2($ret2[[)]] { return s; }
// Do not hint `auto` for trailing return type.
auto f3() -> int;
// `auto` conversion operator
struct A {
operator auto($retConv[[)]] { return 42; }
};
// FIXME: Dependent types do not work yet.
template <typename T>
struct S {
auto method() { return T(); }
};
)cpp",
ExpectedHint{"-> int", "ret1a"}, ExpectedHint{"-> int", "ret1b"},
ExpectedHint{"-> int &", "ret2"}, ExpectedHint{"-> int", "retConv"});
}
TEST(TypeHints, DependentType) {
assertTypeHints(R"cpp(
template <typename T>
void foo(T arg) {
// The hint would just be "auto" and we can't do any better.
auto var1 = arg.method();
// FIXME: It would be nice to show "T" as the hint.
auto $var2[[var2]] = arg;
}
)cpp");
}
TEST(TypeHints, LongTypeName) {
assertTypeHints(R"cpp(
template <typename, typename, typename>
struct A {};
struct MultipleWords {};
A<MultipleWords, MultipleWords, MultipleWords> foo();
// Omit type hint past a certain length (currently 32)
auto var = foo();
)cpp");
}
TEST(TypeHints, DefaultTemplateArgs) {
assertTypeHints(R"cpp(
template <typename, typename = int>
struct A {};
A<float> foo();
auto $var[[var]] = foo();
)cpp",
ExpectedHint{": A<float>", "var"});
}
TEST(TypeHints, Deduplication) {
assertTypeHints(R"cpp(
template <typename T>
void foo() {
auto $var[[var]] = 42;
}
template void foo<int>();
template void foo<float>();
)cpp",
ExpectedHint{": int", "var"});
}
// FIXME: Low-hanging fruit where we could omit a type hint:
// - auto x = TypeName(...);
// - auto x = (TypeName) (...);
// - auto x = static_cast<TypeName>(...); // and other built-in casts
// Annoyances for which a heuristic is not obvious:
// - auto x = llvm::dyn_cast<LongTypeName>(y); // and similar
// - stdlib algos return unwieldy __normal_iterator<X*, ...> type
// (For this one, perhaps we should omit type hints that start
// with a double underscore.)
} // namespace
} // namespace clangd
} // namespace clang