blob: 7b4024b6861a72a536250b2ca50fba18c1788bbf [file] [log] [blame]
//===- UpliftWhileToFor.cpp - scf.while to scf.for loop uplifting ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Transforms SCF.WhileOp's into SCF.ForOp's.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/Transforms/Passes.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/PatternMatch.h"
using namespace mlir;
namespace {
struct UpliftWhileOp : public OpRewritePattern<scf::WhileOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(scf::WhileOp loop,
PatternRewriter &rewriter) const override {
return upliftWhileToForLoop(rewriter, loop);
}
};
} // namespace
FailureOr<scf::ForOp> mlir::scf::upliftWhileToForLoop(RewriterBase &rewriter,
scf::WhileOp loop) {
Block *beforeBody = loop.getBeforeBody();
if (!llvm::hasSingleElement(beforeBody->without_terminator()))
return rewriter.notifyMatchFailure(loop, "Loop body must have single op");
auto cmp = dyn_cast<arith::CmpIOp>(beforeBody->front());
if (!cmp)
return rewriter.notifyMatchFailure(loop,
"Loop body must have single cmp op");
scf::ConditionOp beforeTerm = loop.getConditionOp();
if (!cmp->hasOneUse() || beforeTerm.getCondition() != cmp.getResult())
return rewriter.notifyMatchFailure(loop, [&](Diagnostic &diag) {
diag << "Expected single condition use: " << *cmp;
});
// All `before` block args must be directly forwarded to ConditionOp.
// They will be converted to `scf.for` `iter_vars` except induction var.
if (ValueRange(beforeBody->getArguments()) != beforeTerm.getArgs())
return rewriter.notifyMatchFailure(loop, "Invalid args order");
using Pred = arith::CmpIPredicate;
Pred predicate = cmp.getPredicate();
if (predicate != Pred::slt && predicate != Pred::sgt)
return rewriter.notifyMatchFailure(loop, [&](Diagnostic &diag) {
diag << "Expected 'slt' or 'sgt' predicate: " << *cmp;
});
BlockArgument inductionVar;
Value ub;
DominanceInfo dom;
// Check if cmp has a suitable form. One of the arguments must be a `before`
// block arg, other must be defined outside `scf.while` and will be treated
// as upper bound.
for (bool reverse : {false, true}) {
auto expectedPred = reverse ? Pred::sgt : Pred::slt;
if (cmp.getPredicate() != expectedPred)
continue;
auto arg1 = reverse ? cmp.getRhs() : cmp.getLhs();
auto arg2 = reverse ? cmp.getLhs() : cmp.getRhs();
auto blockArg = dyn_cast<BlockArgument>(arg1);
if (!blockArg || blockArg.getOwner() != beforeBody)
continue;
if (!dom.properlyDominates(arg2, loop))
continue;
inductionVar = blockArg;
ub = arg2;
break;
}
if (!inductionVar)
return rewriter.notifyMatchFailure(loop, [&](Diagnostic &diag) {
diag << "Unrecognized cmp form: " << *cmp;
});
// inductionVar must have 2 uses: one is in `cmp` and other is `condition`
// arg.
if (!llvm::hasNItems(inductionVar.getUses(), 2))
return rewriter.notifyMatchFailure(loop, [&](Diagnostic &diag) {
diag << "Unrecognized induction var: " << inductionVar;
});
Block *afterBody = loop.getAfterBody();
scf::YieldOp afterTerm = loop.getYieldOp();
unsigned argNumber = inductionVar.getArgNumber();
Value afterTermIndArg = afterTerm.getResults()[argNumber];
Value inductionVarAfter = afterBody->getArgument(argNumber);
// Find suitable `addi` op inside `after` block, one of the args must be an
// Induction var passed from `before` block and second arg must be defined
// outside of the loop and will be considered step value.
// TODO: Add `subi` support?
auto addOp = afterTermIndArg.getDefiningOp<arith::AddIOp>();
if (!addOp)
return rewriter.notifyMatchFailure(loop, "Didn't found suitable 'addi' op");
Value step;
if (addOp.getLhs() == inductionVarAfter) {
step = addOp.getRhs();
} else if (addOp.getRhs() == inductionVarAfter) {
step = addOp.getLhs();
}
if (!step || !dom.properlyDominates(step, loop))
return rewriter.notifyMatchFailure(loop, "Invalid 'addi' form");
Value lb = loop.getInits()[argNumber];
assert(lb.getType().isIntOrIndex());
assert(lb.getType() == ub.getType());
assert(lb.getType() == step.getType());
llvm::SmallVector<Value> newArgs;
// Populate inits for new `scf.for`, skip induction var.
newArgs.reserve(loop.getInits().size());
for (auto &&[i, init] : llvm::enumerate(loop.getInits())) {
if (i == argNumber)
continue;
newArgs.emplace_back(init);
}
Location loc = loop.getLoc();
// With `builder == nullptr`, ForOp::build will try to insert terminator at
// the end of newly created block and we don't want it. Provide empty
// dummy builder instead.
auto emptyBuilder = [](OpBuilder &, Location, Value, ValueRange) {};
auto newLoop =
rewriter.create<scf::ForOp>(loc, lb, ub, step, newArgs, emptyBuilder);
Block *newBody = newLoop.getBody();
// Populate block args for `scf.for` body, move induction var to the front.
newArgs.clear();
ValueRange newBodyArgs = newBody->getArguments();
for (auto i : llvm::seq<size_t>(0, newBodyArgs.size())) {
if (i < argNumber) {
newArgs.emplace_back(newBodyArgs[i + 1]);
} else if (i == argNumber) {
newArgs.emplace_back(newBodyArgs.front());
} else {
newArgs.emplace_back(newBodyArgs[i]);
}
}
rewriter.inlineBlockBefore(loop.getAfterBody(), newBody, newBody->end(),
newArgs);
auto term = cast<scf::YieldOp>(newBody->getTerminator());
// Populate new yield args, skipping the induction var.
newArgs.clear();
for (auto &&[i, arg] : llvm::enumerate(term.getResults())) {
if (i == argNumber)
continue;
newArgs.emplace_back(arg);
}
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(term);
rewriter.replaceOpWithNewOp<scf::YieldOp>(term, newArgs);
// Compute induction var value after loop execution.
rewriter.setInsertionPointAfter(newLoop);
Value one;
if (isa<IndexType>(step.getType())) {
one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
} else {
one = rewriter.create<arith::ConstantIntOp>(loc, 1, step.getType());
}
Value stepDec = rewriter.create<arith::SubIOp>(loc, step, one);
Value len = rewriter.create<arith::SubIOp>(loc, ub, lb);
len = rewriter.create<arith::AddIOp>(loc, len, stepDec);
len = rewriter.create<arith::DivSIOp>(loc, len, step);
len = rewriter.create<arith::SubIOp>(loc, len, one);
Value res = rewriter.create<arith::MulIOp>(loc, len, step);
res = rewriter.create<arith::AddIOp>(loc, lb, res);
// Reconstruct `scf.while` results, inserting final induction var value
// into proper place.
newArgs.clear();
llvm::append_range(newArgs, newLoop.getResults());
newArgs.insert(newArgs.begin() + argNumber, res);
rewriter.replaceOp(loop, newArgs);
return newLoop;
}
void mlir::scf::populateUpliftWhileToForPatterns(RewritePatternSet &patterns) {
patterns.add<UpliftWhileOp>(patterns.getContext());
}