|  | /* | 
|  | * kmp_affinity.cpp -- affinity management | 
|  | */ | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "kmp.h" | 
|  | #include "kmp_affinity.h" | 
|  | #include "kmp_i18n.h" | 
|  | #include "kmp_io.h" | 
|  | #include "kmp_str.h" | 
|  | #include "kmp_wrapper_getpid.h" | 
|  | #if KMP_USE_HIER_SCHED | 
|  | #include "kmp_dispatch_hier.h" | 
|  | #endif | 
|  | #if KMP_USE_HWLOC | 
|  | // Copied from hwloc | 
|  | #define HWLOC_GROUP_KIND_INTEL_MODULE 102 | 
|  | #define HWLOC_GROUP_KIND_INTEL_TILE 103 | 
|  | #define HWLOC_GROUP_KIND_INTEL_DIE 104 | 
|  | #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220 | 
|  | #endif | 
|  | #include <ctype.h> | 
|  |  | 
|  | // The machine topology | 
|  | kmp_topology_t *__kmp_topology = nullptr; | 
|  | // KMP_HW_SUBSET environment variable | 
|  | kmp_hw_subset_t *__kmp_hw_subset = nullptr; | 
|  |  | 
|  | // Store the real or imagined machine hierarchy here | 
|  | static hierarchy_info machine_hierarchy; | 
|  |  | 
|  | void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } | 
|  |  | 
|  | void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { | 
|  | kmp_uint32 depth; | 
|  | // The test below is true if affinity is available, but set to "none". Need to | 
|  | // init on first use of hierarchical barrier. | 
|  | if (TCR_1(machine_hierarchy.uninitialized)) | 
|  | machine_hierarchy.init(nproc); | 
|  |  | 
|  | // Adjust the hierarchy in case num threads exceeds original | 
|  | if (nproc > machine_hierarchy.base_num_threads) | 
|  | machine_hierarchy.resize(nproc); | 
|  |  | 
|  | depth = machine_hierarchy.depth; | 
|  | KMP_DEBUG_ASSERT(depth > 0); | 
|  |  | 
|  | thr_bar->depth = depth; | 
|  | __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1, | 
|  | &(thr_bar->base_leaf_kids)); | 
|  | thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; | 
|  | } | 
|  |  | 
|  | static int nCoresPerPkg, nPackages; | 
|  | static int __kmp_nThreadsPerCore; | 
|  | #ifndef KMP_DFLT_NTH_CORES | 
|  | static int __kmp_ncores; | 
|  | #endif | 
|  |  | 
|  | const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { | 
|  | switch (type) { | 
|  | case KMP_HW_SOCKET: | 
|  | return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket)); | 
|  | case KMP_HW_DIE: | 
|  | return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die)); | 
|  | case KMP_HW_MODULE: | 
|  | return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module)); | 
|  | case KMP_HW_TILE: | 
|  | return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile)); | 
|  | case KMP_HW_NUMA: | 
|  | return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain)); | 
|  | case KMP_HW_L3: | 
|  | return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache)); | 
|  | case KMP_HW_L2: | 
|  | return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache)); | 
|  | case KMP_HW_L1: | 
|  | return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache)); | 
|  | case KMP_HW_LLC: | 
|  | return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache)); | 
|  | case KMP_HW_CORE: | 
|  | return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core)); | 
|  | case KMP_HW_THREAD: | 
|  | return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread)); | 
|  | case KMP_HW_PROC_GROUP: | 
|  | return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup)); | 
|  | } | 
|  | return KMP_I18N_STR(Unknown); | 
|  | } | 
|  |  | 
|  | const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) { | 
|  | switch (type) { | 
|  | case KMP_HW_SOCKET: | 
|  | return ((plural) ? "sockets" : "socket"); | 
|  | case KMP_HW_DIE: | 
|  | return ((plural) ? "dice" : "die"); | 
|  | case KMP_HW_MODULE: | 
|  | return ((plural) ? "modules" : "module"); | 
|  | case KMP_HW_TILE: | 
|  | return ((plural) ? "tiles" : "tile"); | 
|  | case KMP_HW_NUMA: | 
|  | return ((plural) ? "numa_domains" : "numa_domain"); | 
|  | case KMP_HW_L3: | 
|  | return ((plural) ? "l3_caches" : "l3_cache"); | 
|  | case KMP_HW_L2: | 
|  | return ((plural) ? "l2_caches" : "l2_cache"); | 
|  | case KMP_HW_L1: | 
|  | return ((plural) ? "l1_caches" : "l1_cache"); | 
|  | case KMP_HW_LLC: | 
|  | return ((plural) ? "ll_caches" : "ll_cache"); | 
|  | case KMP_HW_CORE: | 
|  | return ((plural) ? "cores" : "core"); | 
|  | case KMP_HW_THREAD: | 
|  | return ((plural) ? "threads" : "thread"); | 
|  | case KMP_HW_PROC_GROUP: | 
|  | return ((plural) ? "proc_groups" : "proc_group"); | 
|  | } | 
|  | return ((plural) ? "unknowns" : "unknown"); | 
|  | } | 
|  |  | 
|  | const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) { | 
|  | switch (type) { | 
|  | case KMP_HW_CORE_TYPE_UNKNOWN: | 
|  | return "unknown"; | 
|  | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 | 
|  | case KMP_HW_CORE_TYPE_ATOM: | 
|  | return "Intel Atom(R) processor"; | 
|  | case KMP_HW_CORE_TYPE_CORE: | 
|  | return "Intel(R) Core(TM) processor"; | 
|  | #endif | 
|  | } | 
|  | return "unknown"; | 
|  | } | 
|  |  | 
|  | #if KMP_AFFINITY_SUPPORTED | 
|  | // If affinity is supported, check the affinity | 
|  | // verbose and warning flags before printing warning | 
|  | #define KMP_AFF_WARNING(s, ...)                                                \ | 
|  | if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) {    \ | 
|  | KMP_WARNING(__VA_ARGS__);                                                  \ | 
|  | } | 
|  | #else | 
|  | #define KMP_AFF_WARNING(s, ...) KMP_WARNING(__VA_ARGS__) | 
|  | #endif | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  | // kmp_hw_thread_t methods | 
|  | int kmp_hw_thread_t::compare_ids(const void *a, const void *b) { | 
|  | const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a; | 
|  | const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b; | 
|  | int depth = __kmp_topology->get_depth(); | 
|  | for (int level = 0; level < depth; ++level) { | 
|  | if (ahwthread->ids[level] < bhwthread->ids[level]) | 
|  | return -1; | 
|  | else if (ahwthread->ids[level] > bhwthread->ids[level]) | 
|  | return 1; | 
|  | } | 
|  | if (ahwthread->os_id < bhwthread->os_id) | 
|  | return -1; | 
|  | else if (ahwthread->os_id > bhwthread->os_id) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if KMP_AFFINITY_SUPPORTED | 
|  | int kmp_hw_thread_t::compare_compact(const void *a, const void *b) { | 
|  | int i; | 
|  | const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a; | 
|  | const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b; | 
|  | int depth = __kmp_topology->get_depth(); | 
|  | int compact = __kmp_topology->compact; | 
|  | KMP_DEBUG_ASSERT(compact >= 0); | 
|  | KMP_DEBUG_ASSERT(compact <= depth); | 
|  | for (i = 0; i < compact; i++) { | 
|  | int j = depth - i - 1; | 
|  | if (aa->sub_ids[j] < bb->sub_ids[j]) | 
|  | return -1; | 
|  | if (aa->sub_ids[j] > bb->sub_ids[j]) | 
|  | return 1; | 
|  | } | 
|  | for (; i < depth; i++) { | 
|  | int j = i - compact; | 
|  | if (aa->sub_ids[j] < bb->sub_ids[j]) | 
|  | return -1; | 
|  | if (aa->sub_ids[j] > bb->sub_ids[j]) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void kmp_hw_thread_t::print() const { | 
|  | int depth = __kmp_topology->get_depth(); | 
|  | printf("%4d ", os_id); | 
|  | for (int i = 0; i < depth; ++i) { | 
|  | printf("%4d ", ids[i]); | 
|  | } | 
|  | if (attrs) { | 
|  | if (attrs.is_core_type_valid()) | 
|  | printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type())); | 
|  | if (attrs.is_core_eff_valid()) | 
|  | printf(" (eff=%d)", attrs.get_core_eff()); | 
|  | } | 
|  | printf("\n"); | 
|  | } | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  | // kmp_topology_t methods | 
|  |  | 
|  | // Add a layer to the topology based on the ids. Assume the topology | 
|  | // is perfectly nested (i.e., so no object has more than one parent) | 
|  | void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) { | 
|  | // Figure out where the layer should go by comparing the ids of the current | 
|  | // layers with the new ids | 
|  | int target_layer; | 
|  | int previous_id = kmp_hw_thread_t::UNKNOWN_ID; | 
|  | int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID; | 
|  |  | 
|  | // Start from the highest layer and work down to find target layer | 
|  | // If new layer is equal to another layer then put the new layer above | 
|  | for (target_layer = 0; target_layer < depth; ++target_layer) { | 
|  | bool layers_equal = true; | 
|  | bool strictly_above_target_layer = false; | 
|  | for (int i = 0; i < num_hw_threads; ++i) { | 
|  | int id = hw_threads[i].ids[target_layer]; | 
|  | int new_id = ids[i]; | 
|  | if (id != previous_id && new_id == previous_new_id) { | 
|  | // Found the layer we are strictly above | 
|  | strictly_above_target_layer = true; | 
|  | layers_equal = false; | 
|  | break; | 
|  | } else if (id == previous_id && new_id != previous_new_id) { | 
|  | // Found a layer we are below. Move to next layer and check. | 
|  | layers_equal = false; | 
|  | break; | 
|  | } | 
|  | previous_id = id; | 
|  | previous_new_id = new_id; | 
|  | } | 
|  | if (strictly_above_target_layer || layers_equal) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Found the layer we are above. Now move everything to accommodate the new | 
|  | // layer. And put the new ids and type into the topology. | 
|  | for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) | 
|  | types[j] = types[i]; | 
|  | types[target_layer] = type; | 
|  | for (int k = 0; k < num_hw_threads; ++k) { | 
|  | for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) | 
|  | hw_threads[k].ids[j] = hw_threads[k].ids[i]; | 
|  | hw_threads[k].ids[target_layer] = ids[k]; | 
|  | } | 
|  | equivalent[type] = type; | 
|  | depth++; | 
|  | } | 
|  |  | 
|  | #if KMP_GROUP_AFFINITY | 
|  | // Insert the Windows Processor Group structure into the topology | 
|  | void kmp_topology_t::_insert_windows_proc_groups() { | 
|  | // Do not insert the processor group structure for a single group | 
|  | if (__kmp_num_proc_groups == 1) | 
|  | return; | 
|  | kmp_affin_mask_t *mask; | 
|  | int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads); | 
|  | KMP_CPU_ALLOC(mask); | 
|  | for (int i = 0; i < num_hw_threads; ++i) { | 
|  | KMP_CPU_ZERO(mask); | 
|  | KMP_CPU_SET(hw_threads[i].os_id, mask); | 
|  | ids[i] = __kmp_get_proc_group(mask); | 
|  | } | 
|  | KMP_CPU_FREE(mask); | 
|  | _insert_layer(KMP_HW_PROC_GROUP, ids); | 
|  | __kmp_free(ids); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Remove layers that don't add information to the topology. | 
|  | // This is done by having the layer take on the id = UNKNOWN_ID (-1) | 
|  | void kmp_topology_t::_remove_radix1_layers() { | 
|  | int preference[KMP_HW_LAST]; | 
|  | int top_index1, top_index2; | 
|  | // Set up preference associative array | 
|  | preference[KMP_HW_SOCKET] = 110; | 
|  | preference[KMP_HW_PROC_GROUP] = 100; | 
|  | preference[KMP_HW_CORE] = 95; | 
|  | preference[KMP_HW_THREAD] = 90; | 
|  | preference[KMP_HW_NUMA] = 85; | 
|  | preference[KMP_HW_DIE] = 80; | 
|  | preference[KMP_HW_TILE] = 75; | 
|  | preference[KMP_HW_MODULE] = 73; | 
|  | preference[KMP_HW_L3] = 70; | 
|  | preference[KMP_HW_L2] = 65; | 
|  | preference[KMP_HW_L1] = 60; | 
|  | preference[KMP_HW_LLC] = 5; | 
|  | top_index1 = 0; | 
|  | top_index2 = 1; | 
|  | while (top_index1 < depth - 1 && top_index2 < depth) { | 
|  | kmp_hw_t type1 = types[top_index1]; | 
|  | kmp_hw_t type2 = types[top_index2]; | 
|  | KMP_ASSERT_VALID_HW_TYPE(type1); | 
|  | KMP_ASSERT_VALID_HW_TYPE(type2); | 
|  | // Do not allow the three main topology levels (sockets, cores, threads) to | 
|  | // be compacted down | 
|  | if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE || | 
|  | type1 == KMP_HW_SOCKET) && | 
|  | (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE || | 
|  | type2 == KMP_HW_SOCKET)) { | 
|  | top_index1 = top_index2++; | 
|  | continue; | 
|  | } | 
|  | bool radix1 = true; | 
|  | bool all_same = true; | 
|  | int id1 = hw_threads[0].ids[top_index1]; | 
|  | int id2 = hw_threads[0].ids[top_index2]; | 
|  | int pref1 = preference[type1]; | 
|  | int pref2 = preference[type2]; | 
|  | for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) { | 
|  | if (hw_threads[hwidx].ids[top_index1] == id1 && | 
|  | hw_threads[hwidx].ids[top_index2] != id2) { | 
|  | radix1 = false; | 
|  | break; | 
|  | } | 
|  | if (hw_threads[hwidx].ids[top_index2] != id2) | 
|  | all_same = false; | 
|  | id1 = hw_threads[hwidx].ids[top_index1]; | 
|  | id2 = hw_threads[hwidx].ids[top_index2]; | 
|  | } | 
|  | if (radix1) { | 
|  | // Select the layer to remove based on preference | 
|  | kmp_hw_t remove_type, keep_type; | 
|  | int remove_layer, remove_layer_ids; | 
|  | if (pref1 > pref2) { | 
|  | remove_type = type2; | 
|  | remove_layer = remove_layer_ids = top_index2; | 
|  | keep_type = type1; | 
|  | } else { | 
|  | remove_type = type1; | 
|  | remove_layer = remove_layer_ids = top_index1; | 
|  | keep_type = type2; | 
|  | } | 
|  | // If all the indexes for the second (deeper) layer are the same. | 
|  | // e.g., all are zero, then make sure to keep the first layer's ids | 
|  | if (all_same) | 
|  | remove_layer_ids = top_index2; | 
|  | // Remove radix one type by setting the equivalence, removing the id from | 
|  | // the hw threads and removing the layer from types and depth | 
|  | set_equivalent_type(remove_type, keep_type); | 
|  | for (int idx = 0; idx < num_hw_threads; ++idx) { | 
|  | kmp_hw_thread_t &hw_thread = hw_threads[idx]; | 
|  | for (int d = remove_layer_ids; d < depth - 1; ++d) | 
|  | hw_thread.ids[d] = hw_thread.ids[d + 1]; | 
|  | } | 
|  | for (int idx = remove_layer; idx < depth - 1; ++idx) | 
|  | types[idx] = types[idx + 1]; | 
|  | depth--; | 
|  | } else { | 
|  | top_index1 = top_index2++; | 
|  | } | 
|  | } | 
|  | KMP_ASSERT(depth > 0); | 
|  | } | 
|  |  | 
|  | void kmp_topology_t::_set_last_level_cache() { | 
|  | if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN) | 
|  | set_equivalent_type(KMP_HW_LLC, KMP_HW_L3); | 
|  | else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) | 
|  | set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); | 
|  | #if KMP_MIC_SUPPORTED | 
|  | else if (__kmp_mic_type == mic3) { | 
|  | if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) | 
|  | set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); | 
|  | else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN) | 
|  | set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE); | 
|  | // L2/Tile wasn't detected so just say L1 | 
|  | else | 
|  | set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); | 
|  | } | 
|  | #endif | 
|  | else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN) | 
|  | set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); | 
|  | // Fallback is to set last level cache to socket or core | 
|  | if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) { | 
|  | if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN) | 
|  | set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET); | 
|  | else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN) | 
|  | set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE); | 
|  | } | 
|  | KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN); | 
|  | } | 
|  |  | 
|  | // Gather the count of each topology layer and the ratio | 
|  | void kmp_topology_t::_gather_enumeration_information() { | 
|  | int previous_id[KMP_HW_LAST]; | 
|  | int max[KMP_HW_LAST]; | 
|  |  | 
|  | for (int i = 0; i < depth; ++i) { | 
|  | previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; | 
|  | max[i] = 0; | 
|  | count[i] = 0; | 
|  | ratio[i] = 0; | 
|  | } | 
|  | int core_level = get_level(KMP_HW_CORE); | 
|  | for (int i = 0; i < num_hw_threads; ++i) { | 
|  | kmp_hw_thread_t &hw_thread = hw_threads[i]; | 
|  | for (int layer = 0; layer < depth; ++layer) { | 
|  | int id = hw_thread.ids[layer]; | 
|  | if (id != previous_id[layer]) { | 
|  | // Add an additional increment to each count | 
|  | for (int l = layer; l < depth; ++l) | 
|  | count[l]++; | 
|  | // Keep track of topology layer ratio statistics | 
|  | max[layer]++; | 
|  | for (int l = layer + 1; l < depth; ++l) { | 
|  | if (max[l] > ratio[l]) | 
|  | ratio[l] = max[l]; | 
|  | max[l] = 1; | 
|  | } | 
|  | // Figure out the number of different core types | 
|  | // and efficiencies for hybrid CPUs | 
|  | if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) { | 
|  | if (hw_thread.attrs.is_core_eff_valid() && | 
|  | hw_thread.attrs.core_eff >= num_core_efficiencies) { | 
|  | // Because efficiencies can range from 0 to max efficiency - 1, | 
|  | // the number of efficiencies is max efficiency + 1 | 
|  | num_core_efficiencies = hw_thread.attrs.core_eff + 1; | 
|  | } | 
|  | if (hw_thread.attrs.is_core_type_valid()) { | 
|  | bool found = false; | 
|  | for (int j = 0; j < num_core_types; ++j) { | 
|  | if (hw_thread.attrs.get_core_type() == core_types[j]) { | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!found) { | 
|  | KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES); | 
|  | core_types[num_core_types++] = hw_thread.attrs.get_core_type(); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | for (int layer = 0; layer < depth; ++layer) { | 
|  | previous_id[layer] = hw_thread.ids[layer]; | 
|  | } | 
|  | } | 
|  | for (int layer = 0; layer < depth; ++layer) { | 
|  | if (max[layer] > ratio[layer]) | 
|  | ratio[layer] = max[layer]; | 
|  | } | 
|  | } | 
|  |  | 
|  | int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr, | 
|  | int above_level, | 
|  | bool find_all) const { | 
|  | int current, current_max; | 
|  | int previous_id[KMP_HW_LAST]; | 
|  | for (int i = 0; i < depth; ++i) | 
|  | previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; | 
|  | int core_level = get_level(KMP_HW_CORE); | 
|  | if (find_all) | 
|  | above_level = -1; | 
|  | KMP_ASSERT(above_level < core_level); | 
|  | current_max = 0; | 
|  | current = 0; | 
|  | for (int i = 0; i < num_hw_threads; ++i) { | 
|  | kmp_hw_thread_t &hw_thread = hw_threads[i]; | 
|  | if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) { | 
|  | if (current > current_max) | 
|  | current_max = current; | 
|  | current = hw_thread.attrs.contains(attr); | 
|  | } else { | 
|  | for (int level = above_level + 1; level <= core_level; ++level) { | 
|  | if (hw_thread.ids[level] != previous_id[level]) { | 
|  | if (hw_thread.attrs.contains(attr)) | 
|  | current++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | for (int level = 0; level < depth; ++level) | 
|  | previous_id[level] = hw_thread.ids[level]; | 
|  | } | 
|  | if (current > current_max) | 
|  | current_max = current; | 
|  | return current_max; | 
|  | } | 
|  |  | 
|  | // Find out if the topology is uniform | 
|  | void kmp_topology_t::_discover_uniformity() { | 
|  | int num = 1; | 
|  | for (int level = 0; level < depth; ++level) | 
|  | num *= ratio[level]; | 
|  | flags.uniform = (num == count[depth - 1]); | 
|  | } | 
|  |  | 
|  | // Set all the sub_ids for each hardware thread | 
|  | void kmp_topology_t::_set_sub_ids() { | 
|  | int previous_id[KMP_HW_LAST]; | 
|  | int sub_id[KMP_HW_LAST]; | 
|  |  | 
|  | for (int i = 0; i < depth; ++i) { | 
|  | previous_id[i] = -1; | 
|  | sub_id[i] = -1; | 
|  | } | 
|  | for (int i = 0; i < num_hw_threads; ++i) { | 
|  | kmp_hw_thread_t &hw_thread = hw_threads[i]; | 
|  | // Setup the sub_id | 
|  | for (int j = 0; j < depth; ++j) { | 
|  | if (hw_thread.ids[j] != previous_id[j]) { | 
|  | sub_id[j]++; | 
|  | for (int k = j + 1; k < depth; ++k) { | 
|  | sub_id[k] = 0; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Set previous_id | 
|  | for (int j = 0; j < depth; ++j) { | 
|  | previous_id[j] = hw_thread.ids[j]; | 
|  | } | 
|  | // Set the sub_ids field | 
|  | for (int j = 0; j < depth; ++j) { | 
|  | hw_thread.sub_ids[j] = sub_id[j]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void kmp_topology_t::_set_globals() { | 
|  | // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores | 
|  | int core_level, thread_level, package_level; | 
|  | package_level = get_level(KMP_HW_SOCKET); | 
|  | #if KMP_GROUP_AFFINITY | 
|  | if (package_level == -1) | 
|  | package_level = get_level(KMP_HW_PROC_GROUP); | 
|  | #endif | 
|  | core_level = get_level(KMP_HW_CORE); | 
|  | thread_level = get_level(KMP_HW_THREAD); | 
|  |  | 
|  | KMP_ASSERT(core_level != -1); | 
|  | KMP_ASSERT(thread_level != -1); | 
|  |  | 
|  | __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level); | 
|  | if (package_level != -1) { | 
|  | nCoresPerPkg = calculate_ratio(core_level, package_level); | 
|  | nPackages = get_count(package_level); | 
|  | } else { | 
|  | // assume one socket | 
|  | nCoresPerPkg = get_count(core_level); | 
|  | nPackages = 1; | 
|  | } | 
|  | #ifndef KMP_DFLT_NTH_CORES | 
|  | __kmp_ncores = get_count(core_level); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth, | 
|  | const kmp_hw_t *types) { | 
|  | kmp_topology_t *retval; | 
|  | // Allocate all data in one large allocation | 
|  | size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc + | 
|  | sizeof(int) * (size_t)KMP_HW_LAST * 3; | 
|  | char *bytes = (char *)__kmp_allocate(size); | 
|  | retval = (kmp_topology_t *)bytes; | 
|  | if (nproc > 0) { | 
|  | retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t)); | 
|  | } else { | 
|  | retval->hw_threads = nullptr; | 
|  | } | 
|  | retval->num_hw_threads = nproc; | 
|  | retval->depth = ndepth; | 
|  | int *arr = | 
|  | (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc); | 
|  | retval->types = (kmp_hw_t *)arr; | 
|  | retval->ratio = arr + (size_t)KMP_HW_LAST; | 
|  | retval->count = arr + 2 * (size_t)KMP_HW_LAST; | 
|  | retval->num_core_efficiencies = 0; | 
|  | retval->num_core_types = 0; | 
|  | retval->compact = 0; | 
|  | for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i) | 
|  | retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN; | 
|  | KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; } | 
|  | for (int i = 0; i < ndepth; ++i) { | 
|  | retval->types[i] = types[i]; | 
|  | retval->equivalent[types[i]] = types[i]; | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | void kmp_topology_t::deallocate(kmp_topology_t *topology) { | 
|  | if (topology) | 
|  | __kmp_free(topology); | 
|  | } | 
|  |  | 
|  | bool kmp_topology_t::check_ids() const { | 
|  | // Assume ids have been sorted | 
|  | if (num_hw_threads == 0) | 
|  | return true; | 
|  | for (int i = 1; i < num_hw_threads; ++i) { | 
|  | kmp_hw_thread_t ¤t_thread = hw_threads[i]; | 
|  | kmp_hw_thread_t &previous_thread = hw_threads[i - 1]; | 
|  | bool unique = false; | 
|  | for (int j = 0; j < depth; ++j) { | 
|  | if (previous_thread.ids[j] != current_thread.ids[j]) { | 
|  | unique = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (unique) | 
|  | continue; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void kmp_topology_t::dump() const { | 
|  | printf("***********************\n"); | 
|  | printf("*** __kmp_topology: ***\n"); | 
|  | printf("***********************\n"); | 
|  | printf("* depth: %d\n", depth); | 
|  |  | 
|  | printf("* types: "); | 
|  | for (int i = 0; i < depth; ++i) | 
|  | printf("%15s ", __kmp_hw_get_keyword(types[i])); | 
|  | printf("\n"); | 
|  |  | 
|  | printf("* ratio: "); | 
|  | for (int i = 0; i < depth; ++i) { | 
|  | printf("%15d ", ratio[i]); | 
|  | } | 
|  | printf("\n"); | 
|  |  | 
|  | printf("* count: "); | 
|  | for (int i = 0; i < depth; ++i) { | 
|  | printf("%15d ", count[i]); | 
|  | } | 
|  | printf("\n"); | 
|  |  | 
|  | printf("* num_core_eff: %d\n", num_core_efficiencies); | 
|  | printf("* num_core_types: %d\n", num_core_types); | 
|  | printf("* core_types: "); | 
|  | for (int i = 0; i < num_core_types; ++i) | 
|  | printf("%3d ", core_types[i]); | 
|  | printf("\n"); | 
|  |  | 
|  | printf("* equivalent map:\n"); | 
|  | KMP_FOREACH_HW_TYPE(i) { | 
|  | const char *key = __kmp_hw_get_keyword(i); | 
|  | const char *value = __kmp_hw_get_keyword(equivalent[i]); | 
|  | printf("%-15s -> %-15s\n", key, value); | 
|  | } | 
|  |  | 
|  | printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No")); | 
|  |  | 
|  | printf("* num_hw_threads: %d\n", num_hw_threads); | 
|  | printf("* hw_threads:\n"); | 
|  | for (int i = 0; i < num_hw_threads; ++i) { | 
|  | hw_threads[i].print(); | 
|  | } | 
|  | printf("***********************\n"); | 
|  | } | 
|  |  | 
|  | void kmp_topology_t::print(const char *env_var) const { | 
|  | kmp_str_buf_t buf; | 
|  | int print_types_depth; | 
|  | __kmp_str_buf_init(&buf); | 
|  | kmp_hw_t print_types[KMP_HW_LAST + 2]; | 
|  |  | 
|  | // Num Available Threads | 
|  | if (num_hw_threads) { | 
|  | KMP_INFORM(AvailableOSProc, env_var, num_hw_threads); | 
|  | } else { | 
|  | KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc); | 
|  | } | 
|  |  | 
|  | // Uniform or not | 
|  | if (is_uniform()) { | 
|  | KMP_INFORM(Uniform, env_var); | 
|  | } else { | 
|  | KMP_INFORM(NonUniform, env_var); | 
|  | } | 
|  |  | 
|  | // Equivalent types | 
|  | KMP_FOREACH_HW_TYPE(type) { | 
|  | kmp_hw_t eq_type = equivalent[type]; | 
|  | if (eq_type != KMP_HW_UNKNOWN && eq_type != type) { | 
|  | KMP_INFORM(AffEqualTopologyTypes, env_var, | 
|  | __kmp_hw_get_catalog_string(type), | 
|  | __kmp_hw_get_catalog_string(eq_type)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Quick topology | 
|  | KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST); | 
|  | // Create a print types array that always guarantees printing | 
|  | // the core and thread level | 
|  | print_types_depth = 0; | 
|  | for (int level = 0; level < depth; ++level) | 
|  | print_types[print_types_depth++] = types[level]; | 
|  | if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) { | 
|  | // Force in the core level for quick topology | 
|  | if (print_types[print_types_depth - 1] == KMP_HW_THREAD) { | 
|  | // Force core before thread e.g., 1 socket X 2 threads/socket | 
|  | // becomes 1 socket X 1 core/socket X 2 threads/socket | 
|  | print_types[print_types_depth - 1] = KMP_HW_CORE; | 
|  | print_types[print_types_depth++] = KMP_HW_THREAD; | 
|  | } else { | 
|  | print_types[print_types_depth++] = KMP_HW_CORE; | 
|  | } | 
|  | } | 
|  | // Always put threads at very end of quick topology | 
|  | if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD) | 
|  | print_types[print_types_depth++] = KMP_HW_THREAD; | 
|  |  | 
|  | __kmp_str_buf_clear(&buf); | 
|  | kmp_hw_t numerator_type; | 
|  | kmp_hw_t denominator_type = KMP_HW_UNKNOWN; | 
|  | int core_level = get_level(KMP_HW_CORE); | 
|  | int ncores = get_count(core_level); | 
|  |  | 
|  | for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) { | 
|  | int c; | 
|  | bool plural; | 
|  | numerator_type = print_types[plevel]; | 
|  | KMP_ASSERT_VALID_HW_TYPE(numerator_type); | 
|  | if (equivalent[numerator_type] != numerator_type) | 
|  | c = 1; | 
|  | else | 
|  | c = get_ratio(level++); | 
|  | plural = (c > 1); | 
|  | if (plevel == 0) { | 
|  | __kmp_str_buf_print(&buf, "%d %s", c, | 
|  | __kmp_hw_get_catalog_string(numerator_type, plural)); | 
|  | } else { | 
|  | __kmp_str_buf_print(&buf, " x %d %s/%s", c, | 
|  | __kmp_hw_get_catalog_string(numerator_type, plural), | 
|  | __kmp_hw_get_catalog_string(denominator_type)); | 
|  | } | 
|  | denominator_type = numerator_type; | 
|  | } | 
|  | KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores); | 
|  |  | 
|  | // Hybrid topology information | 
|  | if (__kmp_is_hybrid_cpu()) { | 
|  | for (int i = 0; i < num_core_types; ++i) { | 
|  | kmp_hw_core_type_t core_type = core_types[i]; | 
|  | kmp_hw_attr_t attr; | 
|  | attr.clear(); | 
|  | attr.set_core_type(core_type); | 
|  | int ncores = get_ncores_with_attr(attr); | 
|  | if (ncores > 0) { | 
|  | KMP_INFORM(TopologyHybrid, env_var, ncores, | 
|  | __kmp_hw_get_core_type_string(core_type)); | 
|  | KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS) | 
|  | for (int eff = 0; eff < num_core_efficiencies; ++eff) { | 
|  | attr.set_core_eff(eff); | 
|  | int ncores_with_eff = get_ncores_with_attr(attr); | 
|  | if (ncores_with_eff > 0) { | 
|  | KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (num_hw_threads <= 0) { | 
|  | __kmp_str_buf_free(&buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Full OS proc to hardware thread map | 
|  | KMP_INFORM(OSProcToPhysicalThreadMap, env_var); | 
|  | for (int i = 0; i < num_hw_threads; i++) { | 
|  | __kmp_str_buf_clear(&buf); | 
|  | for (int level = 0; level < depth; ++level) { | 
|  | kmp_hw_t type = types[level]; | 
|  | __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type)); | 
|  | __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]); | 
|  | } | 
|  | if (__kmp_is_hybrid_cpu()) | 
|  | __kmp_str_buf_print( | 
|  | &buf, "(%s)", | 
|  | __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type())); | 
|  | KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str); | 
|  | } | 
|  |  | 
|  | __kmp_str_buf_free(&buf); | 
|  | } | 
|  |  | 
|  | #if KMP_AFFINITY_SUPPORTED | 
|  | void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const { | 
|  | const char *env_var = affinity.env_var; | 
|  | // Set the number of affinity granularity levels | 
|  | if (affinity.gran_levels < 0) { | 
|  | kmp_hw_t gran_type = get_equivalent_type(affinity.gran); | 
|  | // Check if user's granularity request is valid | 
|  | if (gran_type == KMP_HW_UNKNOWN) { | 
|  | // First try core, then thread, then package | 
|  | kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET}; | 
|  | for (auto g : gran_types) { | 
|  | if (get_equivalent_type(g) != KMP_HW_UNKNOWN) { | 
|  | gran_type = g; | 
|  | break; | 
|  | } | 
|  | } | 
|  | KMP_ASSERT(gran_type != KMP_HW_UNKNOWN); | 
|  | // Warn user what granularity setting will be used instead | 
|  | KMP_AFF_WARNING(affinity, AffGranularityBad, env_var, | 
|  | __kmp_hw_get_catalog_string(affinity.gran), | 
|  | __kmp_hw_get_catalog_string(gran_type)); | 
|  | affinity.gran = gran_type; | 
|  | } | 
|  | #if KMP_GROUP_AFFINITY | 
|  | // If more than one processor group exists, and the level of | 
|  | // granularity specified by the user is too coarse, then the | 
|  | // granularity must be adjusted "down" to processor group affinity | 
|  | // because threads can only exist within one processor group. | 
|  | // For example, if a user sets granularity=socket and there are two | 
|  | // processor groups that cover a socket, then the runtime must | 
|  | // restrict the granularity down to the processor group level. | 
|  | if (__kmp_num_proc_groups > 1) { | 
|  | int gran_depth = get_level(gran_type); | 
|  | int proc_group_depth = get_level(KMP_HW_PROC_GROUP); | 
|  | if (gran_depth >= 0 && proc_group_depth >= 0 && | 
|  | gran_depth < proc_group_depth) { | 
|  | KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var, | 
|  | __kmp_hw_get_catalog_string(affinity.gran)); | 
|  | affinity.gran = gran_type = KMP_HW_PROC_GROUP; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | affinity.gran_levels = 0; | 
|  | for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i) | 
|  | affinity.gran_levels++; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void kmp_topology_t::canonicalize() { | 
|  | #if KMP_GROUP_AFFINITY | 
|  | _insert_windows_proc_groups(); | 
|  | #endif | 
|  | _remove_radix1_layers(); | 
|  | _gather_enumeration_information(); | 
|  | _discover_uniformity(); | 
|  | _set_sub_ids(); | 
|  | _set_globals(); | 
|  | _set_last_level_cache(); | 
|  |  | 
|  | #if KMP_MIC_SUPPORTED | 
|  | // Manually Add L2 = Tile equivalence | 
|  | if (__kmp_mic_type == mic3) { | 
|  | if (get_level(KMP_HW_L2) != -1) | 
|  | set_equivalent_type(KMP_HW_TILE, KMP_HW_L2); | 
|  | else if (get_level(KMP_HW_TILE) != -1) | 
|  | set_equivalent_type(KMP_HW_L2, KMP_HW_TILE); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Perform post canonicalization checking | 
|  | KMP_ASSERT(depth > 0); | 
|  | for (int level = 0; level < depth; ++level) { | 
|  | // All counts, ratios, and types must be valid | 
|  | KMP_ASSERT(count[level] > 0 && ratio[level] > 0); | 
|  | KMP_ASSERT_VALID_HW_TYPE(types[level]); | 
|  | // Detected types must point to themselves | 
|  | KMP_ASSERT(equivalent[types[level]] == types[level]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Canonicalize an explicit packages X cores/pkg X threads/core topology | 
|  | void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg, | 
|  | int nthreads_per_core, int ncores) { | 
|  | int ndepth = 3; | 
|  | depth = ndepth; | 
|  | KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; } | 
|  | for (int level = 0; level < depth; ++level) { | 
|  | count[level] = 0; | 
|  | ratio[level] = 0; | 
|  | } | 
|  | count[0] = npackages; | 
|  | count[1] = ncores; | 
|  | count[2] = __kmp_xproc; | 
|  | ratio[0] = npackages; | 
|  | ratio[1] = ncores_per_pkg; | 
|  | ratio[2] = nthreads_per_core; | 
|  | equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET; | 
|  | equivalent[KMP_HW_CORE] = KMP_HW_CORE; | 
|  | equivalent[KMP_HW_THREAD] = KMP_HW_THREAD; | 
|  | types[0] = KMP_HW_SOCKET; | 
|  | types[1] = KMP_HW_CORE; | 
|  | types[2] = KMP_HW_THREAD; | 
|  | //__kmp_avail_proc = __kmp_xproc; | 
|  | _discover_uniformity(); | 
|  | } | 
|  |  | 
|  | // Represents running sub IDs for a single core attribute where | 
|  | // attribute values have SIZE possibilities. | 
|  | template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t { | 
|  | int last_level; // last level in topology to consider for sub_ids | 
|  | int sub_id[SIZE]; // The sub ID for a given attribute value | 
|  | int prev_sub_id[KMP_HW_LAST]; | 
|  | IndexFunc indexer; | 
|  |  | 
|  | public: | 
|  | kmp_sub_ids_t(int last_level) : last_level(last_level) { | 
|  | KMP_ASSERT(last_level < KMP_HW_LAST); | 
|  | for (size_t i = 0; i < SIZE; ++i) | 
|  | sub_id[i] = -1; | 
|  | for (size_t i = 0; i < KMP_HW_LAST; ++i) | 
|  | prev_sub_id[i] = -1; | 
|  | } | 
|  | void update(const kmp_hw_thread_t &hw_thread) { | 
|  | int idx = indexer(hw_thread); | 
|  | KMP_ASSERT(idx < (int)SIZE); | 
|  | for (int level = 0; level <= last_level; ++level) { | 
|  | if (hw_thread.sub_ids[level] != prev_sub_id[level]) { | 
|  | if (level < last_level) | 
|  | sub_id[idx] = -1; | 
|  | sub_id[idx]++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | for (int level = 0; level <= last_level; ++level) | 
|  | prev_sub_id[level] = hw_thread.sub_ids[level]; | 
|  | } | 
|  | int get_sub_id(const kmp_hw_thread_t &hw_thread) const { | 
|  | return sub_id[indexer(hw_thread)]; | 
|  | } | 
|  | }; | 
|  |  | 
|  | static kmp_str_buf_t * | 
|  | __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf, | 
|  | bool plural) { | 
|  | __kmp_str_buf_init(buf); | 
|  | if (attr.is_core_type_valid()) | 
|  | __kmp_str_buf_print(buf, "%s %s", | 
|  | __kmp_hw_get_core_type_string(attr.get_core_type()), | 
|  | __kmp_hw_get_catalog_string(KMP_HW_CORE, plural)); | 
|  | else | 
|  | __kmp_str_buf_print(buf, "%s eff=%d", | 
|  | __kmp_hw_get_catalog_string(KMP_HW_CORE, plural), | 
|  | attr.get_core_eff()); | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | // Apply the KMP_HW_SUBSET envirable to the topology | 
|  | // Returns true if KMP_HW_SUBSET filtered any processors | 
|  | // otherwise, returns false | 
|  | bool kmp_topology_t::filter_hw_subset() { | 
|  | // If KMP_HW_SUBSET wasn't requested, then do nothing. | 
|  | if (!__kmp_hw_subset) | 
|  | return false; | 
|  |  | 
|  | // First, sort the KMP_HW_SUBSET items by the machine topology | 
|  | __kmp_hw_subset->sort(); | 
|  |  | 
|  | // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology | 
|  | bool using_core_types = false; | 
|  | bool using_core_effs = false; | 
|  | int hw_subset_depth = __kmp_hw_subset->get_depth(); | 
|  | kmp_hw_t specified[KMP_HW_LAST]; | 
|  | int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth); | 
|  | KMP_ASSERT(hw_subset_depth > 0); | 
|  | KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; } | 
|  | int core_level = get_level(KMP_HW_CORE); | 
|  | for (int i = 0; i < hw_subset_depth; ++i) { | 
|  | int max_count; | 
|  | const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i); | 
|  | int num = item.num[0]; | 
|  | int offset = item.offset[0]; | 
|  | kmp_hw_t type = item.type; | 
|  | kmp_hw_t equivalent_type = equivalent[type]; | 
|  | int level = get_level(type); | 
|  | topology_levels[i] = level; | 
|  |  | 
|  | // Check to see if current layer is in detected machine topology | 
|  | if (equivalent_type != KMP_HW_UNKNOWN) { | 
|  | __kmp_hw_subset->at(i).type = equivalent_type; | 
|  | } else { | 
|  | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric, | 
|  | __kmp_hw_get_catalog_string(type)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check to see if current layer has already been | 
|  | // specified either directly or through an equivalent type | 
|  | if (specified[equivalent_type] != KMP_HW_UNKNOWN) { | 
|  | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers, | 
|  | __kmp_hw_get_catalog_string(type), | 
|  | __kmp_hw_get_catalog_string(specified[equivalent_type])); | 
|  | return false; | 
|  | } | 
|  | specified[equivalent_type] = type; | 
|  |  | 
|  | // Check to see if each layer's num & offset parameters are valid | 
|  | max_count = get_ratio(level); | 
|  | if (max_count < 0 || | 
|  | (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { | 
|  | bool plural = (num > 1); | 
|  | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, | 
|  | __kmp_hw_get_catalog_string(type, plural)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check to see if core attributes are consistent | 
|  | if (core_level == level) { | 
|  | // Determine which core attributes are specified | 
|  | for (int j = 0; j < item.num_attrs; ++j) { | 
|  | if (item.attr[j].is_core_type_valid()) | 
|  | using_core_types = true; | 
|  | if (item.attr[j].is_core_eff_valid()) | 
|  | using_core_effs = true; | 
|  | } | 
|  |  | 
|  | // Check if using a single core attribute on non-hybrid arch. | 
|  | // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute. | 
|  | // | 
|  | // Check if using multiple core attributes on non-hyrbid arch. | 
|  | // Ignore all of KMP_HW_SUBSET if this is the case. | 
|  | if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) { | 
|  | if (item.num_attrs == 1) { | 
|  | if (using_core_effs) { | 
|  | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr, | 
|  | "efficiency"); | 
|  | } else { | 
|  | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr, | 
|  | "core_type"); | 
|  | } | 
|  | using_core_effs = false; | 
|  | using_core_types = false; | 
|  | } else { | 
|  | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if using both core types and core efficiencies together | 
|  | if (using_core_types && using_core_effs) { | 
|  | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type", | 
|  | "efficiency"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that core efficiency values are valid | 
|  | if (using_core_effs) { | 
|  | for (int j = 0; j < item.num_attrs; ++j) { | 
|  | if (item.attr[j].is_core_eff_valid()) { | 
|  | int core_eff = item.attr[j].get_core_eff(); | 
|  | if (core_eff < 0 || core_eff >= num_core_efficiencies) { | 
|  | kmp_str_buf_t buf; | 
|  | __kmp_str_buf_init(&buf); | 
|  | __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff()); | 
|  | __kmp_msg(kmp_ms_warning, | 
|  | KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str), | 
|  | KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1), | 
|  | __kmp_msg_null); | 
|  | __kmp_str_buf_free(&buf); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that the number of requested cores with attributes is valid | 
|  | if (using_core_types || using_core_effs) { | 
|  | for (int j = 0; j < item.num_attrs; ++j) { | 
|  | int num = item.num[j]; | 
|  | int offset = item.offset[j]; | 
|  | int level_above = core_level - 1; | 
|  | if (level_above >= 0) { | 
|  | max_count = get_ncores_with_attr_per(item.attr[j], level_above); | 
|  | if (max_count <= 0 || | 
|  | (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { | 
|  | kmp_str_buf_t buf; | 
|  | __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0); | 
|  | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str); | 
|  | __kmp_str_buf_free(&buf); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((using_core_types || using_core_effs) && item.num_attrs > 1) { | 
|  | for (int j = 0; j < item.num_attrs; ++j) { | 
|  | // Ambiguous use of specific core attribute + generic core | 
|  | // e.g., 4c & 3c:intel_core or 4c & 3c:eff1 | 
|  | if (!item.attr[j]) { | 
|  | kmp_hw_attr_t other_attr; | 
|  | for (int k = 0; k < item.num_attrs; ++k) { | 
|  | if (item.attr[k] != item.attr[j]) { | 
|  | other_attr = item.attr[k]; | 
|  | break; | 
|  | } | 
|  | } | 
|  | kmp_str_buf_t buf; | 
|  | __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0); | 
|  | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, | 
|  | __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str); | 
|  | __kmp_str_buf_free(&buf); | 
|  | return false; | 
|  | } | 
|  | // Allow specifying a specific core type or core eff exactly once | 
|  | for (int k = 0; k < j; ++k) { | 
|  | if (!item.attr[j] || !item.attr[k]) | 
|  | continue; | 
|  | if (item.attr[k] == item.attr[j]) { | 
|  | kmp_str_buf_t buf; | 
|  | __kmp_hw_get_catalog_core_string(item.attr[j], &buf, | 
|  | item.num[j] > 0); | 
|  | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str); | 
|  | __kmp_str_buf_free(&buf); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | struct core_type_indexer { | 
|  | int operator()(const kmp_hw_thread_t &t) const { | 
|  | switch (t.attrs.get_core_type()) { | 
|  | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 | 
|  | case KMP_HW_CORE_TYPE_ATOM: | 
|  | return 1; | 
|  | case KMP_HW_CORE_TYPE_CORE: | 
|  | return 2; | 
|  | #endif | 
|  | case KMP_HW_CORE_TYPE_UNKNOWN: | 
|  | return 0; | 
|  | } | 
|  | KMP_ASSERT(0); | 
|  | return 0; | 
|  | } | 
|  | }; | 
|  | struct core_eff_indexer { | 
|  | int operator()(const kmp_hw_thread_t &t) const { | 
|  | return t.attrs.get_core_eff(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids( | 
|  | core_level); | 
|  | kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS, core_eff_indexer> core_eff_sub_ids( | 
|  | core_level); | 
|  |  | 
|  | // Determine which hardware threads should be filtered. | 
|  | int num_filtered = 0; | 
|  | bool *filtered = (bool *)__kmp_allocate(sizeof(bool) * num_hw_threads); | 
|  | for (int i = 0; i < num_hw_threads; ++i) { | 
|  | kmp_hw_thread_t &hw_thread = hw_threads[i]; | 
|  | // Update type_sub_id | 
|  | if (using_core_types) | 
|  | core_type_sub_ids.update(hw_thread); | 
|  | if (using_core_effs) | 
|  | core_eff_sub_ids.update(hw_thread); | 
|  |  | 
|  | // Check to see if this hardware thread should be filtered | 
|  | bool should_be_filtered = false; | 
|  | for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth; | 
|  | ++hw_subset_index) { | 
|  | const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index); | 
|  | int level = topology_levels[hw_subset_index]; | 
|  | if (level == -1) | 
|  | continue; | 
|  | if ((using_core_effs || using_core_types) && level == core_level) { | 
|  | // Look for the core attribute in KMP_HW_SUBSET which corresponds | 
|  | // to this hardware thread's core attribute. Use this num,offset plus | 
|  | // the running sub_id for the particular core attribute of this hardware | 
|  | // thread to determine if the hardware thread should be filtered or not. | 
|  | int attr_idx; | 
|  | kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type(); | 
|  | int core_eff = hw_thread.attrs.get_core_eff(); | 
|  | for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) { | 
|  | if (using_core_types && | 
|  | hw_subset_item.attr[attr_idx].get_core_type() == core_type) | 
|  | break; | 
|  | if (using_core_effs && | 
|  | hw_subset_item.attr[attr_idx].get_core_eff() == core_eff) | 
|  | break; | 
|  | } | 
|  | // This core attribute isn't in the KMP_HW_SUBSET so always filter it. | 
|  | if (attr_idx == hw_subset_item.num_attrs) { | 
|  | should_be_filtered = true; | 
|  | break; | 
|  | } | 
|  | int sub_id; | 
|  | int num = hw_subset_item.num[attr_idx]; | 
|  | int offset = hw_subset_item.offset[attr_idx]; | 
|  | if (using_core_types) | 
|  | sub_id = core_type_sub_ids.get_sub_id(hw_thread); | 
|  | else | 
|  | sub_id = core_eff_sub_ids.get_sub_id(hw_thread); | 
|  | if (sub_id < offset || | 
|  | (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) { | 
|  | should_be_filtered = true; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | int num = hw_subset_item.num[0]; | 
|  | int offset = hw_subset_item.offset[0]; | 
|  | if (hw_thread.sub_ids[level] < offset || | 
|  | (num != kmp_hw_subset_t::USE_ALL && | 
|  | hw_thread.sub_ids[level] >= offset + num)) { | 
|  | should_be_filtered = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Collect filtering information | 
|  | filtered[i] = should_be_filtered; | 
|  | if (should_be_filtered) | 
|  | num_filtered++; | 
|  | } | 
|  |  | 
|  | // One last check that we shouldn't allow filtering entire machine | 
|  | if (num_filtered == num_hw_threads) { | 
|  | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered); | 
|  | __kmp_free(filtered); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Apply the filter | 
|  | int new_index = 0; | 
|  | for (int i = 0; i < num_hw_threads; ++i) { | 
|  | if (!filtered[i]) { | 
|  | if (i != new_index) | 
|  | hw_threads[new_index] = hw_threads[i]; | 
|  | new_index++; | 
|  | } else { | 
|  | #if KMP_AFFINITY_SUPPORTED | 
|  | KMP_CPU_CLR(hw_threads[i].os_id, __kmp_affin_fullMask); | 
|  | #endif | 
|  | __kmp_avail_proc--; | 
|  | } | 
|  | } | 
|  |  | 
|  | KMP_DEBUG_ASSERT(new_index <= num_hw_threads); | 
|  | num_hw_threads = new_index; | 
|  |  | 
|  | // Post hardware subset canonicalization | 
|  | _gather_enumeration_information(); | 
|  | _discover_uniformity(); | 
|  | _set_globals(); | 
|  | _set_last_level_cache(); | 
|  | __kmp_free(filtered); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const { | 
|  | if (hw_level >= depth) | 
|  | return true; | 
|  | bool retval = true; | 
|  | const kmp_hw_thread_t &t1 = hw_threads[hwt1]; | 
|  | const kmp_hw_thread_t &t2 = hw_threads[hwt2]; | 
|  | for (int i = 0; i < (depth - hw_level); ++i) { | 
|  | if (t1.ids[i] != t2.ids[i]) | 
|  | return false; | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | #if KMP_AFFINITY_SUPPORTED | 
|  | class kmp_affinity_raii_t { | 
|  | kmp_affin_mask_t *mask; | 
|  | bool restored; | 
|  |  | 
|  | public: | 
|  | kmp_affinity_raii_t() : restored(false) { | 
|  | KMP_CPU_ALLOC(mask); | 
|  | KMP_ASSERT(mask != NULL); | 
|  | __kmp_get_system_affinity(mask, TRUE); | 
|  | } | 
|  | void restore() { | 
|  | __kmp_set_system_affinity(mask, TRUE); | 
|  | KMP_CPU_FREE(mask); | 
|  | restored = true; | 
|  | } | 
|  | ~kmp_affinity_raii_t() { | 
|  | if (!restored) { | 
|  | __kmp_set_system_affinity(mask, TRUE); | 
|  | KMP_CPU_FREE(mask); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | bool KMPAffinity::picked_api = false; | 
|  |  | 
|  | void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } | 
|  | void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } | 
|  | void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } | 
|  | void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } | 
|  | void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } | 
|  | void KMPAffinity::operator delete(void *p) { __kmp_free(p); } | 
|  |  | 
|  | void KMPAffinity::pick_api() { | 
|  | KMPAffinity *affinity_dispatch; | 
|  | if (picked_api) | 
|  | return; | 
|  | #if KMP_USE_HWLOC | 
|  | // Only use Hwloc if affinity isn't explicitly disabled and | 
|  | // user requests Hwloc topology method | 
|  | if (__kmp_affinity_top_method == affinity_top_method_hwloc && | 
|  | __kmp_affinity.type != affinity_disabled) { | 
|  | affinity_dispatch = new KMPHwlocAffinity(); | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | affinity_dispatch = new KMPNativeAffinity(); | 
|  | } | 
|  | __kmp_affinity_dispatch = affinity_dispatch; | 
|  | picked_api = true; | 
|  | } | 
|  |  | 
|  | void KMPAffinity::destroy_api() { | 
|  | if (__kmp_affinity_dispatch != NULL) { | 
|  | delete __kmp_affinity_dispatch; | 
|  | __kmp_affinity_dispatch = NULL; | 
|  | picked_api = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define KMP_ADVANCE_SCAN(scan)                                                 \ | 
|  | while (*scan != '\0') {                                                      \ | 
|  | scan++;                                                                    \ | 
|  | } | 
|  |  | 
|  | // Print the affinity mask to the character array in a pretty format. | 
|  | // The format is a comma separated list of non-negative integers or integer | 
|  | // ranges: e.g., 1,2,3-5,7,9-15 | 
|  | // The format can also be the string "{<empty>}" if no bits are set in mask | 
|  | char *__kmp_affinity_print_mask(char *buf, int buf_len, | 
|  | kmp_affin_mask_t *mask) { | 
|  | int start = 0, finish = 0, previous = 0; | 
|  | bool first_range; | 
|  | KMP_ASSERT(buf); | 
|  | KMP_ASSERT(buf_len >= 40); | 
|  | KMP_ASSERT(mask); | 
|  | char *scan = buf; | 
|  | char *end = buf + buf_len - 1; | 
|  |  | 
|  | // Check for empty set. | 
|  | if (mask->begin() == mask->end()) { | 
|  | KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); | 
|  | KMP_ADVANCE_SCAN(scan); | 
|  | KMP_ASSERT(scan <= end); | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | first_range = true; | 
|  | start = mask->begin(); | 
|  | while (1) { | 
|  | // Find next range | 
|  | // [start, previous] is inclusive range of contiguous bits in mask | 
|  | for (finish = mask->next(start), previous = start; | 
|  | finish == previous + 1 && finish != mask->end(); | 
|  | finish = mask->next(finish)) { | 
|  | previous = finish; | 
|  | } | 
|  |  | 
|  | // The first range does not need a comma printed before it, but the rest | 
|  | // of the ranges do need a comma beforehand | 
|  | if (!first_range) { | 
|  | KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); | 
|  | KMP_ADVANCE_SCAN(scan); | 
|  | } else { | 
|  | first_range = false; | 
|  | } | 
|  | // Range with three or more contiguous bits in the affinity mask | 
|  | if (previous - start > 1) { | 
|  | KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous); | 
|  | } else { | 
|  | // Range with one or two contiguous bits in the affinity mask | 
|  | KMP_SNPRINTF(scan, end - scan + 1, "%u", start); | 
|  | KMP_ADVANCE_SCAN(scan); | 
|  | if (previous - start > 0) { | 
|  | KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous); | 
|  | } | 
|  | } | 
|  | KMP_ADVANCE_SCAN(scan); | 
|  | // Start over with new start point | 
|  | start = finish; | 
|  | if (start == mask->end()) | 
|  | break; | 
|  | // Check for overflow | 
|  | if (end - scan < 2) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check for overflow | 
|  | KMP_ASSERT(scan <= end); | 
|  | return buf; | 
|  | } | 
|  | #undef KMP_ADVANCE_SCAN | 
|  |  | 
|  | // Print the affinity mask to the string buffer object in a pretty format | 
|  | // The format is a comma separated list of non-negative integers or integer | 
|  | // ranges: e.g., 1,2,3-5,7,9-15 | 
|  | // The format can also be the string "{<empty>}" if no bits are set in mask | 
|  | kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, | 
|  | kmp_affin_mask_t *mask) { | 
|  | int start = 0, finish = 0, previous = 0; | 
|  | bool first_range; | 
|  | KMP_ASSERT(buf); | 
|  | KMP_ASSERT(mask); | 
|  |  | 
|  | __kmp_str_buf_clear(buf); | 
|  |  | 
|  | // Check for empty set. | 
|  | if (mask->begin() == mask->end()) { | 
|  | __kmp_str_buf_print(buf, "%s", "{<empty>}"); | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | first_range = true; | 
|  | start = mask->begin(); | 
|  | while (1) { | 
|  | // Find next range | 
|  | // [start, previous] is inclusive range of contiguous bits in mask | 
|  | for (finish = mask->next(start), previous = start; | 
|  | finish == previous + 1 && finish != mask->end(); | 
|  | finish = mask->next(finish)) { | 
|  | previous = finish; | 
|  | } | 
|  |  | 
|  | // The first range does not need a comma printed before it, but the rest | 
|  | // of the ranges do need a comma beforehand | 
|  | if (!first_range) { | 
|  | __kmp_str_buf_print(buf, "%s", ","); | 
|  | } else { | 
|  | first_range = false; | 
|  | } | 
|  | // Range with three or more contiguous bits in the affinity mask | 
|  | if (previous - start > 1) { | 
|  | __kmp_str_buf_print(buf, "%u-%u", start, previous); | 
|  | } else { | 
|  | // Range with one or two contiguous bits in the affinity mask | 
|  | __kmp_str_buf_print(buf, "%u", start); | 
|  | if (previous - start > 0) { | 
|  | __kmp_str_buf_print(buf, ",%u", previous); | 
|  | } | 
|  | } | 
|  | // Start over with new start point | 
|  | start = finish; | 
|  | if (start == mask->end()) | 
|  | break; | 
|  | } | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | // Return (possibly empty) affinity mask representing the offline CPUs | 
|  | // Caller must free the mask | 
|  | kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() { | 
|  | kmp_affin_mask_t *offline; | 
|  | KMP_CPU_ALLOC(offline); | 
|  | KMP_CPU_ZERO(offline); | 
|  | #if KMP_OS_LINUX | 
|  | int n, begin_cpu, end_cpu; | 
|  | kmp_safe_raii_file_t offline_file; | 
|  | auto skip_ws = [](FILE *f) { | 
|  | int c; | 
|  | do { | 
|  | c = fgetc(f); | 
|  | } while (isspace(c)); | 
|  | if (c != EOF) | 
|  | ungetc(c, f); | 
|  | }; | 
|  | // File contains CSV of integer ranges representing the offline CPUs | 
|  | // e.g., 1,2,4-7,9,11-15 | 
|  | int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r"); | 
|  | if (status != 0) | 
|  | return offline; | 
|  | while (!feof(offline_file)) { | 
|  | skip_ws(offline_file); | 
|  | n = fscanf(offline_file, "%d", &begin_cpu); | 
|  | if (n != 1) | 
|  | break; | 
|  | skip_ws(offline_file); | 
|  | int c = fgetc(offline_file); | 
|  | if (c == EOF || c == ',') { | 
|  | // Just single CPU | 
|  | end_cpu = begin_cpu; | 
|  | } else if (c == '-') { | 
|  | // Range of CPUs | 
|  | skip_ws(offline_file); | 
|  | n = fscanf(offline_file, "%d", &end_cpu); | 
|  | if (n != 1) | 
|  | break; | 
|  | skip_ws(offline_file); | 
|  | c = fgetc(offline_file); // skip ',' | 
|  | } else { | 
|  | // Syntax problem | 
|  | break; | 
|  | } | 
|  | // Ensure a valid range of CPUs | 
|  | if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 || | 
|  | end_cpu >= __kmp_xproc || begin_cpu > end_cpu) { | 
|  | continue; | 
|  | } | 
|  | // Insert [begin_cpu, end_cpu] into offline mask | 
|  | for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) { | 
|  | KMP_CPU_SET(cpu, offline); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | return offline; | 
|  | } | 
|  |  | 
|  | // Return the number of available procs | 
|  | int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { | 
|  | int avail_proc = 0; | 
|  | KMP_CPU_ZERO(mask); | 
|  |  | 
|  | #if KMP_GROUP_AFFINITY | 
|  |  | 
|  | if (__kmp_num_proc_groups > 1) { | 
|  | int group; | 
|  | KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); | 
|  | for (group = 0; group < __kmp_num_proc_groups; group++) { | 
|  | int i; | 
|  | int num = __kmp_GetActiveProcessorCount(group); | 
|  | for (i = 0; i < num; i++) { | 
|  | KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); | 
|  | avail_proc++; | 
|  | } | 
|  | } | 
|  | } else | 
|  |  | 
|  | #endif /* KMP_GROUP_AFFINITY */ | 
|  |  | 
|  | { | 
|  | int proc; | 
|  | kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus(); | 
|  | for (proc = 0; proc < __kmp_xproc; proc++) { | 
|  | // Skip offline CPUs | 
|  | if (KMP_CPU_ISSET(proc, offline_cpus)) | 
|  | continue; | 
|  | KMP_CPU_SET(proc, mask); | 
|  | avail_proc++; | 
|  | } | 
|  | KMP_CPU_FREE(offline_cpus); | 
|  | } | 
|  |  | 
|  | return avail_proc; | 
|  | } | 
|  |  | 
|  | // All of the __kmp_affinity_create_*_map() routines should allocate the | 
|  | // internal topology object and set the layer ids for it.  Each routine | 
|  | // returns a boolean on whether it was successful at doing so. | 
|  | kmp_affin_mask_t *__kmp_affin_fullMask = NULL; | 
|  | // Original mask is a subset of full mask in multiple processor groups topology | 
|  | kmp_affin_mask_t *__kmp_affin_origMask = NULL; | 
|  |  | 
|  | #if KMP_USE_HWLOC | 
|  | static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { | 
|  | #if HWLOC_API_VERSION >= 0x00020000 | 
|  | return hwloc_obj_type_is_cache(obj->type); | 
|  | #else | 
|  | return obj->type == HWLOC_OBJ_CACHE; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Returns KMP_HW_* type derived from HWLOC_* type | 
|  | static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { | 
|  |  | 
|  | if (__kmp_hwloc_is_cache_type(obj)) { | 
|  | if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) | 
|  | return KMP_HW_UNKNOWN; | 
|  | switch (obj->attr->cache.depth) { | 
|  | case 1: | 
|  | return KMP_HW_L1; | 
|  | case 2: | 
|  | #if KMP_MIC_SUPPORTED | 
|  | if (__kmp_mic_type == mic3) { | 
|  | return KMP_HW_TILE; | 
|  | } | 
|  | #endif | 
|  | return KMP_HW_L2; | 
|  | case 3: | 
|  | return KMP_HW_L3; | 
|  | } | 
|  | return KMP_HW_UNKNOWN; | 
|  | } | 
|  |  | 
|  | switch (obj->type) { | 
|  | case HWLOC_OBJ_PACKAGE: | 
|  | return KMP_HW_SOCKET; | 
|  | case HWLOC_OBJ_NUMANODE: | 
|  | return KMP_HW_NUMA; | 
|  | case HWLOC_OBJ_CORE: | 
|  | return KMP_HW_CORE; | 
|  | case HWLOC_OBJ_PU: | 
|  | return KMP_HW_THREAD; | 
|  | case HWLOC_OBJ_GROUP: | 
|  | #if HWLOC_API_VERSION >= 0x00020000 | 
|  | if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE) | 
|  | return KMP_HW_DIE; | 
|  | else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE) | 
|  | return KMP_HW_TILE; | 
|  | else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE) | 
|  | return KMP_HW_MODULE; | 
|  | else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP) | 
|  | return KMP_HW_PROC_GROUP; | 
|  | #endif | 
|  | return KMP_HW_UNKNOWN; | 
|  | #if HWLOC_API_VERSION >= 0x00020100 | 
|  | case HWLOC_OBJ_DIE: | 
|  | return KMP_HW_DIE; | 
|  | #endif | 
|  | } | 
|  | return KMP_HW_UNKNOWN; | 
|  | } | 
|  |  | 
|  | // Returns the number of objects of type 'type' below 'obj' within the topology | 
|  | // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is | 
|  | // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET | 
|  | // object. | 
|  | static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, | 
|  | hwloc_obj_type_t type) { | 
|  | int retval = 0; | 
|  | hwloc_obj_t first; | 
|  | for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, | 
|  | obj->logical_index, type, 0); | 
|  | first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, | 
|  | obj->type, first) == obj; | 
|  | first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, | 
|  | first)) { | 
|  | ++retval; | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | // This gets the sub_id for a lower object under a higher object in the | 
|  | // topology tree | 
|  | static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, | 
|  | hwloc_obj_t lower) { | 
|  | hwloc_obj_t obj; | 
|  | hwloc_obj_type_t ltype = lower->type; | 
|  | int lindex = lower->logical_index - 1; | 
|  | int sub_id = 0; | 
|  | // Get the previous lower object | 
|  | obj = hwloc_get_obj_by_type(t, ltype, lindex); | 
|  | while (obj && lindex >= 0 && | 
|  | hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { | 
|  | if (obj->userdata) { | 
|  | sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)); | 
|  | break; | 
|  | } | 
|  | sub_id++; | 
|  | lindex--; | 
|  | obj = hwloc_get_obj_by_type(t, ltype, lindex); | 
|  | } | 
|  | // store sub_id + 1 so that 0 is differed from NULL | 
|  | lower->userdata = RCAST(void *, sub_id + 1); | 
|  | return sub_id; | 
|  | } | 
|  |  | 
|  | static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) { | 
|  | kmp_hw_t type; | 
|  | int hw_thread_index, sub_id; | 
|  | int depth; | 
|  | hwloc_obj_t pu, obj, root, prev; | 
|  | kmp_hw_t types[KMP_HW_LAST]; | 
|  | hwloc_obj_type_t hwloc_types[KMP_HW_LAST]; | 
|  |  | 
|  | hwloc_topology_t tp = __kmp_hwloc_topology; | 
|  | *msg_id = kmp_i18n_null; | 
|  | if (__kmp_affinity.flags.verbose) { | 
|  | KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); | 
|  | } | 
|  |  | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | // Hack to try and infer the machine topology using only the data | 
|  | // available from hwloc on the current thread, and __kmp_xproc. | 
|  | KMP_ASSERT(__kmp_affinity.type == affinity_none); | 
|  | // hwloc only guarantees existance of PU object, so check PACKAGE and CORE | 
|  | hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); | 
|  | if (o != NULL) | 
|  | nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); | 
|  | else | 
|  | nCoresPerPkg = 1; // no PACKAGE found | 
|  | o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); | 
|  | if (o != NULL) | 
|  | __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); | 
|  | else | 
|  | __kmp_nThreadsPerCore = 1; // no CORE found | 
|  | __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; | 
|  | if (nCoresPerPkg == 0) | 
|  | nCoresPerPkg = 1; // to prevent possible division by 0 | 
|  | nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #if HWLOC_API_VERSION >= 0x00020400 | 
|  | // Handle multiple types of cores if they exist on the system | 
|  | int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0); | 
|  |  | 
|  | typedef struct kmp_hwloc_cpukinds_info_t { | 
|  | int efficiency; | 
|  | kmp_hw_core_type_t core_type; | 
|  | hwloc_bitmap_t mask; | 
|  | } kmp_hwloc_cpukinds_info_t; | 
|  | kmp_hwloc_cpukinds_info_t *cpukinds = nullptr; | 
|  |  | 
|  | if (nr_cpu_kinds > 0) { | 
|  | unsigned nr_infos; | 
|  | struct hwloc_info_s *infos; | 
|  | cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate( | 
|  | sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds); | 
|  | for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) { | 
|  | cpukinds[idx].efficiency = -1; | 
|  | cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN; | 
|  | cpukinds[idx].mask = hwloc_bitmap_alloc(); | 
|  | if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask, | 
|  | &cpukinds[idx].efficiency, &nr_infos, &infos, | 
|  | 0) == 0) { | 
|  | for (unsigned i = 0; i < nr_infos; ++i) { | 
|  | if (__kmp_str_match("CoreType", 8, infos[i].name)) { | 
|  | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 | 
|  | if (__kmp_str_match("IntelAtom", 9, infos[i].value)) { | 
|  | cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM; | 
|  | break; | 
|  | } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) { | 
|  | cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | root = hwloc_get_root_obj(tp); | 
|  |  | 
|  | // Figure out the depth and types in the topology | 
|  | depth = 0; | 
|  | pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); | 
|  | KMP_ASSERT(pu); | 
|  | obj = pu; | 
|  | types[depth] = KMP_HW_THREAD; | 
|  | hwloc_types[depth] = obj->type; | 
|  | depth++; | 
|  | while (obj != root && obj != NULL) { | 
|  | obj = obj->parent; | 
|  | #if HWLOC_API_VERSION >= 0x00020000 | 
|  | if (obj->memory_arity) { | 
|  | hwloc_obj_t memory; | 
|  | for (memory = obj->memory_first_child; memory; | 
|  | memory = hwloc_get_next_child(tp, obj, memory)) { | 
|  | if (memory->type == HWLOC_OBJ_NUMANODE) | 
|  | break; | 
|  | } | 
|  | if (memory && memory->type == HWLOC_OBJ_NUMANODE) { | 
|  | types[depth] = KMP_HW_NUMA; | 
|  | hwloc_types[depth] = memory->type; | 
|  | depth++; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | type = __kmp_hwloc_type_2_topology_type(obj); | 
|  | if (type != KMP_HW_UNKNOWN) { | 
|  | types[depth] = type; | 
|  | hwloc_types[depth] = obj->type; | 
|  | depth++; | 
|  | } | 
|  | } | 
|  | KMP_ASSERT(depth > 0); | 
|  |  | 
|  | // Get the order for the types correct | 
|  | for (int i = 0, j = depth - 1; i < j; ++i, --j) { | 
|  | hwloc_obj_type_t hwloc_temp = hwloc_types[i]; | 
|  | kmp_hw_t temp = types[i]; | 
|  | types[i] = types[j]; | 
|  | types[j] = temp; | 
|  | hwloc_types[i] = hwloc_types[j]; | 
|  | hwloc_types[j] = hwloc_temp; | 
|  | } | 
|  |  | 
|  | // Allocate the data structure to be returned. | 
|  | __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); | 
|  |  | 
|  | hw_thread_index = 0; | 
|  | pu = NULL; | 
|  | while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) { | 
|  | int index = depth - 1; | 
|  | bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask); | 
|  | kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); | 
|  | if (included) { | 
|  | hw_thread.clear(); | 
|  | hw_thread.ids[index] = pu->logical_index; | 
|  | hw_thread.os_id = pu->os_index; | 
|  | // If multiple core types, then set that attribute for the hardware thread | 
|  | #if HWLOC_API_VERSION >= 0x00020400 | 
|  | if (cpukinds) { | 
|  | int cpukind_index = -1; | 
|  | for (int i = 0; i < nr_cpu_kinds; ++i) { | 
|  | if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) { | 
|  | cpukind_index = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (cpukind_index >= 0) { | 
|  | hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type); | 
|  | hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | index--; | 
|  | } | 
|  | obj = pu; | 
|  | prev = obj; | 
|  | while (obj != root && obj != NULL) { | 
|  | obj = obj->parent; | 
|  | #if HWLOC_API_VERSION >= 0x00020000 | 
|  | // NUMA Nodes are handled differently since they are not within the | 
|  | // parent/child structure anymore.  They are separate children | 
|  | // of obj (memory_first_child points to first memory child) | 
|  | if (obj->memory_arity) { | 
|  | hwloc_obj_t memory; | 
|  | for (memory = obj->memory_first_child; memory; | 
|  | memory = hwloc_get_next_child(tp, obj, memory)) { | 
|  | if (memory->type == HWLOC_OBJ_NUMANODE) | 
|  | break; | 
|  | } | 
|  | if (memory && memory->type == HWLOC_OBJ_NUMANODE) { | 
|  | sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); | 
|  | if (included) { | 
|  | hw_thread.ids[index] = memory->logical_index; | 
|  | hw_thread.ids[index + 1] = sub_id; | 
|  | index--; | 
|  | } | 
|  | prev = memory; | 
|  | } | 
|  | prev = obj; | 
|  | } | 
|  | #endif | 
|  | type = __kmp_hwloc_type_2_topology_type(obj); | 
|  | if (type != KMP_HW_UNKNOWN) { | 
|  | sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); | 
|  | if (included) { | 
|  | hw_thread.ids[index] = obj->logical_index; | 
|  | hw_thread.ids[index + 1] = sub_id; | 
|  | index--; | 
|  | } | 
|  | prev = obj; | 
|  | } | 
|  | } | 
|  | if (included) | 
|  | hw_thread_index++; | 
|  | } | 
|  |  | 
|  | #if HWLOC_API_VERSION >= 0x00020400 | 
|  | // Free the core types information | 
|  | if (cpukinds) { | 
|  | for (int idx = 0; idx < nr_cpu_kinds; ++idx) | 
|  | hwloc_bitmap_free(cpukinds[idx].mask); | 
|  | __kmp_free(cpukinds); | 
|  | } | 
|  | #endif | 
|  | __kmp_topology->sort_ids(); | 
|  | return true; | 
|  | } | 
|  | #endif // KMP_USE_HWLOC | 
|  |  | 
|  | // If we don't know how to retrieve the machine's processor topology, or | 
|  | // encounter an error in doing so, this routine is called to form a "flat" | 
|  | // mapping of os thread id's <-> processor id's. | 
|  | static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) { | 
|  | *msg_id = kmp_i18n_null; | 
|  | int depth = 3; | 
|  | kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD}; | 
|  |  | 
|  | if (__kmp_affinity.flags.verbose) { | 
|  | KMP_INFORM(UsingFlatOS, "KMP_AFFINITY"); | 
|  | } | 
|  |  | 
|  | // Even if __kmp_affinity.type == affinity_none, this routine might still | 
|  | // be called to set __kmp_ncores, as well as | 
|  | // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | KMP_ASSERT(__kmp_affinity.type == affinity_none); | 
|  | __kmp_ncores = nPackages = __kmp_xproc; | 
|  | __kmp_nThreadsPerCore = nCoresPerPkg = 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // When affinity is off, this routine will still be called to set | 
|  | // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. | 
|  | // Make sure all these vars are set correctly, and return now if affinity is | 
|  | // not enabled. | 
|  | __kmp_ncores = nPackages = __kmp_avail_proc; | 
|  | __kmp_nThreadsPerCore = nCoresPerPkg = 1; | 
|  |  | 
|  | // Construct the data structure to be returned. | 
|  | __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); | 
|  | int avail_ct = 0; | 
|  | int i; | 
|  | KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { | 
|  | // Skip this proc if it is not included in the machine model. | 
|  | if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { | 
|  | continue; | 
|  | } | 
|  | kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct); | 
|  | hw_thread.clear(); | 
|  | hw_thread.os_id = i; | 
|  | hw_thread.ids[0] = i; | 
|  | hw_thread.ids[1] = 0; | 
|  | hw_thread.ids[2] = 0; | 
|  | avail_ct++; | 
|  | } | 
|  | if (__kmp_affinity.flags.verbose) { | 
|  | KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #if KMP_GROUP_AFFINITY | 
|  | // If multiple Windows* OS processor groups exist, we can create a 2-level | 
|  | // topology map with the groups at level 0 and the individual procs at level 1. | 
|  | // This facilitates letting the threads float among all procs in a group, | 
|  | // if granularity=group (the default when there are multiple groups). | 
|  | static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) { | 
|  | *msg_id = kmp_i18n_null; | 
|  | int depth = 3; | 
|  | kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD}; | 
|  | const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR); | 
|  |  | 
|  | if (__kmp_affinity.flags.verbose) { | 
|  | KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); | 
|  | } | 
|  |  | 
|  | // If we aren't affinity capable, then use flat topology | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | KMP_ASSERT(__kmp_affinity.type == affinity_none); | 
|  | nPackages = __kmp_num_proc_groups; | 
|  | __kmp_nThreadsPerCore = 1; | 
|  | __kmp_ncores = __kmp_xproc; | 
|  | nCoresPerPkg = nPackages / __kmp_ncores; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Construct the data structure to be returned. | 
|  | __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); | 
|  | int avail_ct = 0; | 
|  | int i; | 
|  | KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { | 
|  | // Skip this proc if it is not included in the machine model. | 
|  | if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { | 
|  | continue; | 
|  | } | 
|  | kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++); | 
|  | hw_thread.clear(); | 
|  | hw_thread.os_id = i; | 
|  | hw_thread.ids[0] = i / BITS_PER_GROUP; | 
|  | hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | #endif /* KMP_GROUP_AFFINITY */ | 
|  |  | 
|  | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 | 
|  |  | 
|  | template <kmp_uint32 LSB, kmp_uint32 MSB> | 
|  | static inline unsigned __kmp_extract_bits(kmp_uint32 v) { | 
|  | const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; | 
|  | const kmp_uint32 SHIFT_RIGHT = LSB; | 
|  | kmp_uint32 retval = v; | 
|  | retval <<= SHIFT_LEFT; | 
|  | retval >>= (SHIFT_LEFT + SHIFT_RIGHT); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int __kmp_cpuid_mask_width(int count) { | 
|  | int r = 0; | 
|  |  | 
|  | while ((1 << r) < count) | 
|  | ++r; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | class apicThreadInfo { | 
|  | public: | 
|  | unsigned osId; // param to __kmp_affinity_bind_thread | 
|  | unsigned apicId; // from cpuid after binding | 
|  | unsigned maxCoresPerPkg; //      "" | 
|  | unsigned maxThreadsPerPkg; //      "" | 
|  | unsigned pkgId; // inferred from above values | 
|  | unsigned coreId; //      "" | 
|  | unsigned threadId; //      "" | 
|  | }; | 
|  |  | 
|  | static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, | 
|  | const void *b) { | 
|  | const apicThreadInfo *aa = (const apicThreadInfo *)a; | 
|  | const apicThreadInfo *bb = (const apicThreadInfo *)b; | 
|  | if (aa->pkgId < bb->pkgId) | 
|  | return -1; | 
|  | if (aa->pkgId > bb->pkgId) | 
|  | return 1; | 
|  | if (aa->coreId < bb->coreId) | 
|  | return -1; | 
|  | if (aa->coreId > bb->coreId) | 
|  | return 1; | 
|  | if (aa->threadId < bb->threadId) | 
|  | return -1; | 
|  | if (aa->threadId > bb->threadId) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | class kmp_cache_info_t { | 
|  | public: | 
|  | struct info_t { | 
|  | unsigned level, mask; | 
|  | }; | 
|  | kmp_cache_info_t() : depth(0) { get_leaf4_levels(); } | 
|  | size_t get_depth() const { return depth; } | 
|  | info_t &operator[](size_t index) { return table[index]; } | 
|  | const info_t &operator[](size_t index) const { return table[index]; } | 
|  |  | 
|  | static kmp_hw_t get_topology_type(unsigned level) { | 
|  | KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL); | 
|  | switch (level) { | 
|  | case 1: | 
|  | return KMP_HW_L1; | 
|  | case 2: | 
|  | return KMP_HW_L2; | 
|  | case 3: | 
|  | return KMP_HW_L3; | 
|  | } | 
|  | return KMP_HW_UNKNOWN; | 
|  | } | 
|  |  | 
|  | private: | 
|  | static const int MAX_CACHE_LEVEL = 3; | 
|  |  | 
|  | size_t depth; | 
|  | info_t table[MAX_CACHE_LEVEL]; | 
|  |  | 
|  | void get_leaf4_levels() { | 
|  | unsigned level = 0; | 
|  | while (depth < MAX_CACHE_LEVEL) { | 
|  | unsigned cache_type, max_threads_sharing; | 
|  | unsigned cache_level, cache_mask_width; | 
|  | kmp_cpuid buf2; | 
|  | __kmp_x86_cpuid(4, level, &buf2); | 
|  | cache_type = __kmp_extract_bits<0, 4>(buf2.eax); | 
|  | if (!cache_type) | 
|  | break; | 
|  | // Skip instruction caches | 
|  | if (cache_type == 2) { | 
|  | level++; | 
|  | continue; | 
|  | } | 
|  | max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1; | 
|  | cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing); | 
|  | cache_level = __kmp_extract_bits<5, 7>(buf2.eax); | 
|  | table[depth].level = cache_level; | 
|  | table[depth].mask = ((-1) << cache_mask_width); | 
|  | depth++; | 
|  | level++; | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use | 
|  | // an algorithm which cycles through the available os threads, setting | 
|  | // the current thread's affinity mask to that thread, and then retrieves | 
|  | // the Apic Id for each thread context using the cpuid instruction. | 
|  | static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) { | 
|  | kmp_cpuid buf; | 
|  | *msg_id = kmp_i18n_null; | 
|  |  | 
|  | if (__kmp_affinity.flags.verbose) { | 
|  | KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); | 
|  | } | 
|  |  | 
|  | // Check if cpuid leaf 4 is supported. | 
|  | __kmp_x86_cpuid(0, 0, &buf); | 
|  | if (buf.eax < 4) { | 
|  | *msg_id = kmp_i18n_str_NoLeaf4Support; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The algorithm used starts by setting the affinity to each available thread | 
|  | // and retrieving info from the cpuid instruction, so if we are not capable of | 
|  | // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we | 
|  | // need to do something else - use the defaults that we calculated from | 
|  | // issuing cpuid without binding to each proc. | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | // Hack to try and infer the machine topology using only the data | 
|  | // available from cpuid on the current thread, and __kmp_xproc. | 
|  | KMP_ASSERT(__kmp_affinity.type == affinity_none); | 
|  |  | 
|  | // Get an upper bound on the number of threads per package using cpuid(1). | 
|  | // On some OS/chps combinations where HT is supported by the chip but is | 
|  | // disabled, this value will be 2 on a single core chip. Usually, it will be | 
|  | // 2 if HT is enabled and 1 if HT is disabled. | 
|  | __kmp_x86_cpuid(1, 0, &buf); | 
|  | int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; | 
|  | if (maxThreadsPerPkg == 0) { | 
|  | maxThreadsPerPkg = 1; | 
|  | } | 
|  |  | 
|  | // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded | 
|  | // value. | 
|  | // | 
|  | // The author of cpu_count.cpp treated this only an upper bound on the | 
|  | // number of cores, but I haven't seen any cases where it was greater than | 
|  | // the actual number of cores, so we will treat it as exact in this block of | 
|  | // code. | 
|  | // | 
|  | // First, we need to check if cpuid(4) is supported on this chip. To see if | 
|  | // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or | 
|  | // greater. | 
|  | __kmp_x86_cpuid(0, 0, &buf); | 
|  | if (buf.eax >= 4) { | 
|  | __kmp_x86_cpuid(4, 0, &buf); | 
|  | nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; | 
|  | } else { | 
|  | nCoresPerPkg = 1; | 
|  | } | 
|  |  | 
|  | // There is no way to reliably tell if HT is enabled without issuing the | 
|  | // cpuid instruction from every thread, can correlating the cpuid info, so | 
|  | // if the machine is not affinity capable, we assume that HT is off. We have | 
|  | // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine | 
|  | // does not support HT. | 
|  | // | 
|  | // - Older OSes are usually found on machines with older chips, which do not | 
|  | //   support HT. | 
|  | // - The performance penalty for mistakenly identifying a machine as HT when | 
|  | //   it isn't (which results in blocktime being incorrectly set to 0) is | 
|  | //   greater than the penalty when for mistakenly identifying a machine as | 
|  | //   being 1 thread/core when it is really HT enabled (which results in | 
|  | //   blocktime being incorrectly set to a positive value). | 
|  | __kmp_ncores = __kmp_xproc; | 
|  | nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; | 
|  | __kmp_nThreadsPerCore = 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // From here on, we can assume that it is safe to call | 
|  | // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if | 
|  | // __kmp_affinity.type = affinity_none. | 
|  |  | 
|  | // Save the affinity mask for the current thread. | 
|  | kmp_affinity_raii_t previous_affinity; | 
|  |  | 
|  | // Run through each of the available contexts, binding the current thread | 
|  | // to it, and obtaining the pertinent information using the cpuid instr. | 
|  | // | 
|  | // The relevant information is: | 
|  | // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context | 
|  | //     has a uniqie Apic Id, which is of the form pkg# : core# : thread#. | 
|  | // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value | 
|  | //     of this field determines the width of the core# + thread# fields in the | 
|  | //     Apic Id. It is also an upper bound on the number of threads per | 
|  | //     package, but it has been verified that situations happen were it is not | 
|  | //     exact. In particular, on certain OS/chip combinations where Intel(R) | 
|  | //     Hyper-Threading Technology is supported by the chip but has been | 
|  | //     disabled, the value of this field will be 2 (for a single core chip). | 
|  | //     On other OS/chip combinations supporting Intel(R) Hyper-Threading | 
|  | //     Technology, the value of this field will be 1 when Intel(R) | 
|  | //     Hyper-Threading Technology is disabled and 2 when it is enabled. | 
|  | // - Max Cores Per Pkg:  Bits 26:31 of eax after issuing cpuid(4). The value | 
|  | //     of this field (+1) determines the width of the core# field in the Apic | 
|  | //     Id. The comments in "cpucount.cpp" say that this value is an upper | 
|  | //     bound, but the IA-32 architecture manual says that it is exactly the | 
|  | //     number of cores per package, and I haven't seen any case where it | 
|  | //     wasn't. | 
|  | // | 
|  | // From this information, deduce the package Id, core Id, and thread Id, | 
|  | // and set the corresponding fields in the apicThreadInfo struct. | 
|  | unsigned i; | 
|  | apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( | 
|  | __kmp_avail_proc * sizeof(apicThreadInfo)); | 
|  | unsigned nApics = 0; | 
|  | KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { | 
|  | // Skip this proc if it is not included in the machine model. | 
|  | if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { | 
|  | continue; | 
|  | } | 
|  | KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); | 
|  |  | 
|  | __kmp_affinity_dispatch->bind_thread(i); | 
|  | threadInfo[nApics].osId = i; | 
|  |  | 
|  | // The apic id and max threads per pkg come from cpuid(1). | 
|  | __kmp_x86_cpuid(1, 0, &buf); | 
|  | if (((buf.edx >> 9) & 1) == 0) { | 
|  | __kmp_free(threadInfo); | 
|  | *msg_id = kmp_i18n_str_ApicNotPresent; | 
|  | return false; | 
|  | } | 
|  | threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; | 
|  | threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; | 
|  | if (threadInfo[nApics].maxThreadsPerPkg == 0) { | 
|  | threadInfo[nApics].maxThreadsPerPkg = 1; | 
|  | } | 
|  |  | 
|  | // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded | 
|  | // value. | 
|  | // | 
|  | // First, we need to check if cpuid(4) is supported on this chip. To see if | 
|  | // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n | 
|  | // or greater. | 
|  | __kmp_x86_cpuid(0, 0, &buf); | 
|  | if (buf.eax >= 4) { | 
|  | __kmp_x86_cpuid(4, 0, &buf); | 
|  | threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; | 
|  | } else { | 
|  | threadInfo[nApics].maxCoresPerPkg = 1; | 
|  | } | 
|  |  | 
|  | // Infer the pkgId / coreId / threadId using only the info obtained locally. | 
|  | int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); | 
|  | threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; | 
|  |  | 
|  | int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); | 
|  | int widthT = widthCT - widthC; | 
|  | if (widthT < 0) { | 
|  | // I've never seen this one happen, but I suppose it could, if the cpuid | 
|  | // instruction on a chip was really screwed up. Make sure to restore the | 
|  | // affinity mask before the tail call. | 
|  | __kmp_free(threadInfo); | 
|  | *msg_id = kmp_i18n_str_InvalidCpuidInfo; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int maskC = (1 << widthC) - 1; | 
|  | threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; | 
|  |  | 
|  | int maskT = (1 << widthT) - 1; | 
|  | threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; | 
|  |  | 
|  | nApics++; | 
|  | } | 
|  |  | 
|  | // We've collected all the info we need. | 
|  | // Restore the old affinity mask for this thread. | 
|  | previous_affinity.restore(); | 
|  |  | 
|  | // Sort the threadInfo table by physical Id. | 
|  | qsort(threadInfo, nApics, sizeof(*threadInfo), | 
|  | __kmp_affinity_cmp_apicThreadInfo_phys_id); | 
|  |  | 
|  | // The table is now sorted by pkgId / coreId / threadId, but we really don't | 
|  | // know the radix of any of the fields. pkgId's may be sparsely assigned among | 
|  | // the chips on a system. Although coreId's are usually assigned | 
|  | // [0 .. coresPerPkg-1] and threadId's are usually assigned | 
|  | // [0..threadsPerCore-1], we don't want to make any such assumptions. | 
|  | // | 
|  | // For that matter, we don't know what coresPerPkg and threadsPerCore (or the | 
|  | // total # packages) are at this point - we want to determine that now. We | 
|  | // only have an upper bound on the first two figures. | 
|  | // | 
|  | // We also perform a consistency check at this point: the values returned by | 
|  | // the cpuid instruction for any thread bound to a given package had better | 
|  | // return the same info for maxThreadsPerPkg and maxCoresPerPkg. | 
|  | nPackages = 1; | 
|  | nCoresPerPkg = 1; | 
|  | __kmp_nThreadsPerCore = 1; | 
|  | unsigned nCores = 1; | 
|  |  | 
|  | unsigned pkgCt = 1; // to determine radii | 
|  | unsigned lastPkgId = threadInfo[0].pkgId; | 
|  | unsigned coreCt = 1; | 
|  | unsigned lastCoreId = threadInfo[0].coreId; | 
|  | unsigned threadCt = 1; | 
|  | unsigned lastThreadId = threadInfo[0].threadId; | 
|  |  | 
|  | // intra-pkg consist checks | 
|  | unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; | 
|  | unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; | 
|  |  | 
|  | for (i = 1; i < nApics; i++) { | 
|  | if (threadInfo[i].pkgId != lastPkgId) { | 
|  | nCores++; | 
|  | pkgCt++; | 
|  | lastPkgId = threadInfo[i].pkgId; | 
|  | if ((int)coreCt > nCoresPerPkg) | 
|  | nCoresPerPkg = coreCt; | 
|  | coreCt = 1; | 
|  | lastCoreId = threadInfo[i].coreId; | 
|  | if ((int)threadCt > __kmp_nThreadsPerCore) | 
|  | __kmp_nThreadsPerCore = threadCt; | 
|  | threadCt = 1; | 
|  | lastThreadId = threadInfo[i].threadId; | 
|  |  | 
|  | // This is a different package, so go on to the next iteration without | 
|  | // doing any consistency checks. Reset the consistency check vars, though. | 
|  | prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; | 
|  | prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (threadInfo[i].coreId != lastCoreId) { | 
|  | nCores++; | 
|  | coreCt++; | 
|  | lastCoreId = threadInfo[i].coreId; | 
|  | if ((int)threadCt > __kmp_nThreadsPerCore) | 
|  | __kmp_nThreadsPerCore = threadCt; | 
|  | threadCt = 1; | 
|  | lastThreadId = threadInfo[i].threadId; | 
|  | } else if (threadInfo[i].threadId != lastThreadId) { | 
|  | threadCt++; | 
|  | lastThreadId = threadInfo[i].threadId; | 
|  | } else { | 
|  | __kmp_free(threadInfo); | 
|  | *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg | 
|  | // fields agree between all the threads bounds to a given package. | 
|  | if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || | 
|  | (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { | 
|  | __kmp_free(threadInfo); | 
|  | *msg_id = kmp_i18n_str_InconsistentCpuidInfo; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | // When affinity is off, this routine will still be called to set | 
|  | // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. | 
|  | // Make sure all these vars are set correctly | 
|  | nPackages = pkgCt; | 
|  | if ((int)coreCt > nCoresPerPkg) | 
|  | nCoresPerPkg = coreCt; | 
|  | if ((int)threadCt > __kmp_nThreadsPerCore) | 
|  | __kmp_nThreadsPerCore = threadCt; | 
|  | __kmp_ncores = nCores; | 
|  | KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); | 
|  |  | 
|  | // Now that we've determined the number of packages, the number of cores per | 
|  | // package, and the number of threads per core, we can construct the data | 
|  | // structure that is to be returned. | 
|  | int idx = 0; | 
|  | int pkgLevel = 0; | 
|  | int coreLevel = 1; | 
|  | int threadLevel = 2; | 
|  | //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); | 
|  | int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); | 
|  | kmp_hw_t types[3]; | 
|  | if (pkgLevel >= 0) | 
|  | types[idx++] = KMP_HW_SOCKET; | 
|  | if (coreLevel >= 0) | 
|  | types[idx++] = KMP_HW_CORE; | 
|  | if (threadLevel >= 0) | 
|  | types[idx++] = KMP_HW_THREAD; | 
|  |  | 
|  | KMP_ASSERT(depth > 0); | 
|  | __kmp_topology = kmp_topology_t::allocate(nApics, depth, types); | 
|  |  | 
|  | for (i = 0; i < nApics; ++i) { | 
|  | idx = 0; | 
|  | unsigned os = threadInfo[i].osId; | 
|  | kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); | 
|  | hw_thread.clear(); | 
|  |  | 
|  | if (pkgLevel >= 0) { | 
|  | hw_thread.ids[idx++] = threadInfo[i].pkgId; | 
|  | } | 
|  | if (coreLevel >= 0) { | 
|  | hw_thread.ids[idx++] = threadInfo[i].coreId; | 
|  | } | 
|  | if (threadLevel >= 0) { | 
|  | hw_thread.ids[idx++] = threadInfo[i].threadId; | 
|  | } | 
|  | hw_thread.os_id = os; | 
|  | } | 
|  |  | 
|  | __kmp_free(threadInfo); | 
|  | __kmp_topology->sort_ids(); | 
|  | if (!__kmp_topology->check_ids()) { | 
|  | kmp_topology_t::deallocate(__kmp_topology); | 
|  | __kmp_topology = nullptr; | 
|  | *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Hybrid cpu detection using CPUID.1A | 
|  | // Thread should be pinned to processor already | 
|  | static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency, | 
|  | unsigned *native_model_id) { | 
|  | kmp_cpuid buf; | 
|  | __kmp_x86_cpuid(0x1a, 0, &buf); | 
|  | *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax); | 
|  | switch (*type) { | 
|  | case KMP_HW_CORE_TYPE_ATOM: | 
|  | *efficiency = 0; | 
|  | break; | 
|  | case KMP_HW_CORE_TYPE_CORE: | 
|  | *efficiency = 1; | 
|  | break; | 
|  | default: | 
|  | *efficiency = 0; | 
|  | } | 
|  | *native_model_id = __kmp_extract_bits<0, 23>(buf.eax); | 
|  | } | 
|  |  | 
|  | // Intel(R) microarchitecture code name Nehalem, Dunnington and later | 
|  | // architectures support a newer interface for specifying the x2APIC Ids, | 
|  | // based on CPUID.B or CPUID.1F | 
|  | /* | 
|  | * CPUID.B or 1F, Input ECX (sub leaf # aka level number) | 
|  | Bits            Bits            Bits           Bits | 
|  | 31-16           15-8            7-4            4-0 | 
|  | ---+-----------+--------------+-------------+-----------------+ | 
|  | EAX| reserved  |   reserved   |   reserved  |  Bits to Shift  | | 
|  | ---+-----------|--------------+-------------+-----------------| | 
|  | EBX| reserved  | Num logical processors at level (16 bits)    | | 
|  | ---+-----------|--------------+-------------------------------| | 
|  | ECX| reserved  |   Level Type |      Level Number (8 bits)    | | 
|  | ---+-----------+--------------+-------------------------------| | 
|  | EDX|                    X2APIC ID (32 bits)                   | | 
|  | ---+----------------------------------------------------------+ | 
|  | */ | 
|  |  | 
|  | enum { | 
|  | INTEL_LEVEL_TYPE_INVALID = 0, // Package level | 
|  | INTEL_LEVEL_TYPE_SMT = 1, | 
|  | INTEL_LEVEL_TYPE_CORE = 2, | 
|  | INTEL_LEVEL_TYPE_MODULE = 3, | 
|  | INTEL_LEVEL_TYPE_TILE = 4, | 
|  | INTEL_LEVEL_TYPE_DIE = 5, | 
|  | INTEL_LEVEL_TYPE_LAST = 6, | 
|  | }; | 
|  |  | 
|  | struct cpuid_level_info_t { | 
|  | unsigned level_type, mask, mask_width, nitems, cache_mask; | 
|  | }; | 
|  |  | 
|  | static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { | 
|  | switch (intel_type) { | 
|  | case INTEL_LEVEL_TYPE_INVALID: | 
|  | return KMP_HW_SOCKET; | 
|  | case INTEL_LEVEL_TYPE_SMT: | 
|  | return KMP_HW_THREAD; | 
|  | case INTEL_LEVEL_TYPE_CORE: | 
|  | return KMP_HW_CORE; | 
|  | case INTEL_LEVEL_TYPE_TILE: | 
|  | return KMP_HW_TILE; | 
|  | case INTEL_LEVEL_TYPE_MODULE: | 
|  | return KMP_HW_MODULE; | 
|  | case INTEL_LEVEL_TYPE_DIE: | 
|  | return KMP_HW_DIE; | 
|  | } | 
|  | return KMP_HW_UNKNOWN; | 
|  | } | 
|  |  | 
|  | // This function takes the topology leaf, a levels array to store the levels | 
|  | // detected and a bitmap of the known levels. | 
|  | // Returns the number of levels in the topology | 
|  | static unsigned | 
|  | __kmp_x2apicid_get_levels(int leaf, | 
|  | cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST], | 
|  | kmp_uint64 known_levels) { | 
|  | unsigned level, levels_index; | 
|  | unsigned level_type, mask_width, nitems; | 
|  | kmp_cpuid buf; | 
|  |  | 
|  | // New algorithm has known topology layers act as highest unknown topology | 
|  | // layers when unknown topology layers exist. | 
|  | // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z> | 
|  | // are unknown topology layers, Then SMT will take the characteristics of | 
|  | // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>). | 
|  | // This eliminates unknown portions of the topology while still keeping the | 
|  | // correct structure. | 
|  | level = levels_index = 0; | 
|  | do { | 
|  | __kmp_x86_cpuid(leaf, level, &buf); | 
|  | level_type = __kmp_extract_bits<8, 15>(buf.ecx); | 
|  | mask_width = __kmp_extract_bits<0, 4>(buf.eax); | 
|  | nitems = __kmp_extract_bits<0, 15>(buf.ebx); | 
|  | if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) | 
|  | return 0; | 
|  |  | 
|  | if (known_levels & (1ull << level_type)) { | 
|  | // Add a new level to the topology | 
|  | KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST); | 
|  | levels[levels_index].level_type = level_type; | 
|  | levels[levels_index].mask_width = mask_width; | 
|  | levels[levels_index].nitems = nitems; | 
|  | levels_index++; | 
|  | } else { | 
|  | // If it is an unknown level, then logically move the previous layer up | 
|  | if (levels_index > 0) { | 
|  | levels[levels_index - 1].mask_width = mask_width; | 
|  | levels[levels_index - 1].nitems = nitems; | 
|  | } | 
|  | } | 
|  | level++; | 
|  | } while (level_type != INTEL_LEVEL_TYPE_INVALID); | 
|  |  | 
|  | // Set the masks to & with apicid | 
|  | for (unsigned i = 0; i < levels_index; ++i) { | 
|  | if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { | 
|  | levels[i].mask = ~((-1) << levels[i].mask_width); | 
|  | levels[i].cache_mask = (-1) << levels[i].mask_width; | 
|  | for (unsigned j = 0; j < i; ++j) | 
|  | levels[i].mask ^= levels[j].mask; | 
|  | } else { | 
|  | KMP_DEBUG_ASSERT(levels_index > 0); | 
|  | levels[i].mask = (-1) << levels[i - 1].mask_width; | 
|  | levels[i].cache_mask = 0; | 
|  | } | 
|  | } | 
|  | return levels_index; | 
|  | } | 
|  |  | 
|  | static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) { | 
|  |  | 
|  | cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; | 
|  | kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; | 
|  | unsigned levels_index; | 
|  | kmp_cpuid buf; | 
|  | kmp_uint64 known_levels; | 
|  | int topology_leaf, highest_leaf, apic_id; | 
|  | int num_leaves; | 
|  | static int leaves[] = {0, 0}; | 
|  |  | 
|  | kmp_i18n_id_t leaf_message_id; | 
|  |  | 
|  | KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST); | 
|  |  | 
|  | *msg_id = kmp_i18n_null; | 
|  | if (__kmp_affinity.flags.verbose) { | 
|  | KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); | 
|  | } | 
|  |  | 
|  | // Figure out the known topology levels | 
|  | known_levels = 0ull; | 
|  | for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) { | 
|  | if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) { | 
|  | known_levels |= (1ull << i); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get the highest cpuid leaf supported | 
|  | __kmp_x86_cpuid(0, 0, &buf); | 
|  | highest_leaf = buf.eax; | 
|  |  | 
|  | // If a specific topology method was requested, only allow that specific leaf | 
|  | // otherwise, try both leaves 31 and 11 in that order | 
|  | num_leaves = 0; | 
|  | if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { | 
|  | num_leaves = 1; | 
|  | leaves[0] = 11; | 
|  | leaf_message_id = kmp_i18n_str_NoLeaf11Support; | 
|  | } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { | 
|  | num_leaves = 1; | 
|  | leaves[0] = 31; | 
|  | leaf_message_id = kmp_i18n_str_NoLeaf31Support; | 
|  | } else { | 
|  | num_leaves = 2; | 
|  | leaves[0] = 31; | 
|  | leaves[1] = 11; | 
|  | leaf_message_id = kmp_i18n_str_NoLeaf11Support; | 
|  | } | 
|  |  | 
|  | // Check to see if cpuid leaf 31 or 11 is supported. | 
|  | __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; | 
|  | topology_leaf = -1; | 
|  | for (int i = 0; i < num_leaves; ++i) { | 
|  | int leaf = leaves[i]; | 
|  | if (highest_leaf < leaf) | 
|  | continue; | 
|  | __kmp_x86_cpuid(leaf, 0, &buf); | 
|  | if (buf.ebx == 0) | 
|  | continue; | 
|  | topology_leaf = leaf; | 
|  | levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels); | 
|  | if (levels_index == 0) | 
|  | continue; | 
|  | break; | 
|  | } | 
|  | if (topology_leaf == -1 || levels_index == 0) { | 
|  | *msg_id = leaf_message_id; | 
|  | return false; | 
|  | } | 
|  | KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST); | 
|  |  | 
|  | // The algorithm used starts by setting the affinity to each available thread | 
|  | // and retrieving info from the cpuid instruction, so if we are not capable of | 
|  | // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then | 
|  | // we need to do something else - use the defaults that we calculated from | 
|  | // issuing cpuid without binding to each proc. | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | // Hack to try and infer the machine topology using only the data | 
|  | // available from cpuid on the current thread, and __kmp_xproc. | 
|  | KMP_ASSERT(__kmp_affinity.type == affinity_none); | 
|  | for (unsigned i = 0; i < levels_index; ++i) { | 
|  | if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { | 
|  | __kmp_nThreadsPerCore = levels[i].nitems; | 
|  | } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { | 
|  | nCoresPerPkg = levels[i].nitems; | 
|  | } | 
|  | } | 
|  | __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; | 
|  | nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Allocate the data structure to be returned. | 
|  | int depth = levels_index; | 
|  | for (int i = depth - 1, j = 0; i >= 0; --i, ++j) | 
|  | types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type); | 
|  | __kmp_topology = | 
|  | kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types); | 
|  |  | 
|  | // Insert equivalent cache types if they exist | 
|  | kmp_cache_info_t cache_info; | 
|  | for (size_t i = 0; i < cache_info.get_depth(); ++i) { | 
|  | const kmp_cache_info_t::info_t &info = cache_info[i]; | 
|  | unsigned cache_mask = info.mask; | 
|  | unsigned cache_level = info.level; | 
|  | for (unsigned j = 0; j < levels_index; ++j) { | 
|  | unsigned hw_cache_mask = levels[j].cache_mask; | 
|  | kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level); | 
|  | if (hw_cache_mask == cache_mask && j < levels_index - 1) { | 
|  | kmp_hw_t type = | 
|  | __kmp_intel_type_2_topology_type(levels[j + 1].level_type); | 
|  | __kmp_topology->set_equivalent_type(cache_type, type); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // From here on, we can assume that it is safe to call | 
|  | // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if | 
|  | // __kmp_affinity.type = affinity_none. | 
|  |  | 
|  | // Save the affinity mask for the current thread. | 
|  | kmp_affinity_raii_t previous_affinity; | 
|  |  | 
|  | // Run through each of the available contexts, binding the current thread | 
|  | // to it, and obtaining the pertinent information using the cpuid instr. | 
|  | unsigned int proc; | 
|  | int hw_thread_index = 0; | 
|  | KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { | 
|  | cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST]; | 
|  | unsigned my_levels_index; | 
|  |  | 
|  | // Skip this proc if it is not included in the machine model. | 
|  | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { | 
|  | continue; | 
|  | } | 
|  | KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc); | 
|  |  | 
|  | __kmp_affinity_dispatch->bind_thread(proc); | 
|  |  | 
|  | // New algorithm | 
|  | __kmp_x86_cpuid(topology_leaf, 0, &buf); | 
|  | apic_id = buf.edx; | 
|  | kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); | 
|  | my_levels_index = | 
|  | __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels); | 
|  | if (my_levels_index == 0 || my_levels_index != levels_index) { | 
|  | *msg_id = kmp_i18n_str_InvalidCpuidInfo; | 
|  | return false; | 
|  | } | 
|  | hw_thread.clear(); | 
|  | hw_thread.os_id = proc; | 
|  | // Put in topology information | 
|  | for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) { | 
|  | hw_thread.ids[idx] = apic_id & my_levels[j].mask; | 
|  | if (j > 0) { | 
|  | hw_thread.ids[idx] >>= my_levels[j - 1].mask_width; | 
|  | } | 
|  | } | 
|  | // Hybrid information | 
|  | if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) { | 
|  | kmp_hw_core_type_t type; | 
|  | unsigned native_model_id; | 
|  | int efficiency; | 
|  | __kmp_get_hybrid_info(&type, &efficiency, &native_model_id); | 
|  | hw_thread.attrs.set_core_type(type); | 
|  | hw_thread.attrs.set_core_eff(efficiency); | 
|  | } | 
|  | hw_thread_index++; | 
|  | } | 
|  | KMP_ASSERT(hw_thread_index > 0); | 
|  | __kmp_topology->sort_ids(); | 
|  | if (!__kmp_topology->check_ids()) { | 
|  | kmp_topology_t::deallocate(__kmp_topology); | 
|  | __kmp_topology = nullptr; | 
|  | *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ | 
|  |  | 
|  | #define osIdIndex 0 | 
|  | #define threadIdIndex 1 | 
|  | #define coreIdIndex 2 | 
|  | #define pkgIdIndex 3 | 
|  | #define nodeIdIndex 4 | 
|  |  | 
|  | typedef unsigned *ProcCpuInfo; | 
|  | static unsigned maxIndex = pkgIdIndex; | 
|  |  | 
|  | static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, | 
|  | const void *b) { | 
|  | unsigned i; | 
|  | const unsigned *aa = *(unsigned *const *)a; | 
|  | const unsigned *bb = *(unsigned *const *)b; | 
|  | for (i = maxIndex;; i--) { | 
|  | if (aa[i] < bb[i]) | 
|  | return -1; | 
|  | if (aa[i] > bb[i]) | 
|  | return 1; | 
|  | if (i == osIdIndex) | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if KMP_USE_HIER_SCHED | 
|  | // Set the array sizes for the hierarchy layers | 
|  | static void __kmp_dispatch_set_hierarchy_values() { | 
|  | // Set the maximum number of L1's to number of cores | 
|  | // Set the maximum number of L2's to to either number of cores / 2 for | 
|  | // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing | 
|  | // Or the number of cores for Intel(R) Xeon(R) processors | 
|  | // Set the maximum number of NUMA nodes and L3's to number of packages | 
|  | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = | 
|  | nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; | 
|  | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; | 
|  | #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) &&   \ | 
|  | KMP_MIC_SUPPORTED | 
|  | if (__kmp_mic_type >= mic3) | 
|  | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; | 
|  | else | 
|  | #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) | 
|  | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; | 
|  | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; | 
|  | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; | 
|  | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; | 
|  | // Set the number of threads per unit | 
|  | // Number of hardware threads per L1/L2/L3/NUMA/LOOP | 
|  | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; | 
|  | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = | 
|  | __kmp_nThreadsPerCore; | 
|  | #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) &&   \ | 
|  | KMP_MIC_SUPPORTED | 
|  | if (__kmp_mic_type >= mic3) | 
|  | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = | 
|  | 2 * __kmp_nThreadsPerCore; | 
|  | else | 
|  | #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) | 
|  | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = | 
|  | __kmp_nThreadsPerCore; | 
|  | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = | 
|  | nCoresPerPkg * __kmp_nThreadsPerCore; | 
|  | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = | 
|  | nCoresPerPkg * __kmp_nThreadsPerCore; | 
|  | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = | 
|  | nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; | 
|  | } | 
|  |  | 
|  | // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) | 
|  | // i.e., this thread's L1 or this thread's L2, etc. | 
|  | int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { | 
|  | int index = type + 1; | 
|  | int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; | 
|  | KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); | 
|  | if (type == kmp_hier_layer_e::LAYER_THREAD) | 
|  | return tid; | 
|  | else if (type == kmp_hier_layer_e::LAYER_LOOP) | 
|  | return 0; | 
|  | KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); | 
|  | if (tid >= num_hw_threads) | 
|  | tid = tid % num_hw_threads; | 
|  | return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; | 
|  | } | 
|  |  | 
|  | // Return the number of t1's per t2 | 
|  | int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { | 
|  | int i1 = t1 + 1; | 
|  | int i2 = t2 + 1; | 
|  | KMP_DEBUG_ASSERT(i1 <= i2); | 
|  | KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); | 
|  | KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); | 
|  | KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); | 
|  | // (nthreads/t2) / (nthreads/t1) = t1 / t2 | 
|  | return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; | 
|  | } | 
|  | #endif // KMP_USE_HIER_SCHED | 
|  |  | 
|  | static inline const char *__kmp_cpuinfo_get_filename() { | 
|  | const char *filename; | 
|  | if (__kmp_cpuinfo_file != nullptr) | 
|  | filename = __kmp_cpuinfo_file; | 
|  | else | 
|  | filename = "/proc/cpuinfo"; | 
|  | return filename; | 
|  | } | 
|  |  | 
|  | static inline const char *__kmp_cpuinfo_get_envvar() { | 
|  | const char *envvar = nullptr; | 
|  | if (__kmp_cpuinfo_file != nullptr) | 
|  | envvar = "KMP_CPUINFO_FILE"; | 
|  | return envvar; | 
|  | } | 
|  |  | 
|  | // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the | 
|  | // affinity map. | 
|  | static bool __kmp_affinity_create_cpuinfo_map(int *line, | 
|  | kmp_i18n_id_t *const msg_id) { | 
|  | const char *filename = __kmp_cpuinfo_get_filename(); | 
|  | const char *envvar = __kmp_cpuinfo_get_envvar(); | 
|  | *msg_id = kmp_i18n_null; | 
|  |  | 
|  | if (__kmp_affinity.flags.verbose) { | 
|  | KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); | 
|  | } | 
|  |  | 
|  | kmp_safe_raii_file_t f(filename, "r", envvar); | 
|  |  | 
|  | // Scan of the file, and count the number of "processor" (osId) fields, | 
|  | // and find the highest value of <n> for a node_<n> field. | 
|  | char buf[256]; | 
|  | unsigned num_records = 0; | 
|  | while (!feof(f)) { | 
|  | buf[sizeof(buf) - 1] = 1; | 
|  | if (!fgets(buf, sizeof(buf), f)) { | 
|  | // Read errors presumably because of EOF | 
|  | break; | 
|  | } | 
|  |  | 
|  | char s1[] = "processor"; | 
|  | if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { | 
|  | num_records++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // FIXME - this will match "node_<n> <garbage>" | 
|  | unsigned level; | 
|  | if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { | 
|  | // validate the input fisrt: | 
|  | if (level > (unsigned)__kmp_xproc) { // level is too big | 
|  | level = __kmp_xproc; | 
|  | } | 
|  | if (nodeIdIndex + level >= maxIndex) { | 
|  | maxIndex = nodeIdIndex + level; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for empty file / no valid processor records, or too many. The number | 
|  | // of records can't exceed the number of valid bits in the affinity mask. | 
|  | if (num_records == 0) { | 
|  | *msg_id = kmp_i18n_str_NoProcRecords; | 
|  | return false; | 
|  | } | 
|  | if (num_records > (unsigned)__kmp_xproc) { | 
|  | *msg_id = kmp_i18n_str_TooManyProcRecords; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Set the file pointer back to the beginning, so that we can scan the file | 
|  | // again, this time performing a full parse of the data. Allocate a vector of | 
|  | // ProcCpuInfo object, where we will place the data. Adding an extra element | 
|  | // at the end allows us to remove a lot of extra checks for termination | 
|  | // conditions. | 
|  | if (fseek(f, 0, SEEK_SET) != 0) { | 
|  | *msg_id = kmp_i18n_str_CantRewindCpuinfo; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Allocate the array of records to store the proc info in.  The dummy | 
|  | // element at the end makes the logic in filling them out easier to code. | 
|  | unsigned **threadInfo = | 
|  | (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); | 
|  | unsigned i; | 
|  | for (i = 0; i <= num_records; i++) { | 
|  | threadInfo[i] = | 
|  | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); | 
|  | } | 
|  |  | 
|  | #define CLEANUP_THREAD_INFO                                                    \ | 
|  | for (i = 0; i <= num_records; i++) {                                         \ | 
|  | __kmp_free(threadInfo[i]);                                                 \ | 
|  | }                                                                            \ | 
|  | __kmp_free(threadInfo); | 
|  |  | 
|  | // A value of UINT_MAX means that we didn't find the field | 
|  | unsigned __index; | 
|  |  | 
|  | #define INIT_PROC_INFO(p)                                                      \ | 
|  | for (__index = 0; __index <= maxIndex; __index++) {                          \ | 
|  | (p)[__index] = UINT_MAX;                                                   \ | 
|  | } | 
|  |  | 
|  | for (i = 0; i <= num_records; i++) { | 
|  | INIT_PROC_INFO(threadInfo[i]); | 
|  | } | 
|  |  | 
|  | unsigned num_avail = 0; | 
|  | *line = 0; | 
|  | while (!feof(f)) { | 
|  | // Create an inner scoping level, so that all the goto targets at the end of | 
|  | // the loop appear in an outer scoping level. This avoids warnings about | 
|  | // jumping past an initialization to a target in the same block. | 
|  | { | 
|  | buf[sizeof(buf) - 1] = 1; | 
|  | bool long_line = false; | 
|  | if (!fgets(buf, sizeof(buf), f)) { | 
|  | // Read errors presumably because of EOF | 
|  | // If there is valid data in threadInfo[num_avail], then fake | 
|  | // a blank line in ensure that the last address gets parsed. | 
|  | bool valid = false; | 
|  | for (i = 0; i <= maxIndex; i++) { | 
|  | if (threadInfo[num_avail][i] != UINT_MAX) { | 
|  | valid = true; | 
|  | } | 
|  | } | 
|  | if (!valid) { | 
|  | break; | 
|  | } | 
|  | buf[0] = 0; | 
|  | } else if (!buf[sizeof(buf) - 1]) { | 
|  | // The line is longer than the buffer.  Set a flag and don't | 
|  | // emit an error if we were going to ignore the line, anyway. | 
|  | long_line = true; | 
|  |  | 
|  | #define CHECK_LINE                                                             \ | 
|  | if (long_line) {                                                             \ | 
|  | CLEANUP_THREAD_INFO;                                                       \ | 
|  | *msg_id = kmp_i18n_str_LongLineCpuinfo;                                    \ | 
|  | return false;                                                              \ | 
|  | } | 
|  | } | 
|  | (*line)++; | 
|  |  | 
|  | #if KMP_ARCH_LOONGARCH64 | 
|  | // The parsing logic of /proc/cpuinfo in this function highly depends on | 
|  | // the blank lines between each processor info block. But on LoongArch a | 
|  | // blank line exists before the first processor info block (i.e. after the | 
|  | // "system type" line). This blank line was added because the "system | 
|  | // type" line is unrelated to any of the CPUs. We must skip this line so | 
|  | // that the original logic works on LoongArch. | 
|  | if (*buf == '\n' && *line == 2) | 
|  | continue; | 
|  | #endif | 
|  |  | 
|  | char s1[] = "processor"; | 
|  | if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { | 
|  | CHECK_LINE; | 
|  | char *p = strchr(buf + sizeof(s1) - 1, ':'); | 
|  | unsigned val; | 
|  | if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) | 
|  | goto no_val; | 
|  | if (threadInfo[num_avail][osIdIndex] != UINT_MAX) | 
|  | #if KMP_ARCH_AARCH64 | 
|  | // Handle the old AArch64 /proc/cpuinfo layout differently, | 
|  | // it contains all of the 'processor' entries listed in a | 
|  | // single 'Processor' section, therefore the normal looking | 
|  | // for duplicates in that section will always fail. | 
|  | num_avail++; | 
|  | #else | 
|  | goto dup_field; | 
|  | #endif | 
|  | threadInfo[num_avail][osIdIndex] = val; | 
|  | #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) | 
|  | char path[256]; | 
|  | KMP_SNPRINTF( | 
|  | path, sizeof(path), | 
|  | "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", | 
|  | threadInfo[num_avail][osIdIndex]); | 
|  | __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); | 
|  |  | 
|  | KMP_SNPRINTF(path, sizeof(path), | 
|  | "/sys/devices/system/cpu/cpu%u/topology/core_id", | 
|  | threadInfo[num_avail][osIdIndex]); | 
|  | __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); | 
|  | continue; | 
|  | #else | 
|  | } | 
|  | char s2[] = "physical id"; | 
|  | if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { | 
|  | CHECK_LINE; | 
|  | char *p = strchr(buf + sizeof(s2) - 1, ':'); | 
|  | unsigned val; | 
|  | if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) | 
|  | goto no_val; | 
|  | if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) | 
|  | goto dup_field; | 
|  | threadInfo[num_avail][pkgIdIndex] = val; | 
|  | continue; | 
|  | } | 
|  | char s3[] = "core id"; | 
|  | if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { | 
|  | CHECK_LINE; | 
|  | char *p = strchr(buf + sizeof(s3) - 1, ':'); | 
|  | unsigned val; | 
|  | if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) | 
|  | goto no_val; | 
|  | if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) | 
|  | goto dup_field; | 
|  | threadInfo[num_avail][coreIdIndex] = val; | 
|  | continue; | 
|  | #endif // KMP_OS_LINUX && USE_SYSFS_INFO | 
|  | } | 
|  | char s4[] = "thread id"; | 
|  | if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { | 
|  | CHECK_LINE; | 
|  | char *p = strchr(buf + sizeof(s4) - 1, ':'); | 
|  | unsigned val; | 
|  | if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) | 
|  | goto no_val; | 
|  | if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) | 
|  | goto dup_field; | 
|  | threadInfo[num_avail][threadIdIndex] = val; | 
|  | continue; | 
|  | } | 
|  | unsigned level; | 
|  | if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { | 
|  | CHECK_LINE; | 
|  | char *p = strchr(buf + sizeof(s4) - 1, ':'); | 
|  | unsigned val; | 
|  | if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) | 
|  | goto no_val; | 
|  | // validate the input before using level: | 
|  | if (level > (unsigned)__kmp_xproc) { // level is too big | 
|  | level = __kmp_xproc; | 
|  | } | 
|  | if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) | 
|  | goto dup_field; | 
|  | threadInfo[num_avail][nodeIdIndex + level] = val; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We didn't recognize the leading token on the line. There are lots of | 
|  | // leading tokens that we don't recognize - if the line isn't empty, go on | 
|  | // to the next line. | 
|  | if ((*buf != 0) && (*buf != '\n')) { | 
|  | // If the line is longer than the buffer, read characters | 
|  | // until we find a newline. | 
|  | if (long_line) { | 
|  | int ch; | 
|  | while (((ch = fgetc(f)) != EOF) && (ch != '\n')) | 
|  | ; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // A newline has signalled the end of the processor record. | 
|  | // Check that there aren't too many procs specified. | 
|  | if ((int)num_avail == __kmp_xproc) { | 
|  | CLEANUP_THREAD_INFO; | 
|  | *msg_id = kmp_i18n_str_TooManyEntries; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check for missing fields.  The osId field must be there, and we | 
|  | // currently require that the physical id field is specified, also. | 
|  | if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { | 
|  | CLEANUP_THREAD_INFO; | 
|  | *msg_id = kmp_i18n_str_MissingProcField; | 
|  | return false; | 
|  | } | 
|  | if (threadInfo[0][pkgIdIndex] == UINT_MAX) { | 
|  | CLEANUP_THREAD_INFO; | 
|  | *msg_id = kmp_i18n_str_MissingPhysicalIDField; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Skip this proc if it is not included in the machine model. | 
|  | if (KMP_AFFINITY_CAPABLE() && | 
|  | !KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], | 
|  | __kmp_affin_fullMask)) { | 
|  | INIT_PROC_INFO(threadInfo[num_avail]); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We have a successful parse of this proc's info. | 
|  | // Increment the counter, and prepare for the next proc. | 
|  | num_avail++; | 
|  | KMP_ASSERT(num_avail <= num_records); | 
|  | INIT_PROC_INFO(threadInfo[num_avail]); | 
|  | } | 
|  | continue; | 
|  |  | 
|  | no_val: | 
|  | CLEANUP_THREAD_INFO; | 
|  | *msg_id = kmp_i18n_str_MissingValCpuinfo; | 
|  | return false; | 
|  |  | 
|  | dup_field: | 
|  | CLEANUP_THREAD_INFO; | 
|  | *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; | 
|  | return false; | 
|  | } | 
|  | *line = 0; | 
|  |  | 
|  | #if KMP_MIC && REDUCE_TEAM_SIZE | 
|  | unsigned teamSize = 0; | 
|  | #endif // KMP_MIC && REDUCE_TEAM_SIZE | 
|  |  | 
|  | // check for num_records == __kmp_xproc ??? | 
|  |  | 
|  | // If it is configured to omit the package level when there is only a single | 
|  | // package, the logic at the end of this routine won't work if there is only a | 
|  | // single thread | 
|  | KMP_ASSERT(num_avail > 0); | 
|  | KMP_ASSERT(num_avail <= num_records); | 
|  |  | 
|  | // Sort the threadInfo table by physical Id. | 
|  | qsort(threadInfo, num_avail, sizeof(*threadInfo), | 
|  | __kmp_affinity_cmp_ProcCpuInfo_phys_id); | 
|  |  | 
|  | // The table is now sorted by pkgId / coreId / threadId, but we really don't | 
|  | // know the radix of any of the fields. pkgId's may be sparsely assigned among | 
|  | // the chips on a system. Although coreId's are usually assigned | 
|  | // [0 .. coresPerPkg-1] and threadId's are usually assigned | 
|  | // [0..threadsPerCore-1], we don't want to make any such assumptions. | 
|  | // | 
|  | // For that matter, we don't know what coresPerPkg and threadsPerCore (or the | 
|  | // total # packages) are at this point - we want to determine that now. We | 
|  | // only have an upper bound on the first two figures. | 
|  | unsigned *counts = | 
|  | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); | 
|  | unsigned *maxCt = | 
|  | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); | 
|  | unsigned *totals = | 
|  | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); | 
|  | unsigned *lastId = | 
|  | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); | 
|  |  | 
|  | bool assign_thread_ids = false; | 
|  | unsigned threadIdCt; | 
|  | unsigned index; | 
|  |  | 
|  | restart_radix_check: | 
|  | threadIdCt = 0; | 
|  |  | 
|  | // Initialize the counter arrays with data from threadInfo[0]. | 
|  | if (assign_thread_ids) { | 
|  | if (threadInfo[0][threadIdIndex] == UINT_MAX) { | 
|  | threadInfo[0][threadIdIndex] = threadIdCt++; | 
|  | } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { | 
|  | threadIdCt = threadInfo[0][threadIdIndex] + 1; | 
|  | } | 
|  | } | 
|  | for (index = 0; index <= maxIndex; index++) { | 
|  | counts[index] = 1; | 
|  | maxCt[index] = 1; | 
|  | totals[index] = 1; | 
|  | lastId[index] = threadInfo[0][index]; | 
|  | ; | 
|  | } | 
|  |  | 
|  | // Run through the rest of the OS procs. | 
|  | for (i = 1; i < num_avail; i++) { | 
|  | // Find the most significant index whose id differs from the id for the | 
|  | // previous OS proc. | 
|  | for (index = maxIndex; index >= threadIdIndex; index--) { | 
|  | if (assign_thread_ids && (index == threadIdIndex)) { | 
|  | // Auto-assign the thread id field if it wasn't specified. | 
|  | if (threadInfo[i][threadIdIndex] == UINT_MAX) { | 
|  | threadInfo[i][threadIdIndex] = threadIdCt++; | 
|  | } | 
|  | // Apparently the thread id field was specified for some entries and not | 
|  | // others. Start the thread id counter off at the next higher thread id. | 
|  | else if (threadIdCt <= threadInfo[i][threadIdIndex]) { | 
|  | threadIdCt = threadInfo[i][threadIdIndex] + 1; | 
|  | } | 
|  | } | 
|  | if (threadInfo[i][index] != lastId[index]) { | 
|  | // Run through all indices which are less significant, and reset the | 
|  | // counts to 1. At all levels up to and including index, we need to | 
|  | // increment the totals and record the last id. | 
|  | unsigned index2; | 
|  | for (index2 = threadIdIndex; index2 < index; index2++) { | 
|  | totals[index2]++; | 
|  | if (counts[index2] > maxCt[index2]) { | 
|  | maxCt[index2] = counts[index2]; | 
|  | } | 
|  | counts[index2] = 1; | 
|  | lastId[index2] = threadInfo[i][index2]; | 
|  | } | 
|  | counts[index]++; | 
|  | totals[index]++; | 
|  | lastId[index] = threadInfo[i][index]; | 
|  |  | 
|  | if (assign_thread_ids && (index > threadIdIndex)) { | 
|  |  | 
|  | #if KMP_MIC && REDUCE_TEAM_SIZE | 
|  | // The default team size is the total #threads in the machine | 
|  | // minus 1 thread for every core that has 3 or more threads. | 
|  | teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); | 
|  | #endif // KMP_MIC && REDUCE_TEAM_SIZE | 
|  |  | 
|  | // Restart the thread counter, as we are on a new core. | 
|  | threadIdCt = 0; | 
|  |  | 
|  | // Auto-assign the thread id field if it wasn't specified. | 
|  | if (threadInfo[i][threadIdIndex] == UINT_MAX) { | 
|  | threadInfo[i][threadIdIndex] = threadIdCt++; | 
|  | } | 
|  |  | 
|  | // Apparently the thread id field was specified for some entries and | 
|  | // not others. Start the thread id counter off at the next higher | 
|  | // thread id. | 
|  | else if (threadIdCt <= threadInfo[i][threadIdIndex]) { | 
|  | threadIdCt = threadInfo[i][threadIdIndex] + 1; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (index < threadIdIndex) { | 
|  | // If thread ids were specified, it is an error if they are not unique. | 
|  | // Also, check that we waven't already restarted the loop (to be safe - | 
|  | // shouldn't need to). | 
|  | if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { | 
|  | __kmp_free(lastId); | 
|  | __kmp_free(totals); | 
|  | __kmp_free(maxCt); | 
|  | __kmp_free(counts); | 
|  | CLEANUP_THREAD_INFO; | 
|  | *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the thread ids were not specified and we see entries entries that | 
|  | // are duplicates, start the loop over and assign the thread ids manually. | 
|  | assign_thread_ids = true; | 
|  | goto restart_radix_check; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if KMP_MIC && REDUCE_TEAM_SIZE | 
|  | // The default team size is the total #threads in the machine | 
|  | // minus 1 thread for every core that has 3 or more threads. | 
|  | teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); | 
|  | #endif // KMP_MIC && REDUCE_TEAM_SIZE | 
|  |  | 
|  | for (index = threadIdIndex; index <= maxIndex; index++) { | 
|  | if (counts[index] > maxCt[index]) { | 
|  | maxCt[index] = counts[index]; | 
|  | } | 
|  | } | 
|  |  | 
|  | __kmp_nThreadsPerCore = maxCt[threadIdIndex]; | 
|  | nCoresPerPkg = maxCt[coreIdIndex]; | 
|  | nPackages = totals[pkgIdIndex]; | 
|  |  | 
|  | // When affinity is off, this routine will still be called to set | 
|  | // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. | 
|  | // Make sure all these vars are set correctly, and return now if affinity is | 
|  | // not enabled. | 
|  | __kmp_ncores = totals[coreIdIndex]; | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | KMP_ASSERT(__kmp_affinity.type == affinity_none); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #if KMP_MIC && REDUCE_TEAM_SIZE | 
|  | // Set the default team size. | 
|  | if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { | 
|  | __kmp_dflt_team_nth = teamSize; | 
|  | KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " | 
|  | "__kmp_dflt_team_nth = %d\n", | 
|  | __kmp_dflt_team_nth)); | 
|  | } | 
|  | #endif // KMP_MIC && REDUCE_TEAM_SIZE | 
|  |  | 
|  | KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); | 
|  |  | 
|  | // Count the number of levels which have more nodes at that level than at the | 
|  | // parent's level (with there being an implicit root node of the top level). | 
|  | // This is equivalent to saying that there is at least one node at this level | 
|  | // which has a sibling. These levels are in the map, and the package level is | 
|  | // always in the map. | 
|  | bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); | 
|  | for (index = threadIdIndex; index < maxIndex; index++) { | 
|  | KMP_ASSERT(totals[index] >= totals[index + 1]); | 
|  | inMap[index] = (totals[index] > totals[index + 1]); | 
|  | } | 
|  | inMap[maxIndex] = (totals[maxIndex] > 1); | 
|  | inMap[pkgIdIndex] = true; | 
|  | inMap[coreIdIndex] = true; | 
|  | inMap[threadIdIndex] = true; | 
|  |  | 
|  | int depth = 0; | 
|  | int idx = 0; | 
|  | kmp_hw_t types[KMP_HW_LAST]; | 
|  | int pkgLevel = -1; | 
|  | int coreLevel = -1; | 
|  | int threadLevel = -1; | 
|  | for (index = threadIdIndex; index <= maxIndex; index++) { | 
|  | if (inMap[index]) { | 
|  | depth++; | 
|  | } | 
|  | } | 
|  | if (inMap[pkgIdIndex]) { | 
|  | pkgLevel = idx; | 
|  | types[idx++] = KMP_HW_SOCKET; | 
|  | } | 
|  | if (inMap[coreIdIndex]) { | 
|  | coreLevel = idx; | 
|  | types[idx++] = KMP_HW_CORE; | 
|  | } | 
|  | if (inMap[threadIdIndex]) { | 
|  | threadLevel = idx; | 
|  | types[idx++] = KMP_HW_THREAD; | 
|  | } | 
|  | KMP_ASSERT(depth > 0); | 
|  |  | 
|  | // Construct the data structure that is to be returned. | 
|  | __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types); | 
|  |  | 
|  | for (i = 0; i < num_avail; ++i) { | 
|  | unsigned os = threadInfo[i][osIdIndex]; | 
|  | int src_index; | 
|  | kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); | 
|  | hw_thread.clear(); | 
|  | hw_thread.os_id = os; | 
|  |  | 
|  | idx = 0; | 
|  | for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { | 
|  | if (!inMap[src_index]) { | 
|  | continue; | 
|  | } | 
|  | if (src_index == pkgIdIndex) { | 
|  | hw_thread.ids[pkgLevel] = threadInfo[i][src_index]; | 
|  | } else if (src_index == coreIdIndex) { | 
|  | hw_thread.ids[coreLevel] = threadInfo[i][src_index]; | 
|  | } else if (src_index == threadIdIndex) { | 
|  | hw_thread.ids[threadLevel] = threadInfo[i][src_index]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | __kmp_free(inMap); | 
|  | __kmp_free(lastId); | 
|  | __kmp_free(totals); | 
|  | __kmp_free(maxCt); | 
|  | __kmp_free(counts); | 
|  | CLEANUP_THREAD_INFO; | 
|  | __kmp_topology->sort_ids(); | 
|  | if (!__kmp_topology->check_ids()) { | 
|  | kmp_topology_t::deallocate(__kmp_topology); | 
|  | __kmp_topology = nullptr; | 
|  | *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Create and return a table of affinity masks, indexed by OS thread ID. | 
|  | // This routine handles OR'ing together all the affinity masks of threads | 
|  | // that are sufficiently close, if granularity > fine. | 
|  | static void __kmp_create_os_id_masks(unsigned *numUnique, | 
|  | kmp_affinity_t &affinity) { | 
|  | // First form a table of affinity masks in order of OS thread id. | 
|  | int maxOsId; | 
|  | int i; | 
|  | int numAddrs = __kmp_topology->get_num_hw_threads(); | 
|  | int depth = __kmp_topology->get_depth(); | 
|  | const char *env_var = affinity.env_var; | 
|  | KMP_ASSERT(numAddrs); | 
|  | KMP_ASSERT(depth); | 
|  |  | 
|  | maxOsId = 0; | 
|  | for (i = numAddrs - 1;; --i) { | 
|  | int osId = __kmp_topology->at(i).os_id; | 
|  | if (osId > maxOsId) { | 
|  | maxOsId = osId; | 
|  | } | 
|  | if (i == 0) | 
|  | break; | 
|  | } | 
|  | affinity.num_os_id_masks = maxOsId + 1; | 
|  | KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks); | 
|  | KMP_ASSERT(affinity.gran_levels >= 0); | 
|  | if (affinity.flags.verbose && (affinity.gran_levels > 0)) { | 
|  | KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels); | 
|  | } | 
|  | if (affinity.gran_levels >= (int)depth) { | 
|  | KMP_AFF_WARNING(affinity, AffThreadsMayMigrate); | 
|  | } | 
|  |  | 
|  | // Run through the table, forming the masks for all threads on each core. | 
|  | // Threads on the same core will have identical kmp_hw_thread_t objects, not | 
|  | // considering the last level, which must be the thread id. All threads on a | 
|  | // core will appear consecutively. | 
|  | int unique = 0; | 
|  | int j = 0; // index of 1st thread on core | 
|  | int leader = 0; | 
|  | kmp_affin_mask_t *sum; | 
|  | KMP_CPU_ALLOC_ON_STACK(sum); | 
|  | KMP_CPU_ZERO(sum); | 
|  | KMP_CPU_SET(__kmp_topology->at(0).os_id, sum); | 
|  | for (i = 1; i < numAddrs; i++) { | 
|  | // If this thread is sufficiently close to the leader (within the | 
|  | // granularity setting), then set the bit for this os thread in the | 
|  | // affinity mask for this group, and go on to the next thread. | 
|  | if (__kmp_topology->is_close(leader, i, affinity.gran_levels)) { | 
|  | KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // For every thread in this group, copy the mask to the thread's entry in | 
|  | // the OS Id mask table. Mark the first address as a leader. | 
|  | for (; j < i; j++) { | 
|  | int osId = __kmp_topology->at(j).os_id; | 
|  | KMP_DEBUG_ASSERT(osId <= maxOsId); | 
|  | kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId); | 
|  | KMP_CPU_COPY(mask, sum); | 
|  | __kmp_topology->at(j).leader = (j == leader); | 
|  | } | 
|  | unique++; | 
|  |  | 
|  | // Start a new mask. | 
|  | leader = i; | 
|  | KMP_CPU_ZERO(sum); | 
|  | KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); | 
|  | } | 
|  |  | 
|  | // For every thread in last group, copy the mask to the thread's | 
|  | // entry in the OS Id mask table. | 
|  | for (; j < i; j++) { | 
|  | int osId = __kmp_topology->at(j).os_id; | 
|  | KMP_DEBUG_ASSERT(osId <= maxOsId); | 
|  | kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId); | 
|  | KMP_CPU_COPY(mask, sum); | 
|  | __kmp_topology->at(j).leader = (j == leader); | 
|  | } | 
|  | unique++; | 
|  | KMP_CPU_FREE_FROM_STACK(sum); | 
|  |  | 
|  | *numUnique = unique; | 
|  | } | 
|  |  | 
|  | // Stuff for the affinity proclist parsers.  It's easier to declare these vars | 
|  | // as file-static than to try and pass them through the calling sequence of | 
|  | // the recursive-descent OMP_PLACES parser. | 
|  | static kmp_affin_mask_t *newMasks; | 
|  | static int numNewMasks; | 
|  | static int nextNewMask; | 
|  |  | 
|  | #define ADD_MASK(_mask)                                                        \ | 
|  | {                                                                            \ | 
|  | if (nextNewMask >= numNewMasks) {                                          \ | 
|  | int i;                                                                   \ | 
|  | numNewMasks *= 2;                                                        \ | 
|  | kmp_affin_mask_t *temp;                                                  \ | 
|  | KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks);                         \ | 
|  | for (i = 0; i < numNewMasks / 2; i++) {                                  \ | 
|  | kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);                    \ | 
|  | kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i);                       \ | 
|  | KMP_CPU_COPY(dest, src);                                               \ | 
|  | }                                                                        \ | 
|  | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2);                  \ | 
|  | newMasks = temp;                                                         \ | 
|  | }                                                                          \ | 
|  | KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask));               \ | 
|  | nextNewMask++;                                                             \ | 
|  | } | 
|  |  | 
|  | #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId)                             \ | 
|  | {                                                                            \ | 
|  | if (((_osId) > _maxOsId) ||                                                \ | 
|  | (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) {     \ | 
|  | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId);                \ | 
|  | } else {                                                                   \ | 
|  | ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId)));                            \ | 
|  | }                                                                          \ | 
|  | } | 
|  |  | 
|  | // Re-parse the proclist (for the explicit affinity type), and form the list | 
|  | // of affinity newMasks indexed by gtid. | 
|  | static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) { | 
|  | int i; | 
|  | kmp_affin_mask_t **out_masks = &affinity.masks; | 
|  | unsigned *out_numMasks = &affinity.num_masks; | 
|  | const char *proclist = affinity.proclist; | 
|  | kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; | 
|  | int maxOsId = affinity.num_os_id_masks - 1; | 
|  | const char *scan = proclist; | 
|  | const char *next = proclist; | 
|  |  | 
|  | // We use malloc() for the temporary mask vector, so that we can use | 
|  | // realloc() to extend it. | 
|  | numNewMasks = 2; | 
|  | KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); | 
|  | nextNewMask = 0; | 
|  | kmp_affin_mask_t *sumMask; | 
|  | KMP_CPU_ALLOC(sumMask); | 
|  | int setSize = 0; | 
|  |  | 
|  | for (;;) { | 
|  | int start, end, stride; | 
|  |  | 
|  | SKIP_WS(scan); | 
|  | next = scan; | 
|  | if (*next == '\0') { | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (*next == '{') { | 
|  | int num; | 
|  | setSize = 0; | 
|  | next++; // skip '{' | 
|  | SKIP_WS(next); | 
|  | scan = next; | 
|  |  | 
|  | // Read the first integer in the set. | 
|  | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); | 
|  | SKIP_DIGITS(next); | 
|  | num = __kmp_str_to_int(scan, *next); | 
|  | KMP_ASSERT2(num >= 0, "bad explicit proc list"); | 
|  |  | 
|  | // Copy the mask for that osId to the sum (union) mask. | 
|  | if ((num > maxOsId) || | 
|  | (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { | 
|  | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); | 
|  | KMP_CPU_ZERO(sumMask); | 
|  | } else { | 
|  | KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); | 
|  | setSize = 1; | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | // Check for end of set. | 
|  | SKIP_WS(next); | 
|  | if (*next == '}') { | 
|  | next++; // skip '}' | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Skip optional comma. | 
|  | if (*next == ',') { | 
|  | next++; | 
|  | } | 
|  | SKIP_WS(next); | 
|  |  | 
|  | // Read the next integer in the set. | 
|  | scan = next; | 
|  | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); | 
|  |  | 
|  | SKIP_DIGITS(next); | 
|  | num = __kmp_str_to_int(scan, *next); | 
|  | KMP_ASSERT2(num >= 0, "bad explicit proc list"); | 
|  |  | 
|  | // Add the mask for that osId to the sum mask. | 
|  | if ((num > maxOsId) || | 
|  | (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { | 
|  | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); | 
|  | } else { | 
|  | KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); | 
|  | setSize++; | 
|  | } | 
|  | } | 
|  | if (setSize > 0) { | 
|  | ADD_MASK(sumMask); | 
|  | } | 
|  |  | 
|  | SKIP_WS(next); | 
|  | if (*next == ',') { | 
|  | next++; | 
|  | } | 
|  | scan = next; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Read the first integer. | 
|  | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); | 
|  | SKIP_DIGITS(next); | 
|  | start = __kmp_str_to_int(scan, *next); | 
|  | KMP_ASSERT2(start >= 0, "bad explicit proc list"); | 
|  | SKIP_WS(next); | 
|  |  | 
|  | // If this isn't a range, then add a mask to the list and go on. | 
|  | if (*next != '-') { | 
|  | ADD_MASK_OSID(start, osId2Mask, maxOsId); | 
|  |  | 
|  | // Skip optional comma. | 
|  | if (*next == ',') { | 
|  | next++; | 
|  | } | 
|  | scan = next; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // This is a range.  Skip over the '-' and read in the 2nd int. | 
|  | next++; // skip '-' | 
|  | SKIP_WS(next); | 
|  | scan = next; | 
|  | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); | 
|  | SKIP_DIGITS(next); | 
|  | end = __kmp_str_to_int(scan, *next); | 
|  | KMP_ASSERT2(end >= 0, "bad explicit proc list"); | 
|  |  | 
|  | // Check for a stride parameter | 
|  | stride = 1; | 
|  | SKIP_WS(next); | 
|  | if (*next == ':') { | 
|  | // A stride is specified.  Skip over the ':" and read the 3rd int. | 
|  | int sign = +1; | 
|  | next++; // skip ':' | 
|  | SKIP_WS(next); | 
|  | scan = next; | 
|  | if (*next == '-') { | 
|  | sign = -1; | 
|  | next++; | 
|  | SKIP_WS(next); | 
|  | scan = next; | 
|  | } | 
|  | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); | 
|  | SKIP_DIGITS(next); | 
|  | stride = __kmp_str_to_int(scan, *next); | 
|  | KMP_ASSERT2(stride >= 0, "bad explicit proc list"); | 
|  | stride *= sign; | 
|  | } | 
|  |  | 
|  | // Do some range checks. | 
|  | KMP_ASSERT2(stride != 0, "bad explicit proc list"); | 
|  | if (stride > 0) { | 
|  | KMP_ASSERT2(start <= end, "bad explicit proc list"); | 
|  | } else { | 
|  | KMP_ASSERT2(start >= end, "bad explicit proc list"); | 
|  | } | 
|  | KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); | 
|  |  | 
|  | // Add the mask for each OS proc # to the list. | 
|  | if (stride > 0) { | 
|  | do { | 
|  | ADD_MASK_OSID(start, osId2Mask, maxOsId); | 
|  | start += stride; | 
|  | } while (start <= end); | 
|  | } else { | 
|  | do { | 
|  | ADD_MASK_OSID(start, osId2Mask, maxOsId); | 
|  | start += stride; | 
|  | } while (start >= end); | 
|  | } | 
|  |  | 
|  | // Skip optional comma. | 
|  | SKIP_WS(next); | 
|  | if (*next == ',') { | 
|  | next++; | 
|  | } | 
|  | scan = next; | 
|  | } | 
|  |  | 
|  | *out_numMasks = nextNewMask; | 
|  | if (nextNewMask == 0) { | 
|  | *out_masks = NULL; | 
|  | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); | 
|  | return; | 
|  | } | 
|  | KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); | 
|  | for (i = 0; i < nextNewMask; i++) { | 
|  | kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); | 
|  | kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); | 
|  | KMP_CPU_COPY(dest, src); | 
|  | } | 
|  | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); | 
|  | KMP_CPU_FREE(sumMask); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------------------- | 
|  | Re-parse the OMP_PLACES proc id list, forming the newMasks for the different | 
|  | places.  Again, Here is the grammar: | 
|  |  | 
|  | place_list := place | 
|  | place_list := place , place_list | 
|  | place := num | 
|  | place := place : num | 
|  | place := place : num : signed | 
|  | place := { subplacelist } | 
|  | place := ! place                  // (lowest priority) | 
|  | subplace_list := subplace | 
|  | subplace_list := subplace , subplace_list | 
|  | subplace := num | 
|  | subplace := num : num | 
|  | subplace := num : num : signed | 
|  | signed := num | 
|  | signed := + signed | 
|  | signed := - signed | 
|  | -----------------------------------------------------------------------------*/ | 
|  | static void __kmp_process_subplace_list(const char **scan, | 
|  | kmp_affinity_t &affinity, int maxOsId, | 
|  | kmp_affin_mask_t *tempMask, | 
|  | int *setSize) { | 
|  | const char *next; | 
|  | kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; | 
|  |  | 
|  | for (;;) { | 
|  | int start, count, stride, i; | 
|  |  | 
|  | // Read in the starting proc id | 
|  | SKIP_WS(*scan); | 
|  | KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); | 
|  | next = *scan; | 
|  | SKIP_DIGITS(next); | 
|  | start = __kmp_str_to_int(*scan, *next); | 
|  | KMP_ASSERT(start >= 0); | 
|  | *scan = next; | 
|  |  | 
|  | // valid follow sets are ',' ':' and '}' | 
|  | SKIP_WS(*scan); | 
|  | if (**scan == '}' || **scan == ',') { | 
|  | if ((start > maxOsId) || | 
|  | (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { | 
|  | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); | 
|  | } else { | 
|  | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); | 
|  | (*setSize)++; | 
|  | } | 
|  | if (**scan == '}') { | 
|  | break; | 
|  | } | 
|  | (*scan)++; // skip ',' | 
|  | continue; | 
|  | } | 
|  | KMP_ASSERT2(**scan == ':', "bad explicit places list"); | 
|  | (*scan)++; // skip ':' | 
|  |  | 
|  | // Read count parameter | 
|  | SKIP_WS(*scan); | 
|  | KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); | 
|  | next = *scan; | 
|  | SKIP_DIGITS(next); | 
|  | count = __kmp_str_to_int(*scan, *next); | 
|  | KMP_ASSERT(count >= 0); | 
|  | *scan = next; | 
|  |  | 
|  | // valid follow sets are ',' ':' and '}' | 
|  | SKIP_WS(*scan); | 
|  | if (**scan == '}' || **scan == ',') { | 
|  | for (i = 0; i < count; i++) { | 
|  | if ((start > maxOsId) || | 
|  | (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { | 
|  | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); | 
|  | break; // don't proliferate warnings for large count | 
|  | } else { | 
|  | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); | 
|  | start++; | 
|  | (*setSize)++; | 
|  | } | 
|  | } | 
|  | if (**scan == '}') { | 
|  | break; | 
|  | } | 
|  | (*scan)++; // skip ',' | 
|  | continue; | 
|  | } | 
|  | KMP_ASSERT2(**scan == ':', "bad explicit places list"); | 
|  | (*scan)++; // skip ':' | 
|  |  | 
|  | // Read stride parameter | 
|  | int sign = +1; | 
|  | for (;;) { | 
|  | SKIP_WS(*scan); | 
|  | if (**scan == '+') { | 
|  | (*scan)++; // skip '+' | 
|  | continue; | 
|  | } | 
|  | if (**scan == '-') { | 
|  | sign *= -1; | 
|  | (*scan)++; // skip '-' | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | SKIP_WS(*scan); | 
|  | KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); | 
|  | next = *scan; | 
|  | SKIP_DIGITS(next); | 
|  | stride = __kmp_str_to_int(*scan, *next); | 
|  | KMP_ASSERT(stride >= 0); | 
|  | *scan = next; | 
|  | stride *= sign; | 
|  |  | 
|  | // valid follow sets are ',' and '}' | 
|  | SKIP_WS(*scan); | 
|  | if (**scan == '}' || **scan == ',') { | 
|  | for (i = 0; i < count; i++) { | 
|  | if ((start > maxOsId) || | 
|  | (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { | 
|  | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); | 
|  | break; // don't proliferate warnings for large count | 
|  | } else { | 
|  | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); | 
|  | start += stride; | 
|  | (*setSize)++; | 
|  | } | 
|  | } | 
|  | if (**scan == '}') { | 
|  | break; | 
|  | } | 
|  | (*scan)++; // skip ',' | 
|  | continue; | 
|  | } | 
|  |  | 
|  | KMP_ASSERT2(0, "bad explicit places list"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity, | 
|  | int maxOsId, kmp_affin_mask_t *tempMask, | 
|  | int *setSize) { | 
|  | const char *next; | 
|  | kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; | 
|  |  | 
|  | // valid follow sets are '{' '!' and num | 
|  | SKIP_WS(*scan); | 
|  | if (**scan == '{') { | 
|  | (*scan)++; // skip '{' | 
|  | __kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize); | 
|  | KMP_ASSERT2(**scan == '}', "bad explicit places list"); | 
|  | (*scan)++; // skip '}' | 
|  | } else if (**scan == '!') { | 
|  | (*scan)++; // skip '!' | 
|  | __kmp_process_place(scan, affinity, maxOsId, tempMask, setSize); | 
|  | KMP_CPU_COMPLEMENT(maxOsId, tempMask); | 
|  | } else if ((**scan >= '0') && (**scan <= '9')) { | 
|  | next = *scan; | 
|  | SKIP_DIGITS(next); | 
|  | int num = __kmp_str_to_int(*scan, *next); | 
|  | KMP_ASSERT(num >= 0); | 
|  | if ((num > maxOsId) || | 
|  | (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { | 
|  | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); | 
|  | } else { | 
|  | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); | 
|  | (*setSize)++; | 
|  | } | 
|  | *scan = next; // skip num | 
|  | } else { | 
|  | KMP_ASSERT2(0, "bad explicit places list"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // static void | 
|  | void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) { | 
|  | int i, j, count, stride, sign; | 
|  | kmp_affin_mask_t **out_masks = &affinity.masks; | 
|  | unsigned *out_numMasks = &affinity.num_masks; | 
|  | const char *placelist = affinity.proclist; | 
|  | kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; | 
|  | int maxOsId = affinity.num_os_id_masks - 1; | 
|  | const char *scan = placelist; | 
|  | const char *next = placelist; | 
|  |  | 
|  | numNewMasks = 2; | 
|  | KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); | 
|  | nextNewMask = 0; | 
|  |  | 
|  | // tempMask is modified based on the previous or initial | 
|  | //   place to form the current place | 
|  | // previousMask contains the previous place | 
|  | kmp_affin_mask_t *tempMask; | 
|  | kmp_affin_mask_t *previousMask; | 
|  | KMP_CPU_ALLOC(tempMask); | 
|  | KMP_CPU_ZERO(tempMask); | 
|  | KMP_CPU_ALLOC(previousMask); | 
|  | KMP_CPU_ZERO(previousMask); | 
|  | int setSize = 0; | 
|  |  | 
|  | for (;;) { | 
|  | __kmp_process_place(&scan, affinity, maxOsId, tempMask, &setSize); | 
|  |  | 
|  | // valid follow sets are ',' ':' and EOL | 
|  | SKIP_WS(scan); | 
|  | if (*scan == '\0' || *scan == ',') { | 
|  | if (setSize > 0) { | 
|  | ADD_MASK(tempMask); | 
|  | } | 
|  | KMP_CPU_ZERO(tempMask); | 
|  | setSize = 0; | 
|  | if (*scan == '\0') { | 
|  | break; | 
|  | } | 
|  | scan++; // skip ',' | 
|  | continue; | 
|  | } | 
|  |  | 
|  | KMP_ASSERT2(*scan == ':', "bad explicit places list"); | 
|  | scan++; // skip ':' | 
|  |  | 
|  | // Read count parameter | 
|  | SKIP_WS(scan); | 
|  | KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); | 
|  | next = scan; | 
|  | SKIP_DIGITS(next); | 
|  | count = __kmp_str_to_int(scan, *next); | 
|  | KMP_ASSERT(count >= 0); | 
|  | scan = next; | 
|  |  | 
|  | // valid follow sets are ',' ':' and EOL | 
|  | SKIP_WS(scan); | 
|  | if (*scan == '\0' || *scan == ',') { | 
|  | stride = +1; | 
|  | } else { | 
|  | KMP_ASSERT2(*scan == ':', "bad explicit places list"); | 
|  | scan++; // skip ':' | 
|  |  | 
|  | // Read stride parameter | 
|  | sign = +1; | 
|  | for (;;) { | 
|  | SKIP_WS(scan); | 
|  | if (*scan == '+') { | 
|  | scan++; // skip '+' | 
|  | continue; | 
|  | } | 
|  | if (*scan == '-') { | 
|  | sign *= -1; | 
|  | scan++; // skip '-' | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | SKIP_WS(scan); | 
|  | KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); | 
|  | next = scan; | 
|  | SKIP_DIGITS(next); | 
|  | stride = __kmp_str_to_int(scan, *next); | 
|  | KMP_DEBUG_ASSERT(stride >= 0); | 
|  | scan = next; | 
|  | stride *= sign; | 
|  | } | 
|  |  | 
|  | // Add places determined by initial_place : count : stride | 
|  | for (i = 0; i < count; i++) { | 
|  | if (setSize == 0) { | 
|  | break; | 
|  | } | 
|  | // Add the current place, then build the next place (tempMask) from that | 
|  | KMP_CPU_COPY(previousMask, tempMask); | 
|  | ADD_MASK(previousMask); | 
|  | KMP_CPU_ZERO(tempMask); | 
|  | setSize = 0; | 
|  | KMP_CPU_SET_ITERATE(j, previousMask) { | 
|  | if (!KMP_CPU_ISSET(j, previousMask)) { | 
|  | continue; | 
|  | } | 
|  | if ((j + stride > maxOsId) || (j + stride < 0) || | 
|  | (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || | 
|  | (!KMP_CPU_ISSET(j + stride, | 
|  | KMP_CPU_INDEX(osId2Mask, j + stride)))) { | 
|  | if (i < count - 1) { | 
|  | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | KMP_CPU_SET(j + stride, tempMask); | 
|  | setSize++; | 
|  | } | 
|  | } | 
|  | KMP_CPU_ZERO(tempMask); | 
|  | setSize = 0; | 
|  |  | 
|  | // valid follow sets are ',' and EOL | 
|  | SKIP_WS(scan); | 
|  | if (*scan == '\0') { | 
|  | break; | 
|  | } | 
|  | if (*scan == ',') { | 
|  | scan++; // skip ',' | 
|  | continue; | 
|  | } | 
|  |  | 
|  | KMP_ASSERT2(0, "bad explicit places list"); | 
|  | } | 
|  |  | 
|  | *out_numMasks = nextNewMask; | 
|  | if (nextNewMask == 0) { | 
|  | *out_masks = NULL; | 
|  | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); | 
|  | return; | 
|  | } | 
|  | KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); | 
|  | KMP_CPU_FREE(tempMask); | 
|  | KMP_CPU_FREE(previousMask); | 
|  | for (i = 0; i < nextNewMask; i++) { | 
|  | kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); | 
|  | kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); | 
|  | KMP_CPU_COPY(dest, src); | 
|  | } | 
|  | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); | 
|  | } | 
|  |  | 
|  | #undef ADD_MASK | 
|  | #undef ADD_MASK_OSID | 
|  |  | 
|  | // This function figures out the deepest level at which there is at least one | 
|  | // cluster/core with more than one processing unit bound to it. | 
|  | static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) { | 
|  | int core_level = 0; | 
|  |  | 
|  | for (int i = 0; i < nprocs; i++) { | 
|  | const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); | 
|  | for (int j = bottom_level; j > 0; j--) { | 
|  | if (hw_thread.ids[j] > 0) { | 
|  | if (core_level < (j - 1)) { | 
|  | core_level = j - 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return core_level; | 
|  | } | 
|  |  | 
|  | // This function counts number of clusters/cores at given level. | 
|  | static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level, | 
|  | int core_level) { | 
|  | return __kmp_topology->get_count(core_level); | 
|  | } | 
|  | // This function finds to which cluster/core given processing unit is bound. | 
|  | static int __kmp_affinity_find_core(int proc, int bottom_level, | 
|  | int core_level) { | 
|  | int core = 0; | 
|  | KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads()); | 
|  | for (int i = 0; i <= proc; ++i) { | 
|  | if (i + 1 <= proc) { | 
|  | for (int j = 0; j <= core_level; ++j) { | 
|  | if (__kmp_topology->at(i + 1).sub_ids[j] != | 
|  | __kmp_topology->at(i).sub_ids[j]) { | 
|  | core++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return core; | 
|  | } | 
|  |  | 
|  | // This function finds maximal number of processing units bound to a | 
|  | // cluster/core at given level. | 
|  | static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level, | 
|  | int core_level) { | 
|  | if (core_level >= bottom_level) | 
|  | return 1; | 
|  | int thread_level = __kmp_topology->get_level(KMP_HW_THREAD); | 
|  | return __kmp_topology->calculate_ratio(thread_level, core_level); | 
|  | } | 
|  |  | 
|  | static int *procarr = NULL; | 
|  | static int __kmp_aff_depth = 0; | 
|  | static int *__kmp_osid_to_hwthread_map = NULL; | 
|  |  | 
|  | static void __kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t *mask, | 
|  | kmp_affinity_ids_t &ids, | 
|  | kmp_affinity_attrs_t &attrs) { | 
|  | if (!KMP_AFFINITY_CAPABLE()) | 
|  | return; | 
|  |  | 
|  | // Initiailze ids and attrs thread data | 
|  | for (int i = 0; i < KMP_HW_LAST; ++i) | 
|  | ids[i] = kmp_hw_thread_t::UNKNOWN_ID; | 
|  | attrs = KMP_AFFINITY_ATTRS_UNKNOWN; | 
|  |  | 
|  | // Iterate through each os id within the mask and determine | 
|  | // the topology id and attribute information | 
|  | int cpu; | 
|  | int depth = __kmp_topology->get_depth(); | 
|  | KMP_CPU_SET_ITERATE(cpu, mask) { | 
|  | int osid_idx = __kmp_osid_to_hwthread_map[cpu]; | 
|  | const kmp_hw_thread_t &hw_thread = __kmp_topology->at(osid_idx); | 
|  | for (int level = 0; level < depth; ++level) { | 
|  | kmp_hw_t type = __kmp_topology->get_type(level); | 
|  | int id = hw_thread.sub_ids[level]; | 
|  | if (ids[type] == kmp_hw_thread_t::UNKNOWN_ID || ids[type] == id) { | 
|  | ids[type] = id; | 
|  | } else { | 
|  | // This mask spans across multiple topology units, set it as such | 
|  | // and mark every level below as such as well. | 
|  | ids[type] = kmp_hw_thread_t::MULTIPLE_ID; | 
|  | for (; level < depth; ++level) { | 
|  | kmp_hw_t type = __kmp_topology->get_type(level); | 
|  | ids[type] = kmp_hw_thread_t::MULTIPLE_ID; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!attrs.valid) { | 
|  | attrs.core_type = hw_thread.attrs.get_core_type(); | 
|  | attrs.core_eff = hw_thread.attrs.get_core_eff(); | 
|  | attrs.valid = 1; | 
|  | } else { | 
|  | // This mask spans across multiple attributes, set it as such | 
|  | if (attrs.core_type != hw_thread.attrs.get_core_type()) | 
|  | attrs.core_type = KMP_HW_CORE_TYPE_UNKNOWN; | 
|  | if (attrs.core_eff != hw_thread.attrs.get_core_eff()) | 
|  | attrs.core_eff = kmp_hw_attr_t::UNKNOWN_CORE_EFF; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __kmp_affinity_get_thread_topology_info(kmp_info_t *th) { | 
|  | if (!KMP_AFFINITY_CAPABLE()) | 
|  | return; | 
|  | const kmp_affin_mask_t *mask = th->th.th_affin_mask; | 
|  | kmp_affinity_ids_t &ids = th->th.th_topology_ids; | 
|  | kmp_affinity_attrs_t &attrs = th->th.th_topology_attrs; | 
|  | __kmp_affinity_get_mask_topology_info(mask, ids, attrs); | 
|  | } | 
|  |  | 
|  | // Assign the topology information to each place in the place list | 
|  | // A thread can then grab not only its affinity mask, but the topology | 
|  | // information associated with that mask. e.g., Which socket is a thread on | 
|  | static void __kmp_affinity_get_topology_info(kmp_affinity_t &affinity) { | 
|  | if (!KMP_AFFINITY_CAPABLE()) | 
|  | return; | 
|  | if (affinity.type != affinity_none) { | 
|  | KMP_ASSERT(affinity.num_os_id_masks); | 
|  | KMP_ASSERT(affinity.os_id_masks); | 
|  | } | 
|  | KMP_ASSERT(affinity.num_masks); | 
|  | KMP_ASSERT(affinity.masks); | 
|  | KMP_ASSERT(__kmp_affin_fullMask); | 
|  |  | 
|  | int max_cpu = __kmp_affin_fullMask->get_max_cpu(); | 
|  | int num_hw_threads = __kmp_topology->get_num_hw_threads(); | 
|  |  | 
|  | // Allocate thread topology information | 
|  | if (!affinity.ids) { | 
|  | affinity.ids = (kmp_affinity_ids_t *)__kmp_allocate( | 
|  | sizeof(kmp_affinity_ids_t) * affinity.num_masks); | 
|  | } | 
|  | if (!affinity.attrs) { | 
|  | affinity.attrs = (kmp_affinity_attrs_t *)__kmp_allocate( | 
|  | sizeof(kmp_affinity_attrs_t) * affinity.num_masks); | 
|  | } | 
|  | if (!__kmp_osid_to_hwthread_map) { | 
|  | // Want the +1 because max_cpu should be valid index into map | 
|  | __kmp_osid_to_hwthread_map = | 
|  | (int *)__kmp_allocate(sizeof(int) * (max_cpu + 1)); | 
|  | } | 
|  |  | 
|  | // Create the OS proc to hardware thread map | 
|  | for (int hw_thread = 0; hw_thread < num_hw_threads; ++hw_thread) | 
|  | __kmp_osid_to_hwthread_map[__kmp_topology->at(hw_thread).os_id] = hw_thread; | 
|  |  | 
|  | for (unsigned i = 0; i < affinity.num_masks; ++i) { | 
|  | kmp_affinity_ids_t &ids = affinity.ids[i]; | 
|  | kmp_affinity_attrs_t &attrs = affinity.attrs[i]; | 
|  | kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.masks, i); | 
|  | __kmp_affinity_get_mask_topology_info(mask, ids, attrs); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a one element mask array (set of places) which only contains the | 
|  | // initial process's affinity mask | 
|  | static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) { | 
|  | KMP_ASSERT(__kmp_affin_fullMask != NULL); | 
|  | KMP_ASSERT(affinity.type == affinity_none); | 
|  | affinity.num_masks = 1; | 
|  | KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks); | 
|  | kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0); | 
|  | KMP_CPU_COPY(dest, __kmp_affin_fullMask); | 
|  | __kmp_affinity_get_topology_info(affinity); | 
|  | } | 
|  |  | 
|  | static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) { | 
|  | // Create the "full" mask - this defines all of the processors that we | 
|  | // consider to be in the machine model. If respect is set, then it is the | 
|  | // initialization thread's affinity mask. Otherwise, it is all processors that | 
|  | // we know about on the machine. | 
|  | int verbose = affinity.flags.verbose; | 
|  | const char *env_var = affinity.env_var; | 
|  |  | 
|  | // Already initialized | 
|  | if (__kmp_affin_fullMask && __kmp_affin_origMask) | 
|  | return; | 
|  |  | 
|  | if (__kmp_affin_fullMask == NULL) { | 
|  | KMP_CPU_ALLOC(__kmp_affin_fullMask); | 
|  | } | 
|  | if (__kmp_affin_origMask == NULL) { | 
|  | KMP_CPU_ALLOC(__kmp_affin_origMask); | 
|  | } | 
|  | if (KMP_AFFINITY_CAPABLE()) { | 
|  | __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); | 
|  | // Make a copy before possible expanding to the entire machine mask | 
|  | __kmp_affin_origMask->copy(__kmp_affin_fullMask); | 
|  | if (affinity.flags.respect) { | 
|  | // Count the number of available processors. | 
|  | unsigned i; | 
|  | __kmp_avail_proc = 0; | 
|  | KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { | 
|  | if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { | 
|  | continue; | 
|  | } | 
|  | __kmp_avail_proc++; | 
|  | } | 
|  | if (__kmp_avail_proc > __kmp_xproc) { | 
|  | KMP_AFF_WARNING(affinity, ErrorInitializeAffinity); | 
|  | affinity.type = affinity_none; | 
|  | KMP_AFFINITY_DISABLE(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (verbose) { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | __kmp_affin_fullMask); | 
|  | KMP_INFORM(InitOSProcSetRespect, env_var, buf); | 
|  | } | 
|  | } else { | 
|  | if (verbose) { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | __kmp_affin_fullMask); | 
|  | KMP_INFORM(InitOSProcSetNotRespect, env_var, buf); | 
|  | } | 
|  | __kmp_avail_proc = | 
|  | __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); | 
|  | #if KMP_OS_WINDOWS | 
|  | if (__kmp_num_proc_groups <= 1) { | 
|  | // Copy expanded full mask if topology has single processor group | 
|  | __kmp_affin_origMask->copy(__kmp_affin_fullMask); | 
|  | } | 
|  | // Set the process affinity mask since threads' affinity | 
|  | // masks must be subset of process mask in Windows* OS | 
|  | __kmp_affin_fullMask->set_process_affinity(true); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) { | 
|  | bool success = false; | 
|  | const char *env_var = affinity.env_var; | 
|  | kmp_i18n_id_t msg_id = kmp_i18n_null; | 
|  | int verbose = affinity.flags.verbose; | 
|  |  | 
|  | // For backward compatibility, setting KMP_CPUINFO_FILE => | 
|  | // KMP_TOPOLOGY_METHOD=cpuinfo | 
|  | if ((__kmp_cpuinfo_file != NULL) && | 
|  | (__kmp_affinity_top_method == affinity_top_method_all)) { | 
|  | __kmp_affinity_top_method = affinity_top_method_cpuinfo; | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_top_method == affinity_top_method_all) { | 
|  | // In the default code path, errors are not fatal - we just try using | 
|  | // another method. We only emit a warning message if affinity is on, or the | 
|  | // verbose flag is set, an the nowarnings flag was not set. | 
|  | #if KMP_USE_HWLOC | 
|  | if (!success && | 
|  | __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { | 
|  | if (!__kmp_hwloc_error) { | 
|  | success = __kmp_affinity_create_hwloc_map(&msg_id); | 
|  | if (!success && verbose) { | 
|  | KMP_INFORM(AffIgnoringHwloc, env_var); | 
|  | } | 
|  | } else if (verbose) { | 
|  | KMP_INFORM(AffIgnoringHwloc, env_var); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 | 
|  | if (!success) { | 
|  | success = __kmp_affinity_create_x2apicid_map(&msg_id); | 
|  | if (!success && verbose && msg_id != kmp_i18n_null) { | 
|  | KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); | 
|  | } | 
|  | } | 
|  | if (!success) { | 
|  | success = __kmp_affinity_create_apicid_map(&msg_id); | 
|  | if (!success && verbose && msg_id != kmp_i18n_null) { | 
|  | KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); | 
|  | } | 
|  | } | 
|  | #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ | 
|  |  | 
|  | #if KMP_OS_LINUX | 
|  | if (!success) { | 
|  | int line = 0; | 
|  | success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); | 
|  | if (!success && verbose && msg_id != kmp_i18n_null) { | 
|  | KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); | 
|  | } | 
|  | } | 
|  | #endif /* KMP_OS_LINUX */ | 
|  |  | 
|  | #if KMP_GROUP_AFFINITY | 
|  | if (!success && (__kmp_num_proc_groups > 1)) { | 
|  | success = __kmp_affinity_create_proc_group_map(&msg_id); | 
|  | if (!success && verbose && msg_id != kmp_i18n_null) { | 
|  | KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); | 
|  | } | 
|  | } | 
|  | #endif /* KMP_GROUP_AFFINITY */ | 
|  |  | 
|  | if (!success) { | 
|  | success = __kmp_affinity_create_flat_map(&msg_id); | 
|  | if (!success && verbose && msg_id != kmp_i18n_null) { | 
|  | KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); | 
|  | } | 
|  | KMP_ASSERT(success); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the user has specified that a paricular topology discovery method is to be | 
|  | // used, then we abort if that method fails. The exception is group affinity, | 
|  | // which might have been implicitly set. | 
|  | #if KMP_USE_HWLOC | 
|  | else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { | 
|  | KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); | 
|  | success = __kmp_affinity_create_hwloc_map(&msg_id); | 
|  | if (!success) { | 
|  | KMP_ASSERT(msg_id != kmp_i18n_null); | 
|  | KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); | 
|  | } | 
|  | } | 
|  | #endif // KMP_USE_HWLOC | 
|  |  | 
|  | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 | 
|  | else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || | 
|  | __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { | 
|  | success = __kmp_affinity_create_x2apicid_map(&msg_id); | 
|  | if (!success) { | 
|  | KMP_ASSERT(msg_id != kmp_i18n_null); | 
|  | KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); | 
|  | } | 
|  | } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { | 
|  | success = __kmp_affinity_create_apicid_map(&msg_id); | 
|  | if (!success) { | 
|  | KMP_ASSERT(msg_id != kmp_i18n_null); | 
|  | KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); | 
|  | } | 
|  | } | 
|  | #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ | 
|  |  | 
|  | else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { | 
|  | int line = 0; | 
|  | success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); | 
|  | if (!success) { | 
|  | KMP_ASSERT(msg_id != kmp_i18n_null); | 
|  | const char *filename = __kmp_cpuinfo_get_filename(); | 
|  | if (line > 0) { | 
|  | KMP_FATAL(FileLineMsgExiting, filename, line, | 
|  | __kmp_i18n_catgets(msg_id)); | 
|  | } else { | 
|  | KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if KMP_GROUP_AFFINITY | 
|  | else if (__kmp_affinity_top_method == affinity_top_method_group) { | 
|  | success = __kmp_affinity_create_proc_group_map(&msg_id); | 
|  | KMP_ASSERT(success); | 
|  | if (!success) { | 
|  | KMP_ASSERT(msg_id != kmp_i18n_null); | 
|  | KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); | 
|  | } | 
|  | } | 
|  | #endif /* KMP_GROUP_AFFINITY */ | 
|  |  | 
|  | else if (__kmp_affinity_top_method == affinity_top_method_flat) { | 
|  | success = __kmp_affinity_create_flat_map(&msg_id); | 
|  | // should not fail | 
|  | KMP_ASSERT(success); | 
|  | } | 
|  |  | 
|  | // Early exit if topology could not be created | 
|  | if (!__kmp_topology) { | 
|  | if (KMP_AFFINITY_CAPABLE()) { | 
|  | KMP_AFF_WARNING(affinity, ErrorInitializeAffinity); | 
|  | } | 
|  | if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 && | 
|  | __kmp_ncores > 0) { | 
|  | __kmp_topology = kmp_topology_t::allocate(0, 0, NULL); | 
|  | __kmp_topology->canonicalize(nPackages, nCoresPerPkg, | 
|  | __kmp_nThreadsPerCore, __kmp_ncores); | 
|  | if (verbose) { | 
|  | __kmp_topology->print(env_var); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Canonicalize, print (if requested), apply KMP_HW_SUBSET | 
|  | __kmp_topology->canonicalize(); | 
|  | if (verbose) | 
|  | __kmp_topology->print(env_var); | 
|  | bool filtered = __kmp_topology->filter_hw_subset(); | 
|  | if (filtered) { | 
|  | #if KMP_OS_WINDOWS | 
|  | // Copy filtered full mask if topology has single processor group | 
|  | if (__kmp_num_proc_groups <= 1) | 
|  | #endif | 
|  | __kmp_affin_origMask->copy(__kmp_affin_fullMask); | 
|  | } | 
|  | if (filtered && verbose) | 
|  | __kmp_topology->print("KMP_HW_SUBSET"); | 
|  | return success; | 
|  | } | 
|  |  | 
|  | static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) { | 
|  | bool is_regular_affinity = (&affinity == &__kmp_affinity); | 
|  | bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity); | 
|  | const char *env_var = affinity.env_var; | 
|  |  | 
|  | if (affinity.flags.initialized) { | 
|  | KMP_ASSERT(__kmp_affin_fullMask != NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask)) | 
|  | __kmp_aux_affinity_initialize_masks(affinity); | 
|  |  | 
|  | if (is_regular_affinity && !__kmp_topology) { | 
|  | bool success = __kmp_aux_affinity_initialize_topology(affinity); | 
|  | if (success) { | 
|  | // Initialize other data structures which depend on the topology | 
|  | machine_hierarchy.init(__kmp_topology->get_num_hw_threads()); | 
|  | KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); | 
|  | } else { | 
|  | affinity.type = affinity_none; | 
|  | KMP_AFFINITY_DISABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If KMP_AFFINITY=none, then only create the single "none" place | 
|  | // which is the process's initial affinity mask or the number of | 
|  | // hardware threads depending on respect,norespect | 
|  | if (affinity.type == affinity_none) { | 
|  | __kmp_create_affinity_none_places(affinity); | 
|  | #if KMP_USE_HIER_SCHED | 
|  | __kmp_dispatch_set_hierarchy_values(); | 
|  | #endif | 
|  | affinity.flags.initialized = TRUE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | __kmp_topology->set_granularity(affinity); | 
|  | int depth = __kmp_topology->get_depth(); | 
|  |  | 
|  | // Create the table of masks, indexed by thread Id. | 
|  | unsigned numUnique; | 
|  | __kmp_create_os_id_masks(&numUnique, affinity); | 
|  | if (affinity.gran_levels == 0) { | 
|  | KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); | 
|  | } | 
|  |  | 
|  | switch (affinity.type) { | 
|  |  | 
|  | case affinity_explicit: | 
|  | KMP_DEBUG_ASSERT(affinity.proclist != NULL); | 
|  | if (is_hidden_helper_affinity || | 
|  | __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { | 
|  | __kmp_affinity_process_proclist(affinity); | 
|  | } else { | 
|  | __kmp_affinity_process_placelist(affinity); | 
|  | } | 
|  | if (affinity.num_masks == 0) { | 
|  | KMP_AFF_WARNING(affinity, AffNoValidProcID); | 
|  | affinity.type = affinity_none; | 
|  | __kmp_create_affinity_none_places(affinity); | 
|  | affinity.flags.initialized = TRUE; | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | // The other affinity types rely on sorting the hardware threads according to | 
|  | // some permutation of the machine topology tree. Set affinity.compact | 
|  | // and affinity.offset appropriately, then jump to a common code | 
|  | // fragment to do the sort and create the array of affinity masks. | 
|  | case affinity_logical: | 
|  | affinity.compact = 0; | 
|  | if (affinity.offset) { | 
|  | affinity.offset = | 
|  | __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc; | 
|  | } | 
|  | goto sortTopology; | 
|  |  | 
|  | case affinity_physical: | 
|  | if (__kmp_nThreadsPerCore > 1) { | 
|  | affinity.compact = 1; | 
|  | if (affinity.compact >= depth) { | 
|  | affinity.compact = 0; | 
|  | } | 
|  | } else { | 
|  | affinity.compact = 0; | 
|  | } | 
|  | if (affinity.offset) { | 
|  | affinity.offset = | 
|  | __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc; | 
|  | } | 
|  | goto sortTopology; | 
|  |  | 
|  | case affinity_scatter: | 
|  | if (affinity.compact >= depth) { | 
|  | affinity.compact = 0; | 
|  | } else { | 
|  | affinity.compact = depth - 1 - affinity.compact; | 
|  | } | 
|  | goto sortTopology; | 
|  |  | 
|  | case affinity_compact: | 
|  | if (affinity.compact >= depth) { | 
|  | affinity.compact = depth - 1; | 
|  | } | 
|  | goto sortTopology; | 
|  |  | 
|  | case affinity_balanced: | 
|  | if (depth <= 1 || is_hidden_helper_affinity) { | 
|  | KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var); | 
|  | affinity.type = affinity_none; | 
|  | __kmp_create_affinity_none_places(affinity); | 
|  | affinity.flags.initialized = TRUE; | 
|  | return; | 
|  | } else if (!__kmp_topology->is_uniform()) { | 
|  | // Save the depth for further usage | 
|  | __kmp_aff_depth = depth; | 
|  |  | 
|  | int core_level = | 
|  | __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1); | 
|  | int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1, | 
|  | core_level); | 
|  | int maxprocpercore = __kmp_affinity_max_proc_per_core( | 
|  | __kmp_avail_proc, depth - 1, core_level); | 
|  |  | 
|  | int nproc = ncores * maxprocpercore; | 
|  | if ((nproc < 2) || (nproc < __kmp_avail_proc)) { | 
|  | KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var); | 
|  | affinity.type = affinity_none; | 
|  | __kmp_create_affinity_none_places(affinity); | 
|  | affinity.flags.initialized = TRUE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | procarr = (int *)__kmp_allocate(sizeof(int) * nproc); | 
|  | for (int i = 0; i < nproc; i++) { | 
|  | procarr[i] = -1; | 
|  | } | 
|  |  | 
|  | int lastcore = -1; | 
|  | int inlastcore = 0; | 
|  | for (int i = 0; i < __kmp_avail_proc; i++) { | 
|  | int proc = __kmp_topology->at(i).os_id; | 
|  | int core = __kmp_affinity_find_core(i, depth - 1, core_level); | 
|  |  | 
|  | if (core == lastcore) { | 
|  | inlastcore++; | 
|  | } else { | 
|  | inlastcore = 0; | 
|  | } | 
|  | lastcore = core; | 
|  |  | 
|  | procarr[core * maxprocpercore + inlastcore] = proc; | 
|  | } | 
|  | } | 
|  | if (affinity.compact >= depth) { | 
|  | affinity.compact = depth - 1; | 
|  | } | 
|  |  | 
|  | sortTopology: | 
|  | // Allocate the gtid->affinity mask table. | 
|  | if (affinity.flags.dups) { | 
|  | affinity.num_masks = __kmp_avail_proc; | 
|  | } else { | 
|  | affinity.num_masks = numUnique; | 
|  | } | 
|  |  | 
|  | if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && | 
|  | (__kmp_affinity_num_places > 0) && | 
|  | ((unsigned)__kmp_affinity_num_places < affinity.num_masks) && | 
|  | !is_hidden_helper_affinity) { | 
|  | affinity.num_masks = __kmp_affinity_num_places; | 
|  | } | 
|  |  | 
|  | KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks); | 
|  |  | 
|  | // Sort the topology table according to the current setting of | 
|  | // affinity.compact, then fill out affinity.masks. | 
|  | __kmp_topology->sort_compact(affinity); | 
|  | { | 
|  | int i; | 
|  | unsigned j; | 
|  | int num_hw_threads = __kmp_topology->get_num_hw_threads(); | 
|  | for (i = 0, j = 0; i < num_hw_threads; i++) { | 
|  | if ((!affinity.flags.dups) && (!__kmp_topology->at(i).leader)) { | 
|  | continue; | 
|  | } | 
|  | int osId = __kmp_topology->at(i).os_id; | 
|  |  | 
|  | kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId); | 
|  | kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j); | 
|  | KMP_ASSERT(KMP_CPU_ISSET(osId, src)); | 
|  | KMP_CPU_COPY(dest, src); | 
|  | if (++j >= affinity.num_masks) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | KMP_DEBUG_ASSERT(j == affinity.num_masks); | 
|  | } | 
|  | // Sort the topology back using ids | 
|  | __kmp_topology->sort_ids(); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | KMP_ASSERT2(0, "Unexpected affinity setting"); | 
|  | } | 
|  | __kmp_affinity_get_topology_info(affinity); | 
|  | affinity.flags.initialized = TRUE; | 
|  | } | 
|  |  | 
|  | void __kmp_affinity_initialize(kmp_affinity_t &affinity) { | 
|  | // Much of the code above was written assuming that if a machine was not | 
|  | // affinity capable, then affinity type == affinity_none. | 
|  | // We now explicitly represent this as affinity type == affinity_disabled. | 
|  | // There are too many checks for affinity type == affinity_none in this code. | 
|  | // Instead of trying to change them all, check if | 
|  | // affinity type == affinity_disabled, and if so, slam it with affinity_none, | 
|  | // call the real initialization routine, then restore affinity type to | 
|  | // affinity_disabled. | 
|  | int disabled = (affinity.type == affinity_disabled); | 
|  | if (!KMP_AFFINITY_CAPABLE()) | 
|  | KMP_ASSERT(disabled); | 
|  | if (disabled) | 
|  | affinity.type = affinity_none; | 
|  | __kmp_aux_affinity_initialize(affinity); | 
|  | if (disabled) | 
|  | affinity.type = affinity_disabled; | 
|  | } | 
|  |  | 
|  | void __kmp_affinity_uninitialize(void) { | 
|  | for (kmp_affinity_t *affinity : __kmp_affinities) { | 
|  | if (affinity->masks != NULL) | 
|  | KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks); | 
|  | if (affinity->os_id_masks != NULL) | 
|  | KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks); | 
|  | if (affinity->proclist != NULL) | 
|  | __kmp_free(affinity->proclist); | 
|  | if (affinity->ids != NULL) | 
|  | __kmp_free(affinity->ids); | 
|  | if (affinity->attrs != NULL) | 
|  | __kmp_free(affinity->attrs); | 
|  | *affinity = KMP_AFFINITY_INIT(affinity->env_var); | 
|  | } | 
|  | if (__kmp_affin_origMask != NULL) { | 
|  | if (KMP_AFFINITY_CAPABLE()) { | 
|  | __kmp_set_system_affinity(__kmp_affin_origMask, FALSE); | 
|  | } | 
|  | KMP_CPU_FREE(__kmp_affin_origMask); | 
|  | __kmp_affin_origMask = NULL; | 
|  | } | 
|  | __kmp_affinity_num_places = 0; | 
|  | if (procarr != NULL) { | 
|  | __kmp_free(procarr); | 
|  | procarr = NULL; | 
|  | } | 
|  | if (__kmp_osid_to_hwthread_map) { | 
|  | __kmp_free(__kmp_osid_to_hwthread_map); | 
|  | __kmp_osid_to_hwthread_map = NULL; | 
|  | } | 
|  | #if KMP_USE_HWLOC | 
|  | if (__kmp_hwloc_topology != NULL) { | 
|  | hwloc_topology_destroy(__kmp_hwloc_topology); | 
|  | __kmp_hwloc_topology = NULL; | 
|  | } | 
|  | #endif | 
|  | if (__kmp_hw_subset) { | 
|  | kmp_hw_subset_t::deallocate(__kmp_hw_subset); | 
|  | __kmp_hw_subset = nullptr; | 
|  | } | 
|  | if (__kmp_topology) { | 
|  | kmp_topology_t::deallocate(__kmp_topology); | 
|  | __kmp_topology = nullptr; | 
|  | } | 
|  | KMPAffinity::destroy_api(); | 
|  | } | 
|  |  | 
|  | static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity, | 
|  | int *place, kmp_affin_mask_t **mask) { | 
|  | int mask_idx; | 
|  | bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); | 
|  | if (is_hidden_helper) | 
|  | // The first gtid is the regular primary thread, the second gtid is the main | 
|  | // thread of hidden team which does not participate in task execution. | 
|  | mask_idx = gtid - 2; | 
|  | else | 
|  | mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); | 
|  | KMP_DEBUG_ASSERT(affinity->num_masks > 0); | 
|  | *place = (mask_idx + affinity->offset) % affinity->num_masks; | 
|  | *mask = KMP_CPU_INDEX(affinity->masks, *place); | 
|  | } | 
|  |  | 
|  | // This function initializes the per-thread data concerning affinity including | 
|  | // the mask and topology information | 
|  | void __kmp_affinity_set_init_mask(int gtid, int isa_root) { | 
|  |  | 
|  | kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); | 
|  |  | 
|  | // Set the thread topology information to default of unknown | 
|  | for (int id = 0; id < KMP_HW_LAST; ++id) | 
|  | th->th.th_topology_ids[id] = kmp_hw_thread_t::UNKNOWN_ID; | 
|  | th->th.th_topology_attrs = KMP_AFFINITY_ATTRS_UNKNOWN; | 
|  |  | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (th->th.th_affin_mask == NULL) { | 
|  | KMP_CPU_ALLOC(th->th.th_affin_mask); | 
|  | } else { | 
|  | KMP_CPU_ZERO(th->th.th_affin_mask); | 
|  | } | 
|  |  | 
|  | // Copy the thread mask to the kmp_info_t structure. If | 
|  | // __kmp_affinity.type == affinity_none, copy the "full" mask, i.e. | 
|  | // one that has all of the OS proc ids set, or if | 
|  | // __kmp_affinity.flags.respect is set, then the full mask is the | 
|  | // same as the mask of the initialization thread. | 
|  | kmp_affin_mask_t *mask; | 
|  | int i; | 
|  | const kmp_affinity_t *affinity; | 
|  | const char *env_var; | 
|  | bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); | 
|  |  | 
|  | if (is_hidden_helper) | 
|  | affinity = &__kmp_hh_affinity; | 
|  | else | 
|  | affinity = &__kmp_affinity; | 
|  | env_var = affinity->env_var; | 
|  |  | 
|  | if (KMP_AFFINITY_NON_PROC_BIND || is_hidden_helper) { | 
|  | if ((affinity->type == affinity_none) || | 
|  | (affinity->type == affinity_balanced) || | 
|  | KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) { | 
|  | #if KMP_GROUP_AFFINITY | 
|  | if (__kmp_num_proc_groups > 1) { | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | KMP_ASSERT(__kmp_affin_fullMask != NULL); | 
|  | i = 0; | 
|  | mask = __kmp_affin_fullMask; | 
|  | } else { | 
|  | __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask); | 
|  | } | 
|  | } else { | 
|  | if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) { | 
|  | #if KMP_GROUP_AFFINITY | 
|  | if (__kmp_num_proc_groups > 1) { | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | KMP_ASSERT(__kmp_affin_fullMask != NULL); | 
|  | i = KMP_PLACE_ALL; | 
|  | mask = __kmp_affin_fullMask; | 
|  | } else { | 
|  | __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | th->th.th_current_place = i; | 
|  | if (isa_root && !is_hidden_helper) { | 
|  | th->th.th_new_place = i; | 
|  | th->th.th_first_place = 0; | 
|  | th->th.th_last_place = affinity->num_masks - 1; | 
|  | } else if (KMP_AFFINITY_NON_PROC_BIND) { | 
|  | // When using a Non-OMP_PROC_BIND affinity method, | 
|  | // set all threads' place-partition-var to the entire place list | 
|  | th->th.th_first_place = 0; | 
|  | th->th.th_last_place = affinity->num_masks - 1; | 
|  | } | 
|  | // Copy topology information associated with the place | 
|  | if (i >= 0) { | 
|  | th->th.th_topology_ids = __kmp_affinity.ids[i]; | 
|  | th->th.th_topology_attrs = __kmp_affinity.attrs[i]; | 
|  | } | 
|  |  | 
|  | if (i == KMP_PLACE_ALL) { | 
|  | KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", | 
|  | gtid)); | 
|  | } else { | 
|  | KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", | 
|  | gtid, i)); | 
|  | } | 
|  |  | 
|  | KMP_CPU_COPY(th->th.th_affin_mask, mask); | 
|  |  | 
|  | /* to avoid duplicate printing (will be correctly printed on barrier) */ | 
|  | if (affinity->flags.verbose && | 
|  | (affinity->type == affinity_none || | 
|  | (i != KMP_PLACE_ALL && affinity->type != affinity_balanced)) && | 
|  | !KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | th->th.th_affin_mask); | 
|  | KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), | 
|  | gtid, buf); | 
|  | } | 
|  |  | 
|  | #if KMP_OS_WINDOWS | 
|  | // On Windows* OS, the process affinity mask might have changed. If the user | 
|  | // didn't request affinity and this call fails, just continue silently. | 
|  | // See CQ171393. | 
|  | if (affinity->type == affinity_none) { | 
|  | __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); | 
|  | } else | 
|  | #endif | 
|  | __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); | 
|  | } | 
|  |  | 
|  | void __kmp_affinity_set_place(int gtid) { | 
|  | // Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND | 
|  | if (!KMP_AFFINITY_CAPABLE() || KMP_HIDDEN_HELPER_THREAD(gtid)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); | 
|  |  | 
|  | KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " | 
|  | "place = %d)\n", | 
|  | gtid, th->th.th_new_place, th->th.th_current_place)); | 
|  |  | 
|  | // Check that the new place is within this thread's partition. | 
|  | KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); | 
|  | KMP_ASSERT(th->th.th_new_place >= 0); | 
|  | KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks); | 
|  | if (th->th.th_first_place <= th->th.th_last_place) { | 
|  | KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && | 
|  | (th->th.th_new_place <= th->th.th_last_place)); | 
|  | } else { | 
|  | KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || | 
|  | (th->th.th_new_place >= th->th.th_last_place)); | 
|  | } | 
|  |  | 
|  | // Copy the thread mask to the kmp_info_t structure, | 
|  | // and set this thread's affinity. | 
|  | kmp_affin_mask_t *mask = | 
|  | KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place); | 
|  | KMP_CPU_COPY(th->th.th_affin_mask, mask); | 
|  | th->th.th_current_place = th->th.th_new_place; | 
|  | // Copy topology information associated with the place | 
|  | th->th.th_topology_ids = __kmp_affinity.ids[th->th.th_new_place]; | 
|  | th->th.th_topology_attrs = __kmp_affinity.attrs[th->th.th_new_place]; | 
|  |  | 
|  | if (__kmp_affinity.flags.verbose) { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | th->th.th_affin_mask); | 
|  | KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), | 
|  | __kmp_gettid(), gtid, buf); | 
|  | } | 
|  | __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); | 
|  | } | 
|  |  | 
|  | int __kmp_aux_set_affinity(void **mask) { | 
|  | int gtid; | 
|  | kmp_info_t *th; | 
|  | int retval; | 
|  |  | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | gtid = __kmp_entry_gtid(); | 
|  | KA_TRACE( | 
|  | 1000, (""); { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | (kmp_affin_mask_t *)(*mask)); | 
|  | __kmp_debug_printf( | 
|  | "kmp_set_affinity: setting affinity mask for thread %d = %s\n", | 
|  | gtid, buf); | 
|  | }); | 
|  |  | 
|  | if (__kmp_env_consistency_check) { | 
|  | if ((mask == NULL) || (*mask == NULL)) { | 
|  | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); | 
|  | } else { | 
|  | unsigned proc; | 
|  | int num_procs = 0; | 
|  |  | 
|  | KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { | 
|  | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { | 
|  | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); | 
|  | } | 
|  | if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { | 
|  | continue; | 
|  | } | 
|  | num_procs++; | 
|  | } | 
|  | if (num_procs == 0) { | 
|  | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); | 
|  | } | 
|  |  | 
|  | #if KMP_GROUP_AFFINITY | 
|  | if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { | 
|  | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); | 
|  | } | 
|  | #endif /* KMP_GROUP_AFFINITY */ | 
|  | } | 
|  | } | 
|  |  | 
|  | th = __kmp_threads[gtid]; | 
|  | KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); | 
|  | retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); | 
|  | if (retval == 0) { | 
|  | KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); | 
|  | } | 
|  |  | 
|  | th->th.th_current_place = KMP_PLACE_UNDEFINED; | 
|  | th->th.th_new_place = KMP_PLACE_UNDEFINED; | 
|  | th->th.th_first_place = 0; | 
|  | th->th.th_last_place = __kmp_affinity.num_masks - 1; | 
|  |  | 
|  | // Turn off 4.0 affinity for the current tread at this parallel level. | 
|  | th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | int __kmp_aux_get_affinity(void **mask) { | 
|  | int gtid; | 
|  | int retval; | 
|  | #if KMP_OS_WINDOWS || KMP_DEBUG | 
|  | kmp_info_t *th; | 
|  | #endif | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | gtid = __kmp_entry_gtid(); | 
|  | #if KMP_OS_WINDOWS || KMP_DEBUG | 
|  | th = __kmp_threads[gtid]; | 
|  | #else | 
|  | (void)gtid; // unused variable | 
|  | #endif | 
|  | KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); | 
|  |  | 
|  | KA_TRACE( | 
|  | 1000, (""); { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | th->th.th_affin_mask); | 
|  | __kmp_printf( | 
|  | "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, | 
|  | buf); | 
|  | }); | 
|  |  | 
|  | if (__kmp_env_consistency_check) { | 
|  | if ((mask == NULL) || (*mask == NULL)) { | 
|  | KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !KMP_OS_WINDOWS | 
|  |  | 
|  | retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); | 
|  | KA_TRACE( | 
|  | 1000, (""); { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | (kmp_affin_mask_t *)(*mask)); | 
|  | __kmp_printf( | 
|  | "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, | 
|  | buf); | 
|  | }); | 
|  | return retval; | 
|  |  | 
|  | #else | 
|  | (void)retval; | 
|  |  | 
|  | KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); | 
|  | return 0; | 
|  |  | 
|  | #endif /* KMP_OS_WINDOWS */ | 
|  | } | 
|  |  | 
|  | int __kmp_aux_get_affinity_max_proc() { | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | return 0; | 
|  | } | 
|  | #if KMP_GROUP_AFFINITY | 
|  | if (__kmp_num_proc_groups > 1) { | 
|  | return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); | 
|  | } | 
|  | #endif | 
|  | return __kmp_xproc; | 
|  | } | 
|  |  | 
|  | int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | KA_TRACE( | 
|  | 1000, (""); { | 
|  | int gtid = __kmp_entry_gtid(); | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | (kmp_affin_mask_t *)(*mask)); | 
|  | __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " | 
|  | "affinity mask for thread %d = %s\n", | 
|  | proc, gtid, buf); | 
|  | }); | 
|  |  | 
|  | if (__kmp_env_consistency_check) { | 
|  | if ((mask == NULL) || (*mask == NULL)) { | 
|  | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { | 
|  | return -1; | 
|  | } | 
|  | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { | 
|  | return -2; | 
|  | } | 
|  |  | 
|  | KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | KA_TRACE( | 
|  | 1000, (""); { | 
|  | int gtid = __kmp_entry_gtid(); | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | (kmp_affin_mask_t *)(*mask)); | 
|  | __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " | 
|  | "affinity mask for thread %d = %s\n", | 
|  | proc, gtid, buf); | 
|  | }); | 
|  |  | 
|  | if (__kmp_env_consistency_check) { | 
|  | if ((mask == NULL) || (*mask == NULL)) { | 
|  | KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { | 
|  | return -1; | 
|  | } | 
|  | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { | 
|  | return -2; | 
|  | } | 
|  |  | 
|  | KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | KA_TRACE( | 
|  | 1000, (""); { | 
|  | int gtid = __kmp_entry_gtid(); | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | (kmp_affin_mask_t *)(*mask)); | 
|  | __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " | 
|  | "affinity mask for thread %d = %s\n", | 
|  | proc, gtid, buf); | 
|  | }); | 
|  |  | 
|  | if (__kmp_env_consistency_check) { | 
|  | if ((mask == NULL) || (*mask == NULL)) { | 
|  | KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { | 
|  | return -1; | 
|  | } | 
|  | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); | 
|  | } | 
|  |  | 
|  | // Dynamic affinity settings - Affinity balanced | 
|  | void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { | 
|  | KMP_DEBUG_ASSERT(th); | 
|  | bool fine_gran = true; | 
|  | int tid = th->th.th_info.ds.ds_tid; | 
|  | const char *env_var = "KMP_AFFINITY"; | 
|  |  | 
|  | // Do not perform balanced affinity for the hidden helper threads | 
|  | if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th))) | 
|  | return; | 
|  |  | 
|  | switch (__kmp_affinity.gran) { | 
|  | case KMP_HW_THREAD: | 
|  | break; | 
|  | case KMP_HW_CORE: | 
|  | if (__kmp_nThreadsPerCore > 1) { | 
|  | fine_gran = false; | 
|  | } | 
|  | break; | 
|  | case KMP_HW_SOCKET: | 
|  | if (nCoresPerPkg > 1) { | 
|  | fine_gran = false; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | fine_gran = false; | 
|  | } | 
|  |  | 
|  | if (__kmp_topology->is_uniform()) { | 
|  | int coreID; | 
|  | int threadID; | 
|  | // Number of hyper threads per core in HT machine | 
|  | int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; | 
|  | // Number of cores | 
|  | int ncores = __kmp_ncores; | 
|  | if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { | 
|  | __kmp_nth_per_core = __kmp_avail_proc / nPackages; | 
|  | ncores = nPackages; | 
|  | } | 
|  | // How many threads will be bound to each core | 
|  | int chunk = nthreads / ncores; | 
|  | // How many cores will have an additional thread bound to it - "big cores" | 
|  | int big_cores = nthreads % ncores; | 
|  | // Number of threads on the big cores | 
|  | int big_nth = (chunk + 1) * big_cores; | 
|  | if (tid < big_nth) { | 
|  | coreID = tid / (chunk + 1); | 
|  | threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; | 
|  | } else { // tid >= big_nth | 
|  | coreID = (tid - big_cores) / chunk; | 
|  | threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; | 
|  | } | 
|  | KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), | 
|  | "Illegal set affinity operation when not capable"); | 
|  |  | 
|  | kmp_affin_mask_t *mask = th->th.th_affin_mask; | 
|  | KMP_CPU_ZERO(mask); | 
|  |  | 
|  | if (fine_gran) { | 
|  | int osID = | 
|  | __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id; | 
|  | KMP_CPU_SET(osID, mask); | 
|  | } else { | 
|  | for (int i = 0; i < __kmp_nth_per_core; i++) { | 
|  | int osID; | 
|  | osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id; | 
|  | KMP_CPU_SET(osID, mask); | 
|  | } | 
|  | } | 
|  | if (__kmp_affinity.flags.verbose) { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); | 
|  | KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), | 
|  | tid, buf); | 
|  | } | 
|  | __kmp_affinity_get_thread_topology_info(th); | 
|  | __kmp_set_system_affinity(mask, TRUE); | 
|  | } else { // Non-uniform topology | 
|  |  | 
|  | kmp_affin_mask_t *mask = th->th.th_affin_mask; | 
|  | KMP_CPU_ZERO(mask); | 
|  |  | 
|  | int core_level = | 
|  | __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1); | 
|  | int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, | 
|  | __kmp_aff_depth - 1, core_level); | 
|  | int nth_per_core = __kmp_affinity_max_proc_per_core( | 
|  | __kmp_avail_proc, __kmp_aff_depth - 1, core_level); | 
|  |  | 
|  | // For performance gain consider the special case nthreads == | 
|  | // __kmp_avail_proc | 
|  | if (nthreads == __kmp_avail_proc) { | 
|  | if (fine_gran) { | 
|  | int osID = __kmp_topology->at(tid).os_id; | 
|  | KMP_CPU_SET(osID, mask); | 
|  | } else { | 
|  | int core = | 
|  | __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level); | 
|  | for (int i = 0; i < __kmp_avail_proc; i++) { | 
|  | int osID = __kmp_topology->at(i).os_id; | 
|  | if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) == | 
|  | core) { | 
|  | KMP_CPU_SET(osID, mask); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (nthreads <= ncores) { | 
|  |  | 
|  | int core = 0; | 
|  | for (int i = 0; i < ncores; i++) { | 
|  | // Check if this core from procarr[] is in the mask | 
|  | int in_mask = 0; | 
|  | for (int j = 0; j < nth_per_core; j++) { | 
|  | if (procarr[i * nth_per_core + j] != -1) { | 
|  | in_mask = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (in_mask) { | 
|  | if (tid == core) { | 
|  | for (int j = 0; j < nth_per_core; j++) { | 
|  | int osID = procarr[i * nth_per_core + j]; | 
|  | if (osID != -1) { | 
|  | KMP_CPU_SET(osID, mask); | 
|  | // For fine granularity it is enough to set the first available | 
|  | // osID for this core | 
|  | if (fine_gran) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } else { | 
|  | core++; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { // nthreads > ncores | 
|  | // Array to save the number of processors at each core | 
|  | int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); | 
|  | // Array to save the number of cores with "x" available processors; | 
|  | int *ncores_with_x_procs = | 
|  | (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); | 
|  | // Array to save the number of cores with # procs from x to nth_per_core | 
|  | int *ncores_with_x_to_max_procs = | 
|  | (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); | 
|  |  | 
|  | for (int i = 0; i <= nth_per_core; i++) { | 
|  | ncores_with_x_procs[i] = 0; | 
|  | ncores_with_x_to_max_procs[i] = 0; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < ncores; i++) { | 
|  | int cnt = 0; | 
|  | for (int j = 0; j < nth_per_core; j++) { | 
|  | if (procarr[i * nth_per_core + j] != -1) { | 
|  | cnt++; | 
|  | } | 
|  | } | 
|  | nproc_at_core[i] = cnt; | 
|  | ncores_with_x_procs[cnt]++; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i <= nth_per_core; i++) { | 
|  | for (int j = i; j <= nth_per_core; j++) { | 
|  | ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Max number of processors | 
|  | int nproc = nth_per_core * ncores; | 
|  | // An array to keep number of threads per each context | 
|  | int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); | 
|  | for (int i = 0; i < nproc; i++) { | 
|  | newarr[i] = 0; | 
|  | } | 
|  |  | 
|  | int nth = nthreads; | 
|  | int flag = 0; | 
|  | while (nth > 0) { | 
|  | for (int j = 1; j <= nth_per_core; j++) { | 
|  | int cnt = ncores_with_x_to_max_procs[j]; | 
|  | for (int i = 0; i < ncores; i++) { | 
|  | // Skip the core with 0 processors | 
|  | if (nproc_at_core[i] == 0) { | 
|  | continue; | 
|  | } | 
|  | for (int k = 0; k < nth_per_core; k++) { | 
|  | if (procarr[i * nth_per_core + k] != -1) { | 
|  | if (newarr[i * nth_per_core + k] == 0) { | 
|  | newarr[i * nth_per_core + k] = 1; | 
|  | cnt--; | 
|  | nth--; | 
|  | break; | 
|  | } else { | 
|  | if (flag != 0) { | 
|  | newarr[i * nth_per_core + k]++; | 
|  | cnt--; | 
|  | nth--; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (cnt == 0 || nth == 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (nth == 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | flag = 1; | 
|  | } | 
|  | int sum = 0; | 
|  | for (int i = 0; i < nproc; i++) { | 
|  | sum += newarr[i]; | 
|  | if (sum > tid) { | 
|  | if (fine_gran) { | 
|  | int osID = procarr[i]; | 
|  | KMP_CPU_SET(osID, mask); | 
|  | } else { | 
|  | int coreID = i / nth_per_core; | 
|  | for (int ii = 0; ii < nth_per_core; ii++) { | 
|  | int osID = procarr[coreID * nth_per_core + ii]; | 
|  | if (osID != -1) { | 
|  | KMP_CPU_SET(osID, mask); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | __kmp_free(newarr); | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity.flags.verbose) { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); | 
|  | KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), | 
|  | tid, buf); | 
|  | } | 
|  | __kmp_affinity_get_thread_topology_info(th); | 
|  | __kmp_set_system_affinity(mask, TRUE); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if KMP_OS_LINUX || KMP_OS_FREEBSD | 
|  | // We don't need this entry for Windows because | 
|  | // there is GetProcessAffinityMask() api | 
|  | // | 
|  | // The intended usage is indicated by these steps: | 
|  | // 1) The user gets the current affinity mask | 
|  | // 2) Then sets the affinity by calling this function | 
|  | // 3) Error check the return value | 
|  | // 4) Use non-OpenMP parallelization | 
|  | // 5) Reset the affinity to what was stored in step 1) | 
|  | #ifdef __cplusplus | 
|  | extern "C" | 
|  | #endif | 
|  | int | 
|  | kmp_set_thread_affinity_mask_initial() | 
|  | // the function returns 0 on success, | 
|  | //   -1 if we cannot bind thread | 
|  | //   >0 (errno) if an error happened during binding | 
|  | { | 
|  | int gtid = __kmp_get_gtid(); | 
|  | if (gtid < 0) { | 
|  | // Do not touch non-omp threads | 
|  | KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " | 
|  | "non-omp thread, returning\n")); | 
|  | return -1; | 
|  | } | 
|  | if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { | 
|  | KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " | 
|  | "affinity not initialized, returning\n")); | 
|  | return -1; | 
|  | } | 
|  | KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " | 
|  | "set full mask for thread %d\n", | 
|  | gtid)); | 
|  | KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); | 
|  | return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif // KMP_AFFINITY_SUPPORTED |