blob: 4ff31b4be55b23a1bde4f13225b2dc259b7b64c4 [file] [log] [blame]
//===- ReductionTreePass.cpp - ReductionTreePass Implementation -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the Reduction Tree Pass class. It provides a framework for
// the implementation of different reduction passes in the MLIR Reduce tool. It
// allows for custom specification of the variant generation behavior. It
// implements methods that define the different possible traversals of the
// reduction tree.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/DialectInterface.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/Reducer/PassDetail.h"
#include "mlir/Reducer/Passes.h"
#include "mlir/Reducer/ReductionNode.h"
#include "mlir/Reducer/ReductionPatternInterface.h"
#include "mlir/Reducer/Tester.h"
#include "mlir/Rewrite/FrozenRewritePatternSet.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ManagedStatic.h"
using namespace mlir;
/// We implicitly number each operation in the region and if an operation's
/// number falls into rangeToKeep, we need to keep it and apply the given
/// rewrite patterns on it.
static void applyPatterns(Region &region,
const FrozenRewritePatternSet &patterns,
ArrayRef<ReductionNode::Range> rangeToKeep,
bool eraseOpNotInRange) {
std::vector<Operation *> opsNotInRange;
std::vector<Operation *> opsInRange;
size_t keepIndex = 0;
for (auto op : enumerate(region.getOps())) {
int index = op.index();
if (keepIndex < rangeToKeep.size() &&
index == rangeToKeep[keepIndex].second)
++keepIndex;
if (keepIndex == rangeToKeep.size() || index < rangeToKeep[keepIndex].first)
opsNotInRange.push_back(&op.value());
else
opsInRange.push_back(&op.value());
}
// `applyOpPatternsAndFold` may erase the ops so we can't do the pattern
// matching in above iteration. Besides, erase op not-in-range may end up in
// invalid module, so `applyOpPatternsAndFold` should come before that
// transform.
for (Operation *op : opsInRange)
// `applyOpPatternsAndFold` returns whether the op is convered. Omit it
// because we don't have expectation this reduction will be success or not.
(void)applyOpPatternsAndFold(op, patterns);
if (eraseOpNotInRange)
for (Operation *op : opsNotInRange) {
op->dropAllUses();
op->erase();
}
}
/// We will apply the reducer patterns to the operations in the ranges specified
/// by ReductionNode. Note that we are not able to remove an operation without
/// replacing it with another valid operation. However, The validity of module
/// reduction is based on the Tester provided by the user and that means certain
/// invalid module is still interested by the use. Thus we provide an
/// alternative way to remove operations, which is using `eraseOpNotInRange` to
/// erase the operations not in the range specified by ReductionNode.
template <typename IteratorType>
static LogicalResult findOptimal(ModuleOp module, Region &region,
const FrozenRewritePatternSet &patterns,
const Tester &test, bool eraseOpNotInRange) {
std::pair<Tester::Interestingness, size_t> initStatus =
test.isInteresting(module);
// While exploring the reduction tree, we always branch from an interesting
// node. Thus the root node must be interesting.
if (initStatus.first != Tester::Interestingness::True)
return module.emitWarning() << "uninterested module will not be reduced";
llvm::SpecificBumpPtrAllocator<ReductionNode> allocator;
std::vector<ReductionNode::Range> ranges{
{0, std::distance(region.op_begin(), region.op_end())}};
ReductionNode *root = allocator.Allocate();
new (root) ReductionNode(nullptr, std::move(ranges), allocator);
// Duplicate the module for root node and locate the region in the copy.
if (failed(root->initialize(module, region)))
llvm_unreachable("unexpected initialization failure");
root->update(initStatus);
ReductionNode *smallestNode = root;
IteratorType iter(root);
while (iter != IteratorType::end()) {
ReductionNode &currentNode = *iter;
Region &curRegion = currentNode.getRegion();
applyPatterns(curRegion, patterns, currentNode.getRanges(),
eraseOpNotInRange);
currentNode.update(test.isInteresting(currentNode.getModule()));
if (currentNode.isInteresting() == Tester::Interestingness::True &&
currentNode.getSize() < smallestNode->getSize())
smallestNode = &currentNode;
++iter;
}
// At here, we have found an optimal path to reduce the given region. Retrieve
// the path and apply the reducer to it.
SmallVector<ReductionNode *> trace;
ReductionNode *curNode = smallestNode;
trace.push_back(curNode);
while (curNode != root) {
curNode = curNode->getParent();
trace.push_back(curNode);
}
// Reduce the region through the optimal path.
while (!trace.empty()) {
ReductionNode *top = trace.pop_back_val();
applyPatterns(region, patterns, top->getStartRanges(), eraseOpNotInRange);
}
if (test.isInteresting(module).first != Tester::Interestingness::True)
llvm::report_fatal_error("Reduced module is not interesting");
if (test.isInteresting(module).second != smallestNode->getSize())
llvm::report_fatal_error(
"Reduced module doesn't have consistent size with smallestNode");
return success();
}
template <typename IteratorType>
static LogicalResult findOptimal(ModuleOp module, Region &region,
const FrozenRewritePatternSet &patterns,
const Tester &test) {
// We separate the reduction process into 2 steps, the first one is to erase
// redundant operations and the second one is to apply the reducer patterns.
// In the first phase, we don't apply any patterns so that we only select the
// range of operations to keep to the module stay interesting.
if (failed(findOptimal<IteratorType>(module, region, /*patterns=*/{}, test,
/*eraseOpNotInRange=*/true)))
return failure();
// In the second phase, we suppose that no operation is redundant, so we try
// to rewrite the operation into simpler form.
return findOptimal<IteratorType>(module, region, patterns, test,
/*eraseOpNotInRange=*/false);
}
namespace {
//===----------------------------------------------------------------------===//
// Reduction Pattern Interface Collection
//===----------------------------------------------------------------------===//
class ReductionPatternInterfaceCollection
: public DialectInterfaceCollection<DialectReductionPatternInterface> {
public:
using Base::Base;
// Collect the reduce patterns defined by each dialect.
void populateReductionPatterns(RewritePatternSet &pattern) const {
for (const DialectReductionPatternInterface &interface : *this)
interface.populateReductionPatterns(pattern);
}
};
//===----------------------------------------------------------------------===//
// ReductionTreePass
//===----------------------------------------------------------------------===//
/// This class defines the Reduction Tree Pass. It provides a framework to
/// to implement a reduction pass using a tree structure to keep track of the
/// generated reduced variants.
class ReductionTreePass : public ReductionTreeBase<ReductionTreePass> {
public:
ReductionTreePass() = default;
ReductionTreePass(const ReductionTreePass &pass) = default;
LogicalResult initialize(MLIRContext *context) override;
/// Runs the pass instance in the pass pipeline.
void runOnOperation() override;
private:
LogicalResult reduceOp(ModuleOp module, Region &region);
FrozenRewritePatternSet reducerPatterns;
};
} // end anonymous namespace
LogicalResult ReductionTreePass::initialize(MLIRContext *context) {
RewritePatternSet patterns(context);
ReductionPatternInterfaceCollection reducePatternCollection(context);
reducePatternCollection.populateReductionPatterns(patterns);
reducerPatterns = std::move(patterns);
return success();
}
void ReductionTreePass::runOnOperation() {
Operation *topOperation = getOperation();
while (topOperation->getParentOp() != nullptr)
topOperation = topOperation->getParentOp();
ModuleOp module = cast<ModuleOp>(topOperation);
SmallVector<Operation *, 8> workList;
workList.push_back(getOperation());
do {
Operation *op = workList.pop_back_val();
for (Region &region : op->getRegions())
if (!region.empty())
if (failed(reduceOp(module, region)))
return signalPassFailure();
for (Region &region : op->getRegions())
for (Operation &op : region.getOps())
if (op.getNumRegions() != 0)
workList.push_back(&op);
} while (!workList.empty());
}
LogicalResult ReductionTreePass::reduceOp(ModuleOp module, Region &region) {
Tester test(testerName, testerArgs);
switch (traversalModeId) {
case TraversalMode::SinglePath:
return findOptimal<ReductionNode::iterator<TraversalMode::SinglePath>>(
module, region, reducerPatterns, test);
default:
return module.emitError() << "unsupported traversal mode detected";
}
}
std::unique_ptr<Pass> mlir::createReductionTreePass() {
return std::make_unique<ReductionTreePass>();
}