blob: 444290b2139c1468d5313df4d82ec791f62f3b40 [file] [log] [blame]
//===------- VectorCombine.cpp - Optimize partial vector operations -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass optimizes scalar/vector interactions using target cost models. The
// transforms implemented here may not fit in traditional loop-based or SLP
// vectorization passes.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/VectorCombine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Vectorize.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "vector-combine"
STATISTIC(NumVecCmp, "Number of vector compares formed");
STATISTIC(NumVecBO, "Number of vector binops formed");
static cl::opt<bool> DisableVectorCombine(
"disable-vector-combine", cl::init(false), cl::Hidden,
cl::desc("Disable all vector combine transforms"));
static cl::opt<bool> DisableBinopExtractShuffle(
"disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
cl::desc("Disable binop extract to shuffle transforms"));
/// Compare the relative costs of 2 extracts followed by scalar operation vs.
/// vector operation(s) followed by extract. Return true if the existing
/// instructions are cheaper than a vector alternative. Otherwise, return false
/// and if one of the extracts should be transformed to a shufflevector, set
/// \p ConvertToShuffle to that extract instruction.
static bool isExtractExtractCheap(Instruction *Ext0, Instruction *Ext1,
unsigned Opcode,
const TargetTransformInfo &TTI,
Instruction *&ConvertToShuffle,
unsigned PreferredExtractIndex) {
assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
isa<ConstantInt>(Ext1->getOperand(1)) &&
"Expected constant extract indexes");
Type *ScalarTy = Ext0->getType();
Type *VecTy = Ext0->getOperand(0)->getType();
int ScalarOpCost, VectorOpCost;
// Get cost estimates for scalar and vector versions of the operation.
bool IsBinOp = Instruction::isBinaryOp(Opcode);
if (IsBinOp) {
ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
} else {
assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
"Expected a compare");
ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy,
CmpInst::makeCmpResultType(ScalarTy));
VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy,
CmpInst::makeCmpResultType(VecTy));
}
// Get cost estimates for the extract elements. These costs will factor into
// both sequences.
unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
int Extract0Cost = TTI.getVectorInstrCost(Instruction::ExtractElement,
VecTy, Ext0Index);
int Extract1Cost = TTI.getVectorInstrCost(Instruction::ExtractElement,
VecTy, Ext1Index);
// A more expensive extract will always be replaced by a splat shuffle.
// For example, if Ext0 is more expensive:
// opcode (extelt V0, Ext0), (ext V1, Ext1) -->
// extelt (opcode (splat V0, Ext0), V1), Ext1
// TODO: Evaluate whether that always results in lowest cost. Alternatively,
// check the cost of creating a broadcast shuffle and shuffling both
// operands to element 0.
int CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
// Extra uses of the extracts mean that we include those costs in the
// vector total because those instructions will not be eliminated.
int OldCost, NewCost;
if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
// Handle a special case. If the 2 extracts are identical, adjust the
// formulas to account for that. The extra use charge allows for either the
// CSE'd pattern or an unoptimized form with identical values:
// opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
: !Ext0->hasOneUse() || !Ext1->hasOneUse();
OldCost = CheapExtractCost + ScalarOpCost;
NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
} else {
// Handle the general case. Each extract is actually a different value:
// opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
NewCost = VectorOpCost + CheapExtractCost +
!Ext0->hasOneUse() * Extract0Cost +
!Ext1->hasOneUse() * Extract1Cost;
}
if (Ext0Index == Ext1Index) {
// If the extract indexes are identical, no shuffle is needed.
ConvertToShuffle = nullptr;
} else {
if (IsBinOp && DisableBinopExtractShuffle)
return true;
// If we are extracting from 2 different indexes, then one operand must be
// shuffled before performing the vector operation. The shuffle mask is
// undefined except for 1 lane that is being translated to the remaining
// extraction lane. Therefore, it is a splat shuffle. Ex:
// ShufMask = { undef, undef, 0, undef }
// TODO: The cost model has an option for a "broadcast" shuffle
// (splat-from-element-0), but no option for a more general splat.
NewCost +=
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
// The more expensive extract will be replaced by a shuffle. If the costs
// are equal and there is a preferred extract index, shuffle the opposite
// operand. Otherwise, replace the extract with the higher index.
if (Extract0Cost > Extract1Cost)
ConvertToShuffle = Ext0;
else if (Extract1Cost > Extract0Cost)
ConvertToShuffle = Ext1;
else if (PreferredExtractIndex == Ext0Index)
ConvertToShuffle = Ext1;
else if (PreferredExtractIndex == Ext1Index)
ConvertToShuffle = Ext0;
else
ConvertToShuffle = Ext0Index > Ext1Index ? Ext0 : Ext1;
}
// Aggressively form a vector op if the cost is equal because the transform
// may enable further optimization.
// Codegen can reverse this transform (scalarize) if it was not profitable.
return OldCost < NewCost;
}
/// Try to reduce extract element costs by converting scalar compares to vector
/// compares followed by extract.
/// cmp (ext0 V0, C), (ext1 V1, C)
static void foldExtExtCmp(Instruction *Ext0, Instruction *Ext1,
Instruction &I, const TargetTransformInfo &TTI) {
assert(isa<CmpInst>(&I) && "Expected a compare");
// cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
++NumVecCmp;
IRBuilder<> Builder(&I);
CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0);
Value *VecCmp =
Ext0->getType()->isFloatingPointTy() ? Builder.CreateFCmp(Pred, V0, V1)
: Builder.CreateICmp(Pred, V0, V1);
Value *Extract = Builder.CreateExtractElement(VecCmp, Ext0->getOperand(1));
I.replaceAllUsesWith(Extract);
}
/// Try to reduce extract element costs by converting scalar binops to vector
/// binops followed by extract.
/// bo (ext0 V0, C), (ext1 V1, C)
static void foldExtExtBinop(Instruction *Ext0, Instruction *Ext1,
Instruction &I, const TargetTransformInfo &TTI) {
assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
// bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
++NumVecBO;
IRBuilder<> Builder(&I);
Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0);
Value *VecBO =
Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
// All IR flags are safe to back-propagate because any potential poison
// created in unused vector elements is discarded by the extract.
if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
VecBOInst->copyIRFlags(&I);
Value *Extract = Builder.CreateExtractElement(VecBO, Ext0->getOperand(1));
I.replaceAllUsesWith(Extract);
}
/// Match an instruction with extracted vector operands.
static bool foldExtractExtract(Instruction &I, const TargetTransformInfo &TTI) {
// It is not safe to transform things like div, urem, etc. because we may
// create undefined behavior when executing those on unknown vector elements.
if (!isSafeToSpeculativelyExecute(&I))
return false;
Instruction *Ext0, *Ext1;
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
if (!match(&I, m_Cmp(Pred, m_Instruction(Ext0), m_Instruction(Ext1))) &&
!match(&I, m_BinOp(m_Instruction(Ext0), m_Instruction(Ext1))))
return false;
Value *V0, *V1;
uint64_t C0, C1;
if (!match(Ext0, m_ExtractElement(m_Value(V0), m_ConstantInt(C0))) ||
!match(Ext1, m_ExtractElement(m_Value(V1), m_ConstantInt(C1))) ||
V0->getType() != V1->getType())
return false;
// If the scalar value 'I' is going to be re-inserted into a vector, then try
// to create an extract to that same element. The extract/insert can be
// reduced to a "select shuffle".
// TODO: If we add a larger pattern match that starts from an insert, this
// probably becomes unnecessary.
uint64_t InsertIndex = std::numeric_limits<uint64_t>::max();
if (I.hasOneUse())
match(I.user_back(), m_InsertElement(m_Value(), m_Value(),
m_ConstantInt(InsertIndex)));
Instruction *ConvertToShuffle;
if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), TTI, ConvertToShuffle,
InsertIndex))
return false;
if (ConvertToShuffle) {
// The shuffle mask is undefined except for 1 lane that is being translated
// to the cheap extraction lane. Example:
// ShufMask = { 2, undef, undef, undef }
uint64_t SplatIndex = ConvertToShuffle == Ext0 ? C0 : C1;
uint64_t CheapExtIndex = ConvertToShuffle == Ext0 ? C1 : C0;
Type *VecTy = V0->getType();
Type *I32Ty = IntegerType::getInt32Ty(I.getContext());
UndefValue *Undef = UndefValue::get(I32Ty);
SmallVector<Constant *, 32> ShufMask(VecTy->getVectorNumElements(), Undef);
ShufMask[CheapExtIndex] = ConstantInt::get(I32Ty, SplatIndex);
IRBuilder<> Builder(ConvertToShuffle);
// extelt X, C --> extelt (splat X), C'
Value *Shuf = Builder.CreateShuffleVector(ConvertToShuffle->getOperand(0),
UndefValue::get(VecTy),
ConstantVector::get(ShufMask));
Value *NewExt = Builder.CreateExtractElement(Shuf, CheapExtIndex);
if (ConvertToShuffle == Ext0)
Ext0 = cast<Instruction>(NewExt);
else
Ext1 = cast<Instruction>(NewExt);
}
if (Pred != CmpInst::BAD_ICMP_PREDICATE)
foldExtExtCmp(Ext0, Ext1, I, TTI);
else
foldExtExtBinop(Ext0, Ext1, I, TTI);
return true;
}
/// If this is a bitcast to narrow elements from a shuffle of wider elements,
/// try to bitcast the source vector to the narrow type followed by shuffle.
/// This can enable further transforms by moving bitcasts or shuffles together.
static bool foldBitcastShuf(Instruction &I, const TargetTransformInfo &TTI) {
Value *V;
ArrayRef<int> Mask;
if (!match(&I, m_BitCast(m_OneUse(m_ShuffleVector(m_Value(V), m_Undef(),
m_Mask(Mask))))))
return false;
Type *DestTy = I.getType();
Type *SrcTy = V->getType();
if (!DestTy->isVectorTy() || I.getOperand(0)->getType() != SrcTy)
return false;
// TODO: Handle bitcast from narrow element type to wide element type.
assert(SrcTy->isVectorTy() && "Shuffle of non-vector type?");
unsigned DestNumElts = DestTy->getVectorNumElements();
unsigned SrcNumElts = SrcTy->getVectorNumElements();
if (SrcNumElts > DestNumElts)
return false;
// The new shuffle must not cost more than the old shuffle. The bitcast is
// moved ahead of the shuffle, so assume that it has the same cost as before.
if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) >
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy))
return false;
// Bitcast the source vector and expand the shuffle mask to the equivalent for
// narrow elements.
// bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
IRBuilder<> Builder(&I);
Value *CastV = Builder.CreateBitCast(V, DestTy);
SmallVector<int, 16> NewMask;
assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
unsigned ScaleFactor = DestNumElts / SrcNumElts;
scaleShuffleMask(ScaleFactor, Mask, NewMask);
Value *Shuf = Builder.CreateShuffleVector(CastV, UndefValue::get(DestTy),
NewMask);
I.replaceAllUsesWith(Shuf);
return true;
}
/// This is the entry point for all transforms. Pass manager differences are
/// handled in the callers of this function.
static bool runImpl(Function &F, const TargetTransformInfo &TTI,
const DominatorTree &DT) {
if (DisableVectorCombine)
return false;
bool MadeChange = false;
for (BasicBlock &BB : F) {
// Ignore unreachable basic blocks.
if (!DT.isReachableFromEntry(&BB))
continue;
// Do not delete instructions under here and invalidate the iterator.
// Walk the block backwards for efficiency. We're matching a chain of
// use->defs, so we're more likely to succeed by starting from the bottom.
// TODO: It could be more efficient to remove dead instructions
// iteratively in this loop rather than waiting until the end.
for (Instruction &I : make_range(BB.rbegin(), BB.rend())) {
if (isa<DbgInfoIntrinsic>(I))
continue;
MadeChange |= foldExtractExtract(I, TTI);
MadeChange |= foldBitcastShuf(I, TTI);
}
}
// We're done with transforms, so remove dead instructions.
if (MadeChange)
for (BasicBlock &BB : F)
SimplifyInstructionsInBlock(&BB);
return MadeChange;
}
// Pass manager boilerplate below here.
namespace {
class VectorCombineLegacyPass : public FunctionPass {
public:
static char ID;
VectorCombineLegacyPass() : FunctionPass(ID) {
initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.setPreservesCFG();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
FunctionPass::getAnalysisUsage(AU);
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return runImpl(F, TTI, DT);
}
};
} // namespace
char VectorCombineLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
"Optimize scalar/vector ops", false,
false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
"Optimize scalar/vector ops", false, false)
Pass *llvm::createVectorCombinePass() {
return new VectorCombineLegacyPass();
}
PreservedAnalyses VectorCombinePass::run(Function &F,
FunctionAnalysisManager &FAM) {
TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
if (!runImpl(F, TTI, DT))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
PA.preserve<GlobalsAA>();
return PA;
}