| // RUN: mlir-opt %s -split-input-file | FileCheck %s |
| // |
| // Note - the functions are named @{unary|binary}_{identity|transpose|broadcast|transpose_a|...}_{exp|mul|div|..} |
| |
| // CHECK: @unary_identity_exp(%[[A:.+]]: tensor<8x16x32xf32>, %[[B:.+]]: tensor<8x16x32xf32>) |
| // CHECK: %{{.*}} = linalg.elementwise kind=#linalg.elementwise_kind<exp> |
| // CHECK-SAME ins(%[[A:.+]] : tensor<8x16x32xf32>) outs(%[[B:.+]] : tensor<8x16x32xf32>) |
| // |
| func.func @unary_identity_exp(%A : tensor<8x16x32xf32>, %B: tensor<8x16x32xf32>) -> tensor<8x16x32xf32> { |
| %r = linalg.elementwise |
| kind=#linalg.elementwise_kind<exp> |
| ins(%A : tensor<8x16x32xf32>) |
| outs(%B: tensor<8x16x32xf32>) -> tensor<8x16x32xf32> |
| return %r : tensor<8x16x32xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-DAG: #[[IDENTITY:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> |
| // CHECK-DAG: #[[PROJECTION:.+]] = affine_map<(d0, d1, d2) -> (d2, d1)> |
| // |
| // CHECK: @unary_projection_tanh(%[[A:.+]]: tensor<?x16xf32>, |
| // CHECK-SAME: %[[B:.+]]: tensor<8x16x?xf32>) -> tensor<8x16x?xf32> { |
| // CHECK: {{.*}} = linalg.elementwise kind=#linalg.elementwise_kind<tanh> |
| // CHECK-SAME: indexing_maps = [#[[PROJECTION]], #[[IDENTITY]]] |
| // CHECK-SAME: ins(%[[A]] : tensor<?x16xf32>) outs(%[[B]] : tensor<8x16x?xf32>) -> tensor<8x16x?xf32> |
| // |
| func.func @unary_projection_tanh(%A: tensor<?x16xf32>, |
| %B: tensor<8x16x?xf32>) -> tensor<8x16x?xf32> { |
| %r = linalg.elementwise |
| kind=#linalg.elementwise_kind<tanh> |
| indexing_maps = [affine_map<(d0, d1, d2) -> (d2, d1)>, |
| affine_map<(d0, d1, d2) -> (d0, d1, d2)>] |
| ins(%A : tensor<?x16xf32>) |
| outs(%B: tensor<8x16x?xf32>) -> tensor<8x16x?xf32> |
| return %r : tensor<8x16x?xf32> |
| } |
| |
| // ----- |
| |
| // CHECK: @binary_identity_div(%[[A:.+]]: tensor<16x8xf32>, %[[B:.+]]: tensor<16x8xf32>, |
| // CHECK-SAME: %[[C:.+]]: tensor<16x8xf32>) -> tensor<16x8xf32> { |
| // CHECK: {{.*}} = linalg.elementwise |
| // CHECK-SAME: kind=#linalg.elementwise_kind<div> |
| // CHECK-SAME: ins(%[[A]], %[[B]] : tensor<16x8xf32>, tensor<16x8xf32>) |
| // CHECK-SAME: outs(%[[C]] : tensor<16x8xf32>) -> tensor<16x8xf32> |
| // |
| func.func @binary_identity_div(%A: tensor<16x8xf32>, %B: tensor<16x8xf32>, |
| %C: tensor<16x8xf32>) -> tensor<16x8xf32> { |
| %r = linalg.elementwise |
| kind=#linalg.elementwise_kind<div> |
| ins(%A, %B: tensor<16x8xf32>, tensor<16x8xf32>) |
| outs(%C: tensor<16x8xf32>) -> tensor<16x8xf32> |
| return %r : tensor<16x8xf32> |
| } |
| |
| // ----- |
| |
| // CHECK: @binary_identity_mul_5Di(%[[A]]: tensor<1x2x3x4x5xi32>, |
| // CHECK-SAME: %[[B:.+]]: tensor<1x2x3x4x5xi32>, |
| // CHECK-SAME: %[[C:.+]]: tensor<1x2x3x4x5xi32>) -> tensor<1x2x3x4x5xi32> { |
| // CHECK: {{.*}} = linalg.elementwise |
| // CHECK-SAME: kind=#linalg.elementwise_kind<mul> |
| // CHECK-SAME: ins(%[[A]], %[[B]] : tensor<1x2x3x4x5xi32>, tensor<1x2x3x4x5xi32>) |
| // CHECK-SAME: outs(%[[C]] : tensor<1x2x3x4x5xi32>) -> tensor<1x2x3x4x5xi32> |
| // |
| func.func @binary_identity_mul_5Di(%A: tensor<1x2x3x4x5xi32>, %B: tensor<1x2x3x4x5xi32>, |
| %C: tensor<1x2x3x4x5xi32>) -> tensor<1x2x3x4x5xi32> { |
| %r = linalg.elementwise |
| kind=#linalg.elementwise_kind<mul> |
| ins(%A, %B: tensor<1x2x3x4x5xi32>, tensor<1x2x3x4x5xi32>) |
| outs(%C: tensor<1x2x3x4x5xi32>) -> tensor<1x2x3x4x5xi32> |
| return %r : tensor<1x2x3x4x5xi32> |
| } |
| |
| // ----- |
| |
| // CHECK: @redundant_maps |
| // CHECK-NOT: indexing_maps |
| // |
| #map = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)> |
| func.func @redundant_maps(%A: tensor<1x2x3x4x5xi32>, %B: tensor<1x2x3x4x5xi32>, |
| %C: tensor<1x2x3x4x5xi32>) -> tensor<1x2x3x4x5xi32> { |
| %r = linalg.elementwise |
| kind=#linalg.elementwise_kind<mul> |
| indexing_maps = [#map, #map, #map] |
| ins(%A, %B: tensor<1x2x3x4x5xi32>, tensor<1x2x3x4x5xi32>) |
| outs(%C: tensor<1x2x3x4x5xi32>) -> tensor<1x2x3x4x5xi32> |
| return %r : tensor<1x2x3x4x5xi32> |
| } |