| //===----------------------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
| #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
| #include "mlir/Dialect/Func/IR/FuncOps.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/IR/Matchers.h" |
| #include <optional> |
| |
| using namespace mlir; |
| using namespace mlir::bufferization; |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions |
| //===----------------------------------------------------------------------===// |
| |
| FailureOr<Value> mlir::bufferization::castOrReallocMemRefValue( |
| OpBuilder &b, Value value, MemRefType destType, |
| const BufferizationOptions &options) { |
| auto srcType = llvm::cast<MemRefType>(value.getType()); |
| |
| // Element type, rank and memory space must match. |
| if (srcType.getElementType() != destType.getElementType()) |
| return failure(); |
| if (srcType.getMemorySpace() != destType.getMemorySpace()) |
| return failure(); |
| if (srcType.getRank() != destType.getRank()) |
| return failure(); |
| |
| // In case the affine maps are different, we may need to use a copy if we go |
| // from dynamic to static offset or stride (the canonicalization cannot know |
| // at this point that it is really cast compatible). |
| auto isGuaranteedCastCompatible = [](MemRefType source, MemRefType target) { |
| int64_t sourceOffset, targetOffset; |
| SmallVector<int64_t, 4> sourceStrides, targetStrides; |
| if (failed(getStridesAndOffset(source, sourceStrides, sourceOffset)) || |
| failed(getStridesAndOffset(target, targetStrides, targetOffset))) |
| return false; |
| auto dynamicToStatic = [](int64_t a, int64_t b) { |
| return ShapedType::isDynamic(a) && !ShapedType::isDynamic(b); |
| }; |
| if (dynamicToStatic(sourceOffset, targetOffset)) |
| return false; |
| for (auto it : zip(sourceStrides, targetStrides)) |
| if (dynamicToStatic(std::get<0>(it), std::get<1>(it))) |
| return false; |
| return true; |
| }; |
| |
| // Note: If `areCastCompatible`, a cast is valid, but may fail at runtime. To |
| // ensure that we only generate casts that always succeed at runtime, we check |
| // a fix extra conditions in `isGuaranteedCastCompatible`. |
| if (memref::CastOp::areCastCompatible(srcType, destType) && |
| isGuaranteedCastCompatible(srcType, destType)) { |
| Value casted = b.create<memref::CastOp>(value.getLoc(), destType, value); |
| return casted; |
| } |
| |
| auto loc = value.getLoc(); |
| SmallVector<Value, 4> dynamicOperands; |
| for (int i = 0; i < destType.getRank(); ++i) { |
| if (destType.getShape()[i] != ShapedType::kDynamic) |
| continue; |
| Value size = b.create<memref::DimOp>(loc, value, i); |
| dynamicOperands.push_back(size); |
| } |
| |
| FailureOr<Value> copy = |
| options.createAlloc(b, loc, destType, dynamicOperands); |
| if (failed(copy)) |
| return failure(); |
| if (failed(options.createMemCpy(b, loc, value, *copy))) |
| return failure(); |
| return copy; |
| } |
| |
| /// Try to fold to_memref(to_tensor(x)). If x's type and the result type of the |
| /// to_memref op are different, a memref.cast is needed. |
| LogicalResult mlir::bufferization::foldToMemrefToTensorPair( |
| RewriterBase &rewriter, ToMemrefOp toMemref, |
| const BufferizationOptions &options) { |
| auto memrefToTensor = toMemref.getTensor().getDefiningOp<ToTensorOp>(); |
| if (!memrefToTensor) |
| return failure(); |
| |
| Type srcType = memrefToTensor.getMemref().getType(); |
| Type destType = toMemref.getType(); |
| |
| // Directly rewrite if the type did not change. |
| if (srcType == destType) { |
| rewriter.replaceOp(toMemref, memrefToTensor.getMemref()); |
| return success(); |
| } |
| |
| auto rankedSrcType = llvm::dyn_cast<MemRefType>(srcType); |
| auto rankedDestType = llvm::dyn_cast<MemRefType>(destType); |
| auto unrankedSrcType = llvm::dyn_cast<UnrankedMemRefType>(srcType); |
| |
| // Ranked memref -> Ranked memref cast. |
| if (rankedSrcType && rankedDestType) { |
| FailureOr<Value> replacement = castOrReallocMemRefValue( |
| rewriter, memrefToTensor.getMemref(), rankedDestType, options); |
| if (failed(replacement)) |
| return failure(); |
| |
| rewriter.replaceOp(toMemref, *replacement); |
| return success(); |
| } |
| |
| // Unranked memref -> Ranked memref cast: May require a copy. |
| // TODO: Not implemented at the moment. |
| if (unrankedSrcType && rankedDestType) |
| return failure(); |
| |
| // Unranked memref -> unranked memref cast |
| // Ranked memref -> unranked memref cast: No copy needed. |
| assert(memref::CastOp::areCastCompatible(srcType, destType) && |
| "expected that types are cast compatible"); |
| rewriter.replaceOpWithNewOp<memref::CastOp>(toMemref, destType, |
| memrefToTensor.getMemref()); |
| return success(); |
| } |
| |
| void mlir::bufferization::populateDynamicDimSizes( |
| OpBuilder &b, Location loc, Value shapedValue, |
| SmallVector<Value> &dynamicDims) { |
| auto shapedType = llvm::cast<ShapedType>(shapedValue.getType()); |
| for (int64_t i = 0; i < shapedType.getRank(); ++i) { |
| if (shapedType.isDynamicDim(i)) { |
| if (llvm::isa<MemRefType>(shapedType)) { |
| dynamicDims.push_back(b.create<memref::DimOp>(loc, shapedValue, i)); |
| } else { |
| assert(llvm::isa<RankedTensorType>(shapedType) && "expected tensor"); |
| dynamicDims.push_back(b.create<tensor::DimOp>(loc, shapedValue, i)); |
| } |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AllocTensorOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult AllocTensorOp::bufferize(RewriterBase &rewriter, |
| const BufferizationOptions &options) { |
| OpBuilder::InsertionGuard g(rewriter); |
| Location loc = getLoc(); |
| |
| // Nothing to do for dead AllocTensorOps. |
| if (getOperation()->getUses().empty()) { |
| rewriter.eraseOp(getOperation()); |
| return success(); |
| } |
| |
| // Get "copy" buffer. |
| Value copyBuffer; |
| if (getCopy()) { |
| FailureOr<Value> maybeCopyBuffer = getBuffer(rewriter, getCopy(), options); |
| if (failed(maybeCopyBuffer)) |
| return failure(); |
| copyBuffer = *maybeCopyBuffer; |
| } |
| |
| // Create memory allocation. |
| auto allocType = bufferization::getBufferType(getResult(), options); |
| if (failed(allocType)) |
| return failure(); |
| SmallVector<Value> dynamicDims = getDynamicSizes(); |
| if (getCopy()) { |
| assert(dynamicDims.empty() && "expected either `copy` or `dynamicDims`"); |
| populateDynamicDimSizes(rewriter, loc, copyBuffer, dynamicDims); |
| } |
| FailureOr<Value> alloc = options.createAlloc( |
| rewriter, loc, llvm::cast<MemRefType>(*allocType), dynamicDims); |
| if (failed(alloc)) |
| return failure(); |
| |
| // Create memory copy (if any). |
| if (getCopy()) { |
| if (failed(options.createMemCpy(rewriter, loc, copyBuffer, *alloc))) |
| return failure(); |
| } |
| |
| // Replace op. |
| replaceOpWithBufferizedValues(rewriter, getOperation(), *alloc); |
| |
| return success(); |
| } |
| |
| bool AllocTensorOp::resultBufferizesToMemoryWrite(OpResult opResult, |
| const AnalysisState &state) { |
| // AllocTensorOps do not write unless they have a `copy` value. |
| return static_cast<bool>(getCopy()); |
| } |
| |
| bool AllocTensorOp::bufferizesToMemoryRead(OpOperand &opOperand, |
| const AnalysisState &state) { |
| assert(opOperand.getOperandNumber() == getNumOperands() - 1 && |
| "expected copy operand"); |
| return true; |
| } |
| |
| bool AllocTensorOp::bufferizesToMemoryWrite(OpOperand &opOperand, |
| const AnalysisState &state) { |
| assert(opOperand.getOperandNumber() == getNumOperands() - 1 && |
| "expected copy operand"); |
| return false; |
| } |
| |
| AliasingValueList AllocTensorOp::getAliasingValues(OpOperand &opOperand, |
| const AnalysisState &state) { |
| // This is a new allocation. It does not alias with any other buffer. |
| return {}; |
| } |
| |
| FailureOr<BaseMemRefType> |
| AllocTensorOp::getBufferType(Value value, const BufferizationOptions &options, |
| SmallVector<Value> &invocationStack) { |
| assert(value == getResult() && "invalid value"); |
| |
| // Compute memory space of this allocation. |
| Attribute memorySpace; |
| if (getMemorySpace().has_value()) { |
| memorySpace = *getMemorySpace(); |
| } else if (getCopy()) { |
| auto copyBufferType = |
| bufferization::getBufferType(getCopy(), options, invocationStack); |
| if (failed(copyBufferType)) |
| return failure(); |
| memorySpace = copyBufferType->getMemorySpace(); |
| } else if (auto ms = options.defaultMemorySpaceFn(getType())) { |
| memorySpace = *ms; |
| } else { |
| return getOperation()->emitError("could not infer memory space"); |
| } |
| |
| return getMemRefTypeWithStaticIdentityLayout(getType(), memorySpace); |
| } |
| |
| LogicalResult AllocTensorOp::verify() { |
| if (getCopy() && !getDynamicSizes().empty()) |
| return emitError("dynamic sizes not needed when copying a tensor"); |
| if (!getCopy() && getType().getNumDynamicDims() != |
| static_cast<int64_t>(getDynamicSizes().size())) |
| return emitError("expected ") |
| << getType().getNumDynamicDims() << " dynamic sizes"; |
| if (getCopy() && getCopy().getType() != getType()) |
| return emitError("expected that `copy` and return type match"); |
| return success(); |
| } |
| |
| void AllocTensorOp::build(OpBuilder &builder, OperationState &result, |
| RankedTensorType type, ValueRange dynamicSizes) { |
| build(builder, result, type, dynamicSizes, /*copy=*/Value(), |
| /*size_hint=*/Value(), |
| /*memory_space=*/IntegerAttr()); |
| } |
| |
| void AllocTensorOp::build(OpBuilder &builder, OperationState &result, |
| RankedTensorType type, ValueRange dynamicSizes, |
| Value copy) { |
| build(builder, result, type, dynamicSizes, copy, /*size_hint=*/Value(), |
| /*memory_space=*/IntegerAttr()); |
| } |
| |
| void AllocTensorOp::build(OpBuilder &builder, OperationState &result, |
| TensorType type, ValueRange dynamicSizes, Value copy, |
| IntegerAttr memorySpace) { |
| build(builder, result, type, dynamicSizes, copy, /*size_hint=*/Value(), |
| memorySpace); |
| } |
| |
| namespace { |
| /// Change the type of the result of a `bufferization.alloc_tensor` by making |
| /// the result type statically sized along dimension that in the original |
| /// operation where defined as dynamic, but the size was defined using a |
| /// `constant` op. For example: |
| /// |
| /// %c5 = arith.constant 5: index |
| /// %0 = bufferization.alloc_tensor(%arg0, %c5) : tensor<?x?xf32> |
| /// |
| /// to |
| /// |
| /// %0 = bufferization.alloc_tensor(%arg0) : tensor<?x5xf32> |
| struct ReplaceStaticShapeDims : OpRewritePattern<AllocTensorOp> { |
| using OpRewritePattern<AllocTensorOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(AllocTensorOp op, |
| PatternRewriter &rewriter) const override { |
| if (op.getCopy()) |
| return failure(); |
| SmallVector<int64_t> newShape = llvm::to_vector(op.getType().getShape()); |
| SmallVector<Value> newDynamicSizes; |
| unsigned int dynValCounter = 0; |
| for (int64_t i = 0; i < op.getType().getRank(); ++i) { |
| if (!op.isDynamicDim(i)) |
| continue; |
| Value value = op.getDynamicSizes()[dynValCounter++]; |
| APInt intVal; |
| if (matchPattern(value, m_ConstantInt(&intVal))) { |
| int64_t dim = intVal.getSExtValue(); |
| if (dim >= 0) |
| newShape[i] = intVal.getSExtValue(); |
| else |
| newDynamicSizes.push_back(value); |
| } else { |
| newDynamicSizes.push_back(value); |
| } |
| } |
| RankedTensorType newType = RankedTensorType::get( |
| newShape, op.getType().getElementType(), op.getType().getEncoding()); |
| if (newType == op.getType()) |
| return failure(); |
| auto newOp = rewriter.create<AllocTensorOp>( |
| op.getLoc(), newType, newDynamicSizes, /*copy=*/Value()); |
| rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(), newOp); |
| return success(); |
| } |
| }; |
| |
| struct FoldDimOfAllocTensorOp : public OpRewritePattern<tensor::DimOp> { |
| using OpRewritePattern<tensor::DimOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(tensor::DimOp dimOp, |
| PatternRewriter &rewriter) const override { |
| std::optional<int64_t> maybeConstantIndex = dimOp.getConstantIndex(); |
| auto allocTensorOp = dimOp.getSource().getDefiningOp<AllocTensorOp>(); |
| if (!allocTensorOp || !maybeConstantIndex) |
| return failure(); |
| if (*maybeConstantIndex < 0 || |
| *maybeConstantIndex >= allocTensorOp.getType().getRank()) |
| return failure(); |
| if (!allocTensorOp.getType().isDynamicDim(*maybeConstantIndex)) |
| return failure(); |
| rewriter.replaceOp( |
| dimOp, allocTensorOp.getDynamicSize(rewriter, *maybeConstantIndex)); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| void AllocTensorOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *ctx) { |
| results.add<FoldDimOfAllocTensorOp, ReplaceStaticShapeDims>(ctx); |
| } |
| |
| LogicalResult AllocTensorOp::reifyResultShapes( |
| OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
| auto shapes = llvm::to_vector<4>( |
| llvm::map_range(llvm::seq<int64_t>(0, getType().getRank()), |
| [&](int64_t dim) -> OpFoldResult { |
| if (isDynamicDim(dim)) |
| return getDynamicSize(builder, dim); |
| return builder.getIndexAttr(getStaticSize(dim)); |
| })); |
| reifiedReturnShapes.emplace_back(std::move(shapes)); |
| return success(); |
| } |
| |
| ParseResult AllocTensorOp::parse(OpAsmParser &parser, OperationState &result) { |
| SmallVector<OpAsmParser::UnresolvedOperand> dynamicSizesOperands; |
| if (parser.parseLParen() || parser.parseOperandList(dynamicSizesOperands) || |
| parser.parseRParen()) |
| return failure(); |
| ParseResult copyKeyword = parser.parseOptionalKeyword("copy"); |
| OpAsmParser::UnresolvedOperand copyOperand; |
| if (copyKeyword.succeeded()) |
| if (parser.parseLParen() || parser.parseOperand(copyOperand) || |
| parser.parseRParen()) |
| return failure(); |
| ParseResult sizeHintKeyword = parser.parseOptionalKeyword("size_hint"); |
| OpAsmParser::UnresolvedOperand sizeHintOperand; |
| if (sizeHintKeyword.succeeded()) |
| if (parser.parseEqual() || parser.parseOperand(sizeHintOperand)) |
| return failure(); |
| if (parser.parseOptionalAttrDict(result.attributes) || parser.parseColon()) |
| return failure(); |
| |
| TensorType type; |
| if (parser.parseCustomTypeWithFallback(type)) |
| return failure(); |
| result.addTypes(type); |
| |
| Type indexType = parser.getBuilder().getIndexType(); |
| if (parser.resolveOperands(dynamicSizesOperands, indexType, result.operands)) |
| return failure(); |
| if (copyKeyword.succeeded()) |
| if (parser.resolveOperand(copyOperand, type, result.operands)) |
| return failure(); |
| if (sizeHintKeyword.succeeded()) |
| if (parser.resolveOperand(sizeHintOperand, indexType, result.operands)) |
| return failure(); |
| result.addAttribute(AllocTensorOp::getOperandSegmentSizeAttr(), |
| parser.getBuilder().getDenseI32ArrayAttr( |
| {static_cast<int32_t>(dynamicSizesOperands.size()), |
| static_cast<int32_t>(copyKeyword.succeeded()), |
| static_cast<int32_t>(sizeHintKeyword.succeeded())})); |
| return success(); |
| } |
| |
| void AllocTensorOp::print(OpAsmPrinter &p) { |
| p << "(" << getDynamicSizes() << ")"; |
| if (getCopy()) |
| p << " copy(" << getCopy() << ")"; |
| if (getSizeHint()) |
| p << " size_hint=" << getSizeHint(); |
| p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{ |
| AllocTensorOp::getOperandSegmentSizeAttr()}); |
| p << " : "; |
| auto type = getResult().getType(); |
| if (auto validType = llvm::dyn_cast<::mlir::TensorType>(type)) |
| p.printStrippedAttrOrType(validType); |
| else |
| p << type; |
| } |
| |
| Value AllocTensorOp::getDynamicSize(OpBuilder &b, unsigned idx) { |
| assert(isDynamicDim(idx) && "expected dynamic dim"); |
| if (getCopy()) |
| return b.create<tensor::DimOp>(getLoc(), getCopy(), idx); |
| return getOperand(getIndexOfDynamicSize(idx)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CloneOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult CloneOp::fold(FoldAdaptor adaptor) { |
| return succeeded(memref::foldMemRefCast(*this)) ? getResult() : Value(); |
| } |
| |
| namespace { |
| |
| /// Merge the clone and its source (by converting the clone to a cast) when |
| /// possible. |
| struct SimplifyClones : public OpRewritePattern<CloneOp> { |
| using OpRewritePattern<CloneOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(CloneOp cloneOp, |
| PatternRewriter &rewriter) const override { |
| if (cloneOp.use_empty()) { |
| rewriter.eraseOp(cloneOp); |
| return success(); |
| } |
| |
| Value source = cloneOp.getInput(); |
| if (source.getType() != cloneOp.getType() && |
| !memref::CastOp::areCastCompatible({source.getType()}, |
| {cloneOp.getType()})) |
| return failure(); |
| |
| // Aims to find the dealloc op for the canonical source |
| // which otherwise could prevent removal of unnecessary allocs. |
| Value canonicalSource = source; |
| while (auto iface = dyn_cast_or_null<ViewLikeOpInterface>( |
| canonicalSource.getDefiningOp())) |
| canonicalSource = iface.getViewSource(); |
| |
| std::optional<Operation *> maybeCloneDeallocOp = |
| memref::findDealloc(cloneOp.getOutput()); |
| // Skip if either of them has > 1 deallocate operations. |
| if (!maybeCloneDeallocOp.has_value()) |
| return failure(); |
| std::optional<Operation *> maybeSourceDeallocOp = |
| memref::findDealloc(canonicalSource); |
| if (!maybeSourceDeallocOp.has_value()) |
| return failure(); |
| Operation *cloneDeallocOp = *maybeCloneDeallocOp; |
| Operation *sourceDeallocOp = *maybeSourceDeallocOp; |
| |
| // If both are deallocated in the same block, their in-block lifetimes |
| // might not fully overlap, so we cannot decide which one to drop. |
| if (cloneDeallocOp && sourceDeallocOp && |
| cloneDeallocOp->getBlock() == sourceDeallocOp->getBlock()) |
| return failure(); |
| |
| Block *currentBlock = cloneOp->getBlock(); |
| Operation *redundantDealloc = nullptr; |
| if (cloneDeallocOp && cloneDeallocOp->getBlock() == currentBlock) { |
| redundantDealloc = cloneDeallocOp; |
| } else if (sourceDeallocOp && sourceDeallocOp->getBlock() == currentBlock) { |
| redundantDealloc = sourceDeallocOp; |
| } |
| |
| if (!redundantDealloc) |
| return failure(); |
| |
| // Safety check that there are no other deallocations inbetween |
| // cloneOp and redundantDealloc, as otherwise we might deallocate an alias |
| // of source before the uses of the clone. With alias information, we could |
| // restrict this to only fail of the dealloc's operand is an alias |
| // of the source. |
| for (Operation *pos = cloneOp->getNextNode(); pos != redundantDealloc; |
| pos = pos->getNextNode()) { |
| // Bail if we run out of operations while looking for a deallocation op. |
| if (!pos) |
| return failure(); |
| auto effectInterface = dyn_cast<MemoryEffectOpInterface>(pos); |
| if (!effectInterface) |
| continue; |
| if (effectInterface.hasEffect<MemoryEffects::Free>()) |
| return failure(); |
| } |
| |
| if (source.getType() != cloneOp.getType()) |
| source = rewriter.create<memref::CastOp>(cloneOp.getLoc(), |
| cloneOp.getType(), source); |
| rewriter.replaceOp(cloneOp, source); |
| rewriter.eraseOp(redundantDealloc); |
| return success(); |
| } |
| }; |
| |
| } // namespace |
| |
| void CloneOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<SimplifyClones>(context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DeallocTensorOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult DeallocTensorOp::bufferize(RewriterBase &rewriter, |
| const BufferizationOptions &options) { |
| FailureOr<Value> buffer = getBuffer(rewriter, getTensor(), options); |
| if (failed(buffer)) |
| return failure(); |
| rewriter.create<memref::DeallocOp>(getLoc(), *buffer); |
| rewriter.eraseOp(getOperation()); |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MaterializeInDestinationOp |
| //===----------------------------------------------------------------------===// |
| |
| bool MaterializeInDestinationOp::bufferizesToMemoryRead( |
| OpOperand &opOperand, const AnalysisState &state) { |
| return opOperand == getSourceMutable(); |
| } |
| |
| bool MaterializeInDestinationOp::bufferizesToMemoryWrite( |
| OpOperand &opOperand, const AnalysisState &state) { |
| if (opOperand == getDestMutable()) { |
| assert(isa<TensorType>(getDest().getType()) && "expected tensor type"); |
| return true; |
| } |
| return false; |
| } |
| |
| bool MaterializeInDestinationOp::mustBufferizeInPlace( |
| OpOperand &opOperand, const AnalysisState &state) { |
| // The source is only read and not written, so it always bufferizes in-place |
| // by default. The destination is written and is forced to bufferize in-place |
| // (if it is a tensor). |
| return true; |
| } |
| |
| AliasingValueList |
| MaterializeInDestinationOp::getAliasingValues(OpOperand &opOperand, |
| const AnalysisState &state) { |
| if (opOperand == getDestMutable()) { |
| assert(isa<TensorType>(getDest().getType()) && "expected tensor type"); |
| return {{getOperation()->getResult(0), BufferRelation::Equivalent}}; |
| } |
| return {}; |
| } |
| |
| LogicalResult |
| MaterializeInDestinationOp::bufferize(RewriterBase &rewriter, |
| const BufferizationOptions &options) { |
| bool tensorDest = isa<TensorType>(getDest().getType()); |
| Value buffer; |
| if (tensorDest) { |
| FailureOr<Value> maybeBuffer = getBuffer(rewriter, getDest(), options); |
| if (failed(maybeBuffer)) |
| return failure(); |
| buffer = *maybeBuffer; |
| } else { |
| assert(isa<BaseMemRefType>(getDest().getType()) && "expected memref type"); |
| buffer = getDest(); |
| } |
| auto srcBuffer = getBuffer(rewriter, getSource(), options); |
| if (failed(srcBuffer)) |
| return failure(); |
| if (failed(options.createMemCpy(rewriter, getLoc(), *srcBuffer, buffer))) |
| return failure(); |
| replaceOpWithBufferizedValues(rewriter, getOperation(), |
| tensorDest ? ValueRange(buffer) : ValueRange()); |
| return success(); |
| } |
| |
| bool MaterializeInDestinationOp::bufferizesToElementwiseAccess( |
| const AnalysisState &state, ArrayRef<OpOperand *> opOperands) { |
| // As elements are copied from the "source" buffer to the "dest" buffer, |
| // already copied elements are not read a second time. |
| return true; |
| } |
| |
| LogicalResult MaterializeInDestinationOp::reifyResultShapes( |
| OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
| if (getOperation()->getNumResults() == 1) { |
| assert(isa<TensorType>(getDest().getType()) && "expected tensor type"); |
| reifiedReturnShapes.resize(1, |
| SmallVector<OpFoldResult>(getType().getRank())); |
| reifiedReturnShapes[0] = |
| tensor::getMixedSizes(builder, getLoc(), getDest()); |
| } |
| return success(); |
| } |
| |
| Value MaterializeInDestinationOp::buildSubsetExtraction(OpBuilder &builder, |
| Location loc) { |
| if (isa<TensorType>(getDest().getType())) { |
| // The subset is the entire destination tensor. |
| return getDest(); |
| } |
| |
| // The "restrict" attribute is transferred from this op to the newly created |
| // to_tensor op. If this op does not the "restrict" attribute, the subset |
| // extraction cannot be built because there is no guarantee that there is no |
| // pre-existing "restrict" to_tensor op with the same/an aliasing destination. |
| if (!getRestrict()) |
| return {}; |
| |
| // Build a bufferization.to_tensor op. |
| assert(isa<BaseMemRefType>(getDest().getType()) && "expected memref type"); |
| assert(getRestrict() && |
| "expected that ops with memrefs dest have 'restrict'"); |
| setRestrict(false); |
| return builder.create<ToTensorOp>(loc, getDest(), /*restrict=*/true, |
| getWritable()); |
| } |
| |
| bool MaterializeInDestinationOp::isEquivalentSubset( |
| Value candidate, function_ref<bool(Value, Value)> equivalenceFn) { |
| return equivalenceFn(getDest(), candidate); |
| } |
| |
| SmallVector<Value> |
| MaterializeInDestinationOp::getValuesNeededToBuildSubsetExtraction() { |
| return {getDest()}; |
| } |
| |
| OpOperand &MaterializeInDestinationOp::getSourceOperand() { |
| return getOperation()->getOpOperand(0) /*source*/; |
| } |
| |
| bool MaterializeInDestinationOp::operatesOnEquivalentSubset( |
| SubsetOpInterface subsetOp, |
| function_ref<bool(Value, Value)> equivalenceFn) { |
| return false; |
| } |
| |
| bool MaterializeInDestinationOp::operatesOnDisjointSubset( |
| SubsetOpInterface subsetOp, |
| function_ref<bool(Value, Value)> equivalenceFn) { |
| return false; |
| } |
| |
| LogicalResult MaterializeInDestinationOp::verify() { |
| if (!isa<TensorType, BaseMemRefType>(getDest().getType())) |
| return emitOpError("'dest' must be a tensor or a memref"); |
| if (auto destType = dyn_cast<TensorType>(getDest().getType())) { |
| if (getOperation()->getNumResults() != 1) |
| return emitOpError("tensor 'dest' implies exactly one tensor result"); |
| if (destType != getResult().getType()) |
| return emitOpError("result and 'dest' types must match"); |
| } |
| if (isa<BaseMemRefType>(getDest().getType()) && |
| getOperation()->getNumResults() != 0) |
| return emitOpError("memref 'dest' implies zero results"); |
| if (getRestrict() && !isa<BaseMemRefType>(getDest().getType())) |
| return emitOpError("'restrict' is valid only for memref destinations"); |
| if (getWritable() != isa<BaseMemRefType>(getDest().getType())) |
| return emitOpError("'writable' must be specified if and only if the " |
| "destination is of memref type"); |
| TensorType srcType = getSource().getType(); |
| ShapedType destType = cast<ShapedType>(getDest().getType()); |
| if (srcType.hasRank() != destType.hasRank()) |
| return emitOpError("source/destination shapes are incompatible"); |
| if (srcType.hasRank()) { |
| if (srcType.getRank() != destType.getRank()) |
| return emitOpError("rank mismatch between source and destination shape"); |
| for (auto [src, dest] : |
| llvm::zip(srcType.getShape(), destType.getShape())) { |
| if (src == ShapedType::kDynamic || dest == ShapedType::kDynamic) { |
| // Cannot verify dynamic dimension size. Assume that that they match at |
| // runtime. |
| continue; |
| } |
| if (src != dest) |
| return emitOpError("source/destination shapes are incompatible"); |
| } |
| } |
| return success(); |
| } |
| |
| void MaterializeInDestinationOp::build(OpBuilder &builder, |
| OperationState &state, Value source, |
| Value dest) { |
| auto destTensorType = dyn_cast<TensorType>(dest.getType()); |
| build(builder, state, /*result=*/destTensorType ? destTensorType : Type(), |
| source, dest); |
| } |
| |
| bool MaterializeInDestinationOp::isWritable(Value value, |
| const AnalysisState &state) { |
| return isa<TensorType>(getDest().getType()) ? true : getWritable(); |
| } |
| |
| MutableOperandRange MaterializeInDestinationOp::getDpsInitsMutable() { |
| return getDestMutable(); |
| } |
| |
| void MaterializeInDestinationOp::getEffects( |
| SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
| &effects) { |
| if (isa<BaseMemRefType>(getDest().getType())) |
| effects.emplace_back(MemoryEffects::Write::get(), getDest(), |
| SideEffects::DefaultResource::get()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ToTensorOp |
| //===----------------------------------------------------------------------===// |
| |
| bool ToTensorOp::isWritable(Value value, const AnalysisState &state) { |
| return getWritable(); |
| } |
| |
| OpFoldResult ToTensorOp::fold(FoldAdaptor) { |
| if (auto toMemref = getMemref().getDefiningOp<ToMemrefOp>()) |
| // Approximate alias analysis by conservatively folding only when no there |
| // is no interleaved operation. |
| if (toMemref->getBlock() == this->getOperation()->getBlock() && |
| toMemref->getNextNode() == this->getOperation()) |
| return toMemref.getTensor(); |
| return {}; |
| } |
| |
| namespace { |
| struct DimOfToTensorFolder : public OpRewritePattern<tensor::DimOp> { |
| using OpRewritePattern<tensor::DimOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(tensor::DimOp dimOp, |
| PatternRewriter &rewriter) const override { |
| auto memrefToTensorOp = dimOp.getSource().getDefiningOp<ToTensorOp>(); |
| if (!memrefToTensorOp) |
| return failure(); |
| |
| rewriter.replaceOpWithNewOp<memref::DimOp>( |
| dimOp, memrefToTensorOp.getMemref(), dimOp.getIndex()); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| void ToTensorOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<DimOfToTensorFolder>(context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ToMemrefOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult ToMemrefOp::fold(FoldAdaptor) { |
| if (auto memrefToTensor = getTensor().getDefiningOp<ToTensorOp>()) |
| if (memrefToTensor.getMemref().getType() == getType()) |
| return memrefToTensor.getMemref(); |
| return {}; |
| } |
| |
| namespace { |
| |
| /// Replace tensor.cast + to_memref by to_memref + memref.cast. |
| struct ToMemrefOfCast : public OpRewritePattern<ToMemrefOp> { |
| using OpRewritePattern<ToMemrefOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(ToMemrefOp toMemref, |
| PatternRewriter &rewriter) const final { |
| auto tensorCastOperand = |
| toMemref.getOperand().getDefiningOp<tensor::CastOp>(); |
| if (!tensorCastOperand) |
| return failure(); |
| auto srcTensorType = llvm::dyn_cast<RankedTensorType>( |
| tensorCastOperand.getOperand().getType()); |
| if (!srcTensorType) |
| return failure(); |
| auto memrefType = MemRefType::get(srcTensorType.getShape(), |
| srcTensorType.getElementType()); |
| Value memref = rewriter.create<ToMemrefOp>(toMemref.getLoc(), memrefType, |
| tensorCastOperand.getOperand()); |
| rewriter.replaceOpWithNewOp<memref::CastOp>(toMemref, toMemref.getType(), |
| memref); |
| return success(); |
| } |
| }; |
| |
| /// Canonicalize bufferization.to_tensor + bufferization.to_memref. Insert a |
| /// cast if necessary. |
| struct ToMemrefToTensorFolding : public OpRewritePattern<ToMemrefOp> { |
| using OpRewritePattern<ToMemrefOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(ToMemrefOp toMemref, |
| PatternRewriter &rewriter) const final { |
| BufferizationOptions options; |
| options.bufferAlignment = 0; |
| return foldToMemrefToTensorPair(rewriter, toMemref, options); |
| } |
| }; |
| |
| /// Fold a load on a to_memref operation into an tensor.extract on the |
| /// corresponding tensor. |
| struct LoadOfToMemref : public OpRewritePattern<memref::LoadOp> { |
| using OpRewritePattern<memref::LoadOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(memref::LoadOp load, |
| PatternRewriter &rewriter) const override { |
| auto toMemref = load.getMemref().getDefiningOp<ToMemrefOp>(); |
| if (!toMemref) |
| return failure(); |
| |
| rewriter.replaceOpWithNewOp<tensor::ExtractOp>(load, toMemref.getTensor(), |
| load.getIndices()); |
| return success(); |
| } |
| }; |
| |
| /// Fold dim of a to_memref into the dim of the tensor. |
| struct DimOfCastOp : public OpRewritePattern<memref::DimOp> { |
| using OpRewritePattern<memref::DimOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(memref::DimOp dimOp, |
| PatternRewriter &rewriter) const override { |
| auto castOp = dimOp.getSource().getDefiningOp<ToMemrefOp>(); |
| if (!castOp) |
| return failure(); |
| Value newSource = castOp.getOperand(); |
| rewriter.replaceOpWithNewOp<tensor::DimOp>(dimOp, newSource, |
| dimOp.getIndex()); |
| return success(); |
| } |
| }; |
| |
| } // namespace |
| |
| void ToMemrefOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<DimOfCastOp, LoadOfToMemref, ToMemrefOfCast, |
| ToMemrefToTensorFolding>(context); |
| } |
| |
| LogicalResult ToMemrefOp::bufferize(RewriterBase &rewriter, |
| const BufferizationOptions &options) { |
| // Fold to_memref(to_tensor(x)) to x. Insert a cast if necessary. |
| (void)foldToMemrefToTensorPair(rewriter, *this, options); |
| // Note: The return value of `bufferize` indicates whether there was an error |
| // or not. (And not whether the pattern matched or not.) |
| return success(); |
| } |
| |
| std::optional<Operation *> CloneOp::buildDealloc(OpBuilder &builder, |
| Value alloc) { |
| return builder.create<memref::DeallocOp>(alloc.getLoc(), alloc) |
| .getOperation(); |
| } |
| |
| std::optional<Value> CloneOp::buildClone(OpBuilder &builder, Value alloc) { |
| return builder.create<CloneOp>(alloc.getLoc(), alloc).getResult(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DeallocOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult DeallocOp::inferReturnTypes( |
| MLIRContext *context, std::optional<::mlir::Location> location, |
| ValueRange operands, DictionaryAttr attributes, OpaqueProperties properties, |
| RegionRange regions, SmallVectorImpl<Type> &inferredReturnTypes) { |
| DeallocOpAdaptor adaptor(operands, attributes, properties, regions); |
| inferredReturnTypes = SmallVector<Type>(adaptor.getRetained().size(), |
| IntegerType::get(context, 1)); |
| return success(); |
| } |
| |
| LogicalResult DeallocOp::verify() { |
| if (getMemrefs().size() != getConditions().size()) |
| return emitOpError( |
| "must have the same number of conditions as memrefs to deallocate"); |
| if (getRetained().size() != getUpdatedConditions().size()) |
| return emitOpError("must have the same number of updated conditions " |
| "(results) as retained operands"); |
| return success(); |
| } |
| |
| static LogicalResult updateDeallocIfChanged(DeallocOp deallocOp, |
| ValueRange memrefs, |
| ValueRange conditions, |
| PatternRewriter &rewriter) { |
| if (deallocOp.getMemrefs() == memrefs && |
| deallocOp.getConditions() == conditions) |
| return failure(); |
| |
| rewriter.modifyOpInPlace(deallocOp, [&]() { |
| deallocOp.getMemrefsMutable().assign(memrefs); |
| deallocOp.getConditionsMutable().assign(conditions); |
| }); |
| return success(); |
| } |
| |
| namespace { |
| |
| /// Remove duplicate values in the list of memrefs to be deallocated. We need to |
| /// make sure the corresponding condition value is updated accordingly since |
| /// their two conditions might not cover the same set of cases. In that case, we |
| /// have to combine them (by computing the disjunction of them). |
| /// Example: |
| /// ```mlir |
| /// bufferization.dealloc (%arg0, %arg0 : ...) if (%arg1, %arg2) |
| /// ``` |
| /// is canonicalized to |
| /// ```mlir |
| /// %0 = arith.ori %arg1, %arg2 : i1 |
| /// bufferization.dealloc (%arg0 : memref<2xi32>) if (%0) |
| /// ``` |
| struct DeallocRemoveDuplicateDeallocMemrefs |
| : public OpRewritePattern<DeallocOp> { |
| using OpRewritePattern<DeallocOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(DeallocOp deallocOp, |
| PatternRewriter &rewriter) const override { |
| // Unique memrefs to be deallocated. |
| DenseMap<Value, unsigned> memrefToCondition; |
| SmallVector<Value> newMemrefs, newConditions; |
| for (auto [i, memref, cond] : |
| llvm::enumerate(deallocOp.getMemrefs(), deallocOp.getConditions())) { |
| if (memrefToCondition.count(memref)) { |
| // If the dealloc conditions don't match, we need to make sure that the |
| // dealloc happens on the union of cases. |
| Value &newCond = newConditions[memrefToCondition[memref]]; |
| if (newCond != cond) |
| newCond = |
| rewriter.create<arith::OrIOp>(deallocOp.getLoc(), newCond, cond); |
| } else { |
| memrefToCondition.insert({memref, newConditions.size()}); |
| newMemrefs.push_back(memref); |
| newConditions.push_back(cond); |
| } |
| } |
| |
| // Return failure if we don't change anything such that we don't run into an |
| // infinite loop of pattern applications. |
| return updateDeallocIfChanged(deallocOp, newMemrefs, newConditions, |
| rewriter); |
| } |
| }; |
| |
| /// Remove duplicate values in the list of retained memrefs. We need to make |
| /// sure the corresponding result condition value is replaced properly. |
| /// Example: |
| /// ```mlir |
| /// %0:2 = bufferization.dealloc retain (%arg3, %arg3 : ...) |
| /// ``` |
| /// is canonicalized to |
| /// ```mlir |
| /// %0 = bufferization.dealloc retain (%arg3 : memref<2xi32>) |
| /// ``` |
| struct DeallocRemoveDuplicateRetainedMemrefs |
| : public OpRewritePattern<DeallocOp> { |
| using OpRewritePattern<DeallocOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(DeallocOp deallocOp, |
| PatternRewriter &rewriter) const override { |
| // Unique retained values |
| DenseMap<Value, unsigned> seen; |
| SmallVector<Value> newRetained; |
| SmallVector<unsigned> resultReplacementIdx; |
| unsigned i = 0; |
| for (auto retained : deallocOp.getRetained()) { |
| if (seen.count(retained)) { |
| resultReplacementIdx.push_back(seen[retained]); |
| continue; |
| } |
| |
| seen[retained] = i; |
| newRetained.push_back(retained); |
| resultReplacementIdx.push_back(i++); |
| } |
| |
| // Return failure if we don't change anything such that we don't run into an |
| // infinite loop of pattern applications. |
| if (newRetained.size() == deallocOp.getRetained().size()) |
| return failure(); |
| |
| // We need to create a new op because the number of results is always the |
| // same as the number of condition operands. |
| auto newDeallocOp = |
| rewriter.create<DeallocOp>(deallocOp.getLoc(), deallocOp.getMemrefs(), |
| deallocOp.getConditions(), newRetained); |
| SmallVector<Value> replacements( |
| llvm::map_range(resultReplacementIdx, [&](unsigned idx) { |
| return newDeallocOp.getUpdatedConditions()[idx]; |
| })); |
| rewriter.replaceOp(deallocOp, replacements); |
| return success(); |
| } |
| }; |
| |
| /// Erase deallocation operations where the variadic list of memrefs to |
| /// deallocate is empty. Example: |
| /// ```mlir |
| /// %0 = bufferization.dealloc retain (%arg0: memref<2xi32>) |
| /// ``` |
| struct EraseEmptyDealloc : public OpRewritePattern<DeallocOp> { |
| using OpRewritePattern<DeallocOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(DeallocOp deallocOp, |
| PatternRewriter &rewriter) const override { |
| if (deallocOp.getMemrefs().empty()) { |
| Value constFalse = rewriter.create<arith::ConstantOp>( |
| deallocOp.getLoc(), rewriter.getBoolAttr(false)); |
| rewriter.replaceOp( |
| deallocOp, SmallVector<Value>(deallocOp.getUpdatedConditions().size(), |
| constFalse)); |
| return success(); |
| } |
| return failure(); |
| } |
| }; |
| |
| /// Removes memrefs from the deallocation list if their associated condition is |
| /// always 'false'. |
| /// |
| /// Example: |
| /// ``` |
| /// bufferization.dealloc (%arg0, %arg1 : memref<2xi32>, memref<2xi32>) |
| /// if (%arg2, %false) |
| /// ``` |
| /// becomes |
| /// ``` |
| /// bufferization.dealloc (%arg0 : memref<2xi32>) if (%arg2) |
| /// ``` |
| struct EraseAlwaysFalseDealloc : public OpRewritePattern<DeallocOp> { |
| using OpRewritePattern<DeallocOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(DeallocOp deallocOp, |
| PatternRewriter &rewriter) const override { |
| SmallVector<Value> newMemrefs, newConditions; |
| for (auto [memref, cond] : |
| llvm::zip(deallocOp.getMemrefs(), deallocOp.getConditions())) { |
| if (!matchPattern(cond, m_Zero())) { |
| newMemrefs.push_back(memref); |
| newConditions.push_back(cond); |
| } |
| } |
| |
| return updateDeallocIfChanged(deallocOp, newMemrefs, newConditions, |
| rewriter); |
| } |
| }; |
| |
| /// The `memref.extract_strided_metadata` is often inserted to get the base |
| /// memref if the operand is not already guaranteed to be the result of a memref |
| /// allocation operation. This canonicalization pattern removes this extraction |
| /// operation if the operand is now produced by an allocation operation (e.g., |
| /// due to other canonicalizations simplifying the IR). |
| /// |
| /// Example: |
| /// ```mlir |
| /// %alloc = memref.alloc() : memref<2xi32> |
| /// %base_memref, %offset, %size, %stride = memref.extract_strided_metadata |
| /// %alloc : memref<2xi32> -> memref<i32>, index, index, index |
| /// bufferization.dealloc (%base_memref : memref<i32>) if (%cond) |
| /// ``` |
| /// is canonicalized to |
| /// ```mlir |
| /// %alloc = memref.alloc() : memref<2xi32> |
| /// bufferization.dealloc (%alloc : memref<2xi32>) if (%cond) |
| /// ``` |
| struct SkipExtractMetadataOfAlloc : public OpRewritePattern<DeallocOp> { |
| using OpRewritePattern<DeallocOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(DeallocOp deallocOp, |
| PatternRewriter &rewriter) const override { |
| SmallVector<Value> newMemrefs( |
| llvm::map_range(deallocOp.getMemrefs(), [&](Value memref) { |
| auto extractStridedOp = |
| memref.getDefiningOp<memref::ExtractStridedMetadataOp>(); |
| if (!extractStridedOp) |
| return memref; |
| Value allocMemref = extractStridedOp.getOperand(); |
| auto allocOp = allocMemref.getDefiningOp<MemoryEffectOpInterface>(); |
| if (!allocOp) |
| return memref; |
| if (allocOp.getEffectOnValue<MemoryEffects::Allocate>(allocMemref)) |
| return allocMemref; |
| return memref; |
| })); |
| |
| return updateDeallocIfChanged(deallocOp, newMemrefs, |
| deallocOp.getConditions(), rewriter); |
| } |
| }; |
| |
| /// Removes pairs of `bufferization.dealloc` and alloc operations if there is no |
| /// other user of the allocated value and the allocating operation can be safely |
| /// removed. If the same value is present multiple times, this pattern relies on |
| /// other canonicalization patterns to remove the duplicate first. |
| /// |
| /// Example: |
| /// ```mlir |
| /// %alloc = memref.alloc() : memref<2xi32> |
| /// bufferization.dealloc (%alloc, %arg0, : ...) if (%true, %true) |
| /// ``` |
| /// is canonicalized to |
| /// ```mlir |
| /// bufferization.dealloc (%arg0 : ...) if (%true) |
| /// ``` |
| struct RemoveAllocDeallocPairWhenNoOtherUsers |
| : public OpRewritePattern<DeallocOp> { |
| using OpRewritePattern<DeallocOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(DeallocOp deallocOp, |
| PatternRewriter &rewriter) const override { |
| SmallVector<Value> newMemrefs, newConditions; |
| SmallVector<Operation *> toDelete; |
| for (auto [memref, cond] : |
| llvm::zip(deallocOp.getMemrefs(), deallocOp.getConditions())) { |
| if (auto allocOp = memref.getDefiningOp<MemoryEffectOpInterface>()) { |
| // Check that it is indeed an allocate effect, that the op has no other |
| // side effects (which would not allow us to remove the op), and that |
| // there are no other users. |
| if (allocOp.getEffectOnValue<MemoryEffects::Allocate>(memref) && |
| hasSingleEffect<MemoryEffects::Allocate>(allocOp, memref) && |
| memref.hasOneUse()) { |
| toDelete.push_back(allocOp); |
| continue; |
| } |
| } |
| |
| newMemrefs.push_back(memref); |
| newConditions.push_back(cond); |
| } |
| |
| if (failed(updateDeallocIfChanged(deallocOp, newMemrefs, newConditions, |
| rewriter))) |
| return failure(); |
| |
| for (Operation *op : toDelete) |
| rewriter.eraseOp(op); |
| |
| return success(); |
| } |
| }; |
| |
| } // anonymous namespace |
| |
| void DeallocOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| populateDeallocOpCanonicalizationPatterns(results, context); |
| } |
| |
| void bufferization::populateDeallocOpCanonicalizationPatterns( |
| RewritePatternSet &patterns, MLIRContext *context) { |
| patterns.add<DeallocRemoveDuplicateDeallocMemrefs, |
| DeallocRemoveDuplicateRetainedMemrefs, EraseEmptyDealloc, |
| EraseAlwaysFalseDealloc, SkipExtractMetadataOfAlloc, |
| RemoveAllocDeallocPairWhenNoOtherUsers>(context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TableGen'd op method definitions |
| //===----------------------------------------------------------------------===// |
| |
| #define GET_OP_CLASSES |
| #include "mlir/Dialect/Bufferization/IR/BufferizationOps.cpp.inc" |