| //===- FuzzerCorpus.h - Internal header for the Fuzzer ----------*- C++ -* ===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // fuzzer::InputCorpus | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #ifndef LLVM_FUZZER_CORPUS | 
 | #define LLVM_FUZZER_CORPUS | 
 |  | 
 | #include "FuzzerDataFlowTrace.h" | 
 | #include "FuzzerDefs.h" | 
 | #include "FuzzerIO.h" | 
 | #include "FuzzerRandom.h" | 
 | #include "FuzzerSHA1.h" | 
 | #include "FuzzerTracePC.h" | 
 | #include <algorithm> | 
 | #include <bitset> | 
 | #include <chrono> | 
 | #include <numeric> | 
 | #include <random> | 
 | #include <unordered_set> | 
 |  | 
 | namespace fuzzer { | 
 |  | 
 | struct InputInfo { | 
 |   Unit U;  // The actual input data. | 
 |   std::chrono::microseconds TimeOfUnit; | 
 |   uint8_t Sha1[kSHA1NumBytes];  // Checksum. | 
 |   // Number of features that this input has and no smaller input has. | 
 |   size_t NumFeatures = 0; | 
 |   size_t Tmp = 0; // Used by ValidateFeatureSet. | 
 |   // Stats. | 
 |   size_t NumExecutedMutations = 0; | 
 |   size_t NumSuccessfullMutations = 0; | 
 |   bool NeverReduce = false; | 
 |   bool MayDeleteFile = false; | 
 |   bool Reduced = false; | 
 |   bool HasFocusFunction = false; | 
 |   std::vector<uint32_t> UniqFeatureSet; | 
 |   std::vector<uint8_t> DataFlowTraceForFocusFunction; | 
 |   // Power schedule. | 
 |   bool NeedsEnergyUpdate = false; | 
 |   double Energy = 0.0; | 
 |   double SumIncidence = 0.0; | 
 |   std::vector<std::pair<uint32_t, uint16_t>> FeatureFreqs; | 
 |  | 
 |   // Delete feature Idx and its frequency from FeatureFreqs. | 
 |   bool DeleteFeatureFreq(uint32_t Idx) { | 
 |     if (FeatureFreqs.empty()) | 
 |       return false; | 
 |  | 
 |     // Binary search over local feature frequencies sorted by index. | 
 |     auto Lower = std::lower_bound(FeatureFreqs.begin(), FeatureFreqs.end(), | 
 |                                   std::pair<uint32_t, uint16_t>(Idx, 0)); | 
 |  | 
 |     if (Lower != FeatureFreqs.end() && Lower->first == Idx) { | 
 |       FeatureFreqs.erase(Lower); | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Assign more energy to a high-entropy seed, i.e., that reveals more | 
 |   // information about the globally rare features in the neighborhood of the | 
 |   // seed. Since we do not know the entropy of a seed that has never been | 
 |   // executed we assign fresh seeds maximum entropy and let II->Energy approach | 
 |   // the true entropy from above. If ScalePerExecTime is true, the computed | 
 |   // entropy is scaled based on how fast this input executes compared to the | 
 |   // average execution time of inputs. The faster an input executes, the more | 
 |   // energy gets assigned to the input. | 
 |   void UpdateEnergy(size_t GlobalNumberOfFeatures, bool ScalePerExecTime, | 
 |                     std::chrono::microseconds AverageUnitExecutionTime) { | 
 |     Energy = 0.0; | 
 |     SumIncidence = 0.0; | 
 |  | 
 |     // Apply add-one smoothing to locally discovered features. | 
 |     for (const auto &F : FeatureFreqs) { | 
 |       double LocalIncidence = F.second + 1; | 
 |       Energy -= LocalIncidence * log(LocalIncidence); | 
 |       SumIncidence += LocalIncidence; | 
 |     } | 
 |  | 
 |     // Apply add-one smoothing to locally undiscovered features. | 
 |     //   PreciseEnergy -= 0; // since log(1.0) == 0) | 
 |     SumIncidence += | 
 |         static_cast<double>(GlobalNumberOfFeatures - FeatureFreqs.size()); | 
 |  | 
 |     // Add a single locally abundant feature apply add-one smoothing. | 
 |     double AbdIncidence = static_cast<double>(NumExecutedMutations + 1); | 
 |     Energy -= AbdIncidence * log(AbdIncidence); | 
 |     SumIncidence += AbdIncidence; | 
 |  | 
 |     // Normalize. | 
 |     if (SumIncidence != 0) | 
 |       Energy = Energy / SumIncidence + log(SumIncidence); | 
 |  | 
 |     if (ScalePerExecTime) { | 
 |       // Scaling to favor inputs with lower execution time. | 
 |       uint32_t PerfScore = 100; | 
 |       if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 10) | 
 |         PerfScore = 10; | 
 |       else if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 4) | 
 |         PerfScore = 25; | 
 |       else if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 2) | 
 |         PerfScore = 50; | 
 |       else if (TimeOfUnit.count() * 3 > AverageUnitExecutionTime.count() * 4) | 
 |         PerfScore = 75; | 
 |       else if (TimeOfUnit.count() * 4 < AverageUnitExecutionTime.count()) | 
 |         PerfScore = 300; | 
 |       else if (TimeOfUnit.count() * 3 < AverageUnitExecutionTime.count()) | 
 |         PerfScore = 200; | 
 |       else if (TimeOfUnit.count() * 2 < AverageUnitExecutionTime.count()) | 
 |         PerfScore = 150; | 
 |  | 
 |       Energy *= PerfScore; | 
 |     } | 
 |   } | 
 |  | 
 |   // Increment the frequency of the feature Idx. | 
 |   void UpdateFeatureFrequency(uint32_t Idx) { | 
 |     NeedsEnergyUpdate = true; | 
 |  | 
 |     // The local feature frequencies is an ordered vector of pairs. | 
 |     // If there are no local feature frequencies, push_back preserves order. | 
 |     // Set the feature frequency for feature Idx32 to 1. | 
 |     if (FeatureFreqs.empty()) { | 
 |       FeatureFreqs.push_back(std::pair<uint32_t, uint16_t>(Idx, 1)); | 
 |       return; | 
 |     } | 
 |  | 
 |     // Binary search over local feature frequencies sorted by index. | 
 |     auto Lower = std::lower_bound(FeatureFreqs.begin(), FeatureFreqs.end(), | 
 |                                   std::pair<uint32_t, uint16_t>(Idx, 0)); | 
 |  | 
 |     // If feature Idx32 already exists, increment its frequency. | 
 |     // Otherwise, insert a new pair right after the next lower index. | 
 |     if (Lower != FeatureFreqs.end() && Lower->first == Idx) { | 
 |       Lower->second++; | 
 |     } else { | 
 |       FeatureFreqs.insert(Lower, std::pair<uint32_t, uint16_t>(Idx, 1)); | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | struct EntropicOptions { | 
 |   bool Enabled; | 
 |   size_t NumberOfRarestFeatures; | 
 |   size_t FeatureFrequencyThreshold; | 
 |   bool ScalePerExecTime; | 
 | }; | 
 |  | 
 | class InputCorpus { | 
 |   static const uint32_t kFeatureSetSize = 1 << 21; | 
 |   static const uint8_t kMaxMutationFactor = 20; | 
 |   static const size_t kSparseEnergyUpdates = 100; | 
 |  | 
 |   size_t NumExecutedMutations = 0; | 
 |  | 
 |   EntropicOptions Entropic; | 
 |  | 
 | public: | 
 |   InputCorpus(const std::string &OutputCorpus, EntropicOptions Entropic) | 
 |       : Entropic(Entropic), OutputCorpus(OutputCorpus) { | 
 |     memset(InputSizesPerFeature, 0, sizeof(InputSizesPerFeature)); | 
 |     memset(SmallestElementPerFeature, 0, sizeof(SmallestElementPerFeature)); | 
 |   } | 
 |   ~InputCorpus() { | 
 |     for (auto II : Inputs) | 
 |       delete II; | 
 |   } | 
 |   size_t size() const { return Inputs.size(); } | 
 |   size_t SizeInBytes() const { | 
 |     size_t Res = 0; | 
 |     for (auto II : Inputs) | 
 |       Res += II->U.size(); | 
 |     return Res; | 
 |   } | 
 |   size_t NumActiveUnits() const { | 
 |     size_t Res = 0; | 
 |     for (auto II : Inputs) | 
 |       Res += !II->U.empty(); | 
 |     return Res; | 
 |   } | 
 |   size_t MaxInputSize() const { | 
 |     size_t Res = 0; | 
 |     for (auto II : Inputs) | 
 |         Res = std::max(Res, II->U.size()); | 
 |     return Res; | 
 |   } | 
 |   void IncrementNumExecutedMutations() { NumExecutedMutations++; } | 
 |  | 
 |   size_t NumInputsThatTouchFocusFunction() { | 
 |     return std::count_if(Inputs.begin(), Inputs.end(), [](const InputInfo *II) { | 
 |       return II->HasFocusFunction; | 
 |     }); | 
 |   } | 
 |  | 
 |   size_t NumInputsWithDataFlowTrace() { | 
 |     return std::count_if(Inputs.begin(), Inputs.end(), [](const InputInfo *II) { | 
 |       return !II->DataFlowTraceForFocusFunction.empty(); | 
 |     }); | 
 |   } | 
 |  | 
 |   bool empty() const { return Inputs.empty(); } | 
 |   const Unit &operator[] (size_t Idx) const { return Inputs[Idx]->U; } | 
 |   InputInfo *AddToCorpus(const Unit &U, size_t NumFeatures, bool MayDeleteFile, | 
 |                          bool HasFocusFunction, bool NeverReduce, | 
 |                          std::chrono::microseconds TimeOfUnit, | 
 |                          const std::vector<uint32_t> &FeatureSet, | 
 |                          const DataFlowTrace &DFT, const InputInfo *BaseII) { | 
 |     assert(!U.empty()); | 
 |     if (FeatureDebug) | 
 |       Printf("ADD_TO_CORPUS %zd NF %zd\n", Inputs.size(), NumFeatures); | 
 |     // Inputs.size() is cast to uint32_t below. | 
 |     assert(Inputs.size() < std::numeric_limits<uint32_t>::max()); | 
 |     Inputs.push_back(new InputInfo()); | 
 |     InputInfo &II = *Inputs.back(); | 
 |     II.U = U; | 
 |     II.NumFeatures = NumFeatures; | 
 |     II.NeverReduce = NeverReduce; | 
 |     II.TimeOfUnit = TimeOfUnit; | 
 |     II.MayDeleteFile = MayDeleteFile; | 
 |     II.UniqFeatureSet = FeatureSet; | 
 |     II.HasFocusFunction = HasFocusFunction; | 
 |     // Assign maximal energy to the new seed. | 
 |     II.Energy = RareFeatures.empty() ? 1.0 : log(RareFeatures.size()); | 
 |     II.SumIncidence = static_cast<double>(RareFeatures.size()); | 
 |     II.NeedsEnergyUpdate = false; | 
 |     std::sort(II.UniqFeatureSet.begin(), II.UniqFeatureSet.end()); | 
 |     ComputeSHA1(U.data(), U.size(), II.Sha1); | 
 |     auto Sha1Str = Sha1ToString(II.Sha1); | 
 |     Hashes.insert(Sha1Str); | 
 |     if (HasFocusFunction) | 
 |       if (auto V = DFT.Get(Sha1Str)) | 
 |         II.DataFlowTraceForFocusFunction = *V; | 
 |     // This is a gross heuristic. | 
 |     // Ideally, when we add an element to a corpus we need to know its DFT. | 
 |     // But if we don't, we'll use the DFT of its base input. | 
 |     if (II.DataFlowTraceForFocusFunction.empty() && BaseII) | 
 |       II.DataFlowTraceForFocusFunction = BaseII->DataFlowTraceForFocusFunction; | 
 |     DistributionNeedsUpdate = true; | 
 |     PrintCorpus(); | 
 |     // ValidateFeatureSet(); | 
 |     return &II; | 
 |   } | 
 |  | 
 |   // Debug-only | 
 |   void PrintUnit(const Unit &U) { | 
 |     if (!FeatureDebug) return; | 
 |     for (uint8_t C : U) { | 
 |       if (C != 'F' && C != 'U' && C != 'Z') | 
 |         C = '.'; | 
 |       Printf("%c", C); | 
 |     } | 
 |   } | 
 |  | 
 |   // Debug-only | 
 |   void PrintFeatureSet(const std::vector<uint32_t> &FeatureSet) { | 
 |     if (!FeatureDebug) return; | 
 |     Printf("{"); | 
 |     for (uint32_t Feature: FeatureSet) | 
 |       Printf("%u,", Feature); | 
 |     Printf("}"); | 
 |   } | 
 |  | 
 |   // Debug-only | 
 |   void PrintCorpus() { | 
 |     if (!FeatureDebug) return; | 
 |     Printf("======= CORPUS:\n"); | 
 |     int i = 0; | 
 |     for (auto II : Inputs) { | 
 |       if (std::find(II->U.begin(), II->U.end(), 'F') != II->U.end()) { | 
 |         Printf("[%2d] ", i); | 
 |         Printf("%s sz=%zd ", Sha1ToString(II->Sha1).c_str(), II->U.size()); | 
 |         PrintUnit(II->U); | 
 |         Printf(" "); | 
 |         PrintFeatureSet(II->UniqFeatureSet); | 
 |         Printf("\n"); | 
 |       } | 
 |       i++; | 
 |     } | 
 |   } | 
 |  | 
 |   void Replace(InputInfo *II, const Unit &U, | 
 |                std::chrono::microseconds TimeOfUnit) { | 
 |     assert(II->U.size() > U.size()); | 
 |     Hashes.erase(Sha1ToString(II->Sha1)); | 
 |     DeleteFile(*II); | 
 |     ComputeSHA1(U.data(), U.size(), II->Sha1); | 
 |     Hashes.insert(Sha1ToString(II->Sha1)); | 
 |     II->U = U; | 
 |     II->Reduced = true; | 
 |     II->TimeOfUnit = TimeOfUnit; | 
 |     DistributionNeedsUpdate = true; | 
 |   } | 
 |  | 
 |   bool HasUnit(const Unit &U) { return Hashes.count(Hash(U)); } | 
 |   bool HasUnit(const std::string &H) { return Hashes.count(H); } | 
 |   InputInfo &ChooseUnitToMutate(Random &Rand) { | 
 |     InputInfo &II = *Inputs[ChooseUnitIdxToMutate(Rand)]; | 
 |     assert(!II.U.empty()); | 
 |     return II; | 
 |   } | 
 |  | 
 |   InputInfo &ChooseUnitToCrossOverWith(Random &Rand, bool UniformDist) { | 
 |     if (!UniformDist) { | 
 |       return ChooseUnitToMutate(Rand); | 
 |     } | 
 |     InputInfo &II = *Inputs[Rand(Inputs.size())]; | 
 |     assert(!II.U.empty()); | 
 |     return II; | 
 |   } | 
 |  | 
 |   // Returns an index of random unit from the corpus to mutate. | 
 |   size_t ChooseUnitIdxToMutate(Random &Rand) { | 
 |     UpdateCorpusDistribution(Rand); | 
 |     size_t Idx = static_cast<size_t>(CorpusDistribution(Rand)); | 
 |     assert(Idx < Inputs.size()); | 
 |     return Idx; | 
 |   } | 
 |  | 
 |   void PrintStats() { | 
 |     for (size_t i = 0; i < Inputs.size(); i++) { | 
 |       const auto &II = *Inputs[i]; | 
 |       Printf("  [% 3zd %s] sz: % 5zd runs: % 5zd succ: % 5zd focus: %d\n", i, | 
 |              Sha1ToString(II.Sha1).c_str(), II.U.size(), | 
 |              II.NumExecutedMutations, II.NumSuccessfullMutations, | 
 |              II.HasFocusFunction); | 
 |     } | 
 |   } | 
 |  | 
 |   void PrintFeatureSet() { | 
 |     for (size_t i = 0; i < kFeatureSetSize; i++) { | 
 |       if(size_t Sz = GetFeature(i)) | 
 |         Printf("[%zd: id %zd sz%zd] ", i, SmallestElementPerFeature[i], Sz); | 
 |     } | 
 |     Printf("\n\t"); | 
 |     for (size_t i = 0; i < Inputs.size(); i++) | 
 |       if (size_t N = Inputs[i]->NumFeatures) | 
 |         Printf(" %zd=>%zd ", i, N); | 
 |     Printf("\n"); | 
 |   } | 
 |  | 
 |   void DeleteFile(const InputInfo &II) { | 
 |     if (!OutputCorpus.empty() && II.MayDeleteFile) | 
 |       RemoveFile(DirPlusFile(OutputCorpus, Sha1ToString(II.Sha1))); | 
 |   } | 
 |  | 
 |   void DeleteInput(size_t Idx) { | 
 |     InputInfo &II = *Inputs[Idx]; | 
 |     DeleteFile(II); | 
 |     Unit().swap(II.U); | 
 |     II.Energy = 0.0; | 
 |     II.NeedsEnergyUpdate = false; | 
 |     DistributionNeedsUpdate = true; | 
 |     if (FeatureDebug) | 
 |       Printf("EVICTED %zd\n", Idx); | 
 |   } | 
 |  | 
 |   void AddRareFeature(uint32_t Idx) { | 
 |     // Maintain *at least* TopXRarestFeatures many rare features | 
 |     // and all features with a frequency below ConsideredRare. | 
 |     // Remove all other features. | 
 |     while (RareFeatures.size() > Entropic.NumberOfRarestFeatures && | 
 |            FreqOfMostAbundantRareFeature > Entropic.FeatureFrequencyThreshold) { | 
 |  | 
 |       // Find most and second most abbundant feature. | 
 |       uint32_t MostAbundantRareFeatureIndices[2] = {RareFeatures[0], | 
 |                                                     RareFeatures[0]}; | 
 |       size_t Delete = 0; | 
 |       for (size_t i = 0; i < RareFeatures.size(); i++) { | 
 |         uint32_t Idx2 = RareFeatures[i]; | 
 |         if (GlobalFeatureFreqs[Idx2] >= | 
 |             GlobalFeatureFreqs[MostAbundantRareFeatureIndices[0]]) { | 
 |           MostAbundantRareFeatureIndices[1] = MostAbundantRareFeatureIndices[0]; | 
 |           MostAbundantRareFeatureIndices[0] = Idx2; | 
 |           Delete = i; | 
 |         } | 
 |       } | 
 |  | 
 |       // Remove most abundant rare feature. | 
 |       IsRareFeature[Delete] = false; | 
 |       RareFeatures[Delete] = RareFeatures.back(); | 
 |       RareFeatures.pop_back(); | 
 |  | 
 |       for (auto II : Inputs) { | 
 |         if (II->DeleteFeatureFreq(MostAbundantRareFeatureIndices[0])) | 
 |           II->NeedsEnergyUpdate = true; | 
 |       } | 
 |  | 
 |       // Set 2nd most abundant as the new most abundant feature count. | 
 |       FreqOfMostAbundantRareFeature = | 
 |           GlobalFeatureFreqs[MostAbundantRareFeatureIndices[1]]; | 
 |     } | 
 |  | 
 |     // Add rare feature, handle collisions, and update energy. | 
 |     RareFeatures.push_back(Idx); | 
 |     IsRareFeature[Idx] = true; | 
 |     GlobalFeatureFreqs[Idx] = 0; | 
 |     for (auto II : Inputs) { | 
 |       II->DeleteFeatureFreq(Idx); | 
 |  | 
 |       // Apply add-one smoothing to this locally undiscovered feature. | 
 |       // Zero energy seeds will never be fuzzed and remain zero energy. | 
 |       if (II->Energy > 0.0) { | 
 |         II->SumIncidence += 1; | 
 |         II->Energy += log(II->SumIncidence) / II->SumIncidence; | 
 |       } | 
 |     } | 
 |  | 
 |     DistributionNeedsUpdate = true; | 
 |   } | 
 |  | 
 |   bool AddFeature(size_t Idx, uint32_t NewSize, bool Shrink) { | 
 |     assert(NewSize); | 
 |     Idx = Idx % kFeatureSetSize; | 
 |     uint32_t OldSize = GetFeature(Idx); | 
 |     if (OldSize == 0 || (Shrink && OldSize > NewSize)) { | 
 |       if (OldSize > 0) { | 
 |         size_t OldIdx = SmallestElementPerFeature[Idx]; | 
 |         InputInfo &II = *Inputs[OldIdx]; | 
 |         assert(II.NumFeatures > 0); | 
 |         II.NumFeatures--; | 
 |         if (II.NumFeatures == 0) | 
 |           DeleteInput(OldIdx); | 
 |       } else { | 
 |         NumAddedFeatures++; | 
 |         if (Entropic.Enabled) | 
 |           AddRareFeature((uint32_t)Idx); | 
 |       } | 
 |       NumUpdatedFeatures++; | 
 |       if (FeatureDebug) | 
 |         Printf("ADD FEATURE %zd sz %d\n", Idx, NewSize); | 
 |       // Inputs.size() is guaranteed to be less than UINT32_MAX by AddToCorpus. | 
 |       SmallestElementPerFeature[Idx] = static_cast<uint32_t>(Inputs.size()); | 
 |       InputSizesPerFeature[Idx] = NewSize; | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Increment frequency of feature Idx globally and locally. | 
 |   void UpdateFeatureFrequency(InputInfo *II, size_t Idx) { | 
 |     uint32_t Idx32 = Idx % kFeatureSetSize; | 
 |  | 
 |     // Saturated increment. | 
 |     if (GlobalFeatureFreqs[Idx32] == 0xFFFF) | 
 |       return; | 
 |     uint16_t Freq = GlobalFeatureFreqs[Idx32]++; | 
 |  | 
 |     // Skip if abundant. | 
 |     if (Freq > FreqOfMostAbundantRareFeature || !IsRareFeature[Idx32]) | 
 |       return; | 
 |  | 
 |     // Update global frequencies. | 
 |     if (Freq == FreqOfMostAbundantRareFeature) | 
 |       FreqOfMostAbundantRareFeature++; | 
 |  | 
 |     // Update local frequencies. | 
 |     if (II) | 
 |       II->UpdateFeatureFrequency(Idx32); | 
 |   } | 
 |  | 
 |   size_t NumFeatures() const { return NumAddedFeatures; } | 
 |   size_t NumFeatureUpdates() const { return NumUpdatedFeatures; } | 
 |  | 
 | private: | 
 |  | 
 |   static const bool FeatureDebug = false; | 
 |  | 
 |   uint32_t GetFeature(size_t Idx) const { return InputSizesPerFeature[Idx]; } | 
 |  | 
 |   void ValidateFeatureSet() { | 
 |     if (FeatureDebug) | 
 |       PrintFeatureSet(); | 
 |     for (size_t Idx = 0; Idx < kFeatureSetSize; Idx++) | 
 |       if (GetFeature(Idx)) | 
 |         Inputs[SmallestElementPerFeature[Idx]]->Tmp++; | 
 |     for (auto II: Inputs) { | 
 |       if (II->Tmp != II->NumFeatures) | 
 |         Printf("ZZZ %zd %zd\n", II->Tmp, II->NumFeatures); | 
 |       assert(II->Tmp == II->NumFeatures); | 
 |       II->Tmp = 0; | 
 |     } | 
 |   } | 
 |  | 
 |   // Updates the probability distribution for the units in the corpus. | 
 |   // Must be called whenever the corpus or unit weights are changed. | 
 |   // | 
 |   // Hypothesis: inputs that maximize information about globally rare features | 
 |   // are interesting. | 
 |   void UpdateCorpusDistribution(Random &Rand) { | 
 |     // Skip update if no seeds or rare features were added/deleted. | 
 |     // Sparse updates for local change of feature frequencies, | 
 |     // i.e., randomly do not skip. | 
 |     if (!DistributionNeedsUpdate && | 
 |         (!Entropic.Enabled || Rand(kSparseEnergyUpdates))) | 
 |       return; | 
 |  | 
 |     DistributionNeedsUpdate = false; | 
 |  | 
 |     size_t N = Inputs.size(); | 
 |     assert(N); | 
 |     Intervals.resize(N + 1); | 
 |     Weights.resize(N); | 
 |     std::iota(Intervals.begin(), Intervals.end(), 0); | 
 |  | 
 |     std::chrono::microseconds AverageUnitExecutionTime(0); | 
 |     for (auto II : Inputs) { | 
 |       AverageUnitExecutionTime += II->TimeOfUnit; | 
 |     } | 
 |     AverageUnitExecutionTime /= N; | 
 |  | 
 |     bool VanillaSchedule = true; | 
 |     if (Entropic.Enabled) { | 
 |       for (auto II : Inputs) { | 
 |         if (II->NeedsEnergyUpdate && II->Energy != 0.0) { | 
 |           II->NeedsEnergyUpdate = false; | 
 |           II->UpdateEnergy(RareFeatures.size(), Entropic.ScalePerExecTime, | 
 |                            AverageUnitExecutionTime); | 
 |         } | 
 |       } | 
 |  | 
 |       for (size_t i = 0; i < N; i++) { | 
 |  | 
 |         if (Inputs[i]->NumFeatures == 0) { | 
 |           // If the seed doesn't represent any features, assign zero energy. | 
 |           Weights[i] = 0.; | 
 |         } else if (Inputs[i]->NumExecutedMutations / kMaxMutationFactor > | 
 |                    NumExecutedMutations / Inputs.size()) { | 
 |           // If the seed was fuzzed a lot more than average, assign zero energy. | 
 |           Weights[i] = 0.; | 
 |         } else { | 
 |           // Otherwise, simply assign the computed energy. | 
 |           Weights[i] = Inputs[i]->Energy; | 
 |         } | 
 |  | 
 |         // If energy for all seeds is zero, fall back to vanilla schedule. | 
 |         if (Weights[i] > 0.0) | 
 |           VanillaSchedule = false; | 
 |       } | 
 |     } | 
 |  | 
 |     if (VanillaSchedule) { | 
 |       for (size_t i = 0; i < N; i++) | 
 |         Weights[i] = | 
 |             Inputs[i]->NumFeatures | 
 |                 ? static_cast<double>((i + 1) * | 
 |                                       (Inputs[i]->HasFocusFunction ? 1000 : 1)) | 
 |                 : 0.; | 
 |     } | 
 |  | 
 |     if (FeatureDebug) { | 
 |       for (size_t i = 0; i < N; i++) | 
 |         Printf("%zd ", Inputs[i]->NumFeatures); | 
 |       Printf("SCORE\n"); | 
 |       for (size_t i = 0; i < N; i++) | 
 |         Printf("%f ", Weights[i]); | 
 |       Printf("Weights\n"); | 
 |     } | 
 |     CorpusDistribution = std::piecewise_constant_distribution<double>( | 
 |         Intervals.begin(), Intervals.end(), Weights.begin()); | 
 |   } | 
 |   std::piecewise_constant_distribution<double> CorpusDistribution; | 
 |  | 
 |   std::vector<double> Intervals; | 
 |   std::vector<double> Weights; | 
 |  | 
 |   std::unordered_set<std::string> Hashes; | 
 |   std::vector<InputInfo *> Inputs; | 
 |  | 
 |   size_t NumAddedFeatures = 0; | 
 |   size_t NumUpdatedFeatures = 0; | 
 |   uint32_t InputSizesPerFeature[kFeatureSetSize]; | 
 |   uint32_t SmallestElementPerFeature[kFeatureSetSize]; | 
 |  | 
 |   bool DistributionNeedsUpdate = true; | 
 |   uint16_t FreqOfMostAbundantRareFeature = 0; | 
 |   uint16_t GlobalFeatureFreqs[kFeatureSetSize] = {}; | 
 |   std::vector<uint32_t> RareFeatures; | 
 |   std::bitset<kFeatureSetSize> IsRareFeature; | 
 |  | 
 |   std::string OutputCorpus; | 
 | }; | 
 |  | 
 | }  // namespace fuzzer | 
 |  | 
 | #endif  // LLVM_FUZZER_CORPUS |