| //===----------------------------------------------------------------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include <clc/clc.h> | 
 | #include <clc/clcmacro.h> | 
 | #include <clc/math/math.h> | 
 |  | 
 | /* | 
 |  * ==================================================== | 
 |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
 |  * | 
 |  * Developed at SunPro, a Sun Microsystems, Inc. business. | 
 |  * Permission to use, copy, modify, and distribute this | 
 |  * software is freely granted, provided that this notice | 
 |  * is preserved. | 
 |  * ==================================================== | 
 |  */ | 
 |  | 
 | #define erx_f   8.4506291151e-01f        /* 0x3f58560b */ | 
 |  | 
 | // Coefficients for approximation to  erf on [0, 0.84375] | 
 |  | 
 | #define efx   1.2837916613e-01f        /* 0x3e0375d4 */ | 
 | #define efx8  1.0270333290e+00f        /* 0x3f8375d4 */ | 
 |  | 
 | #define pp0   1.2837916613e-01f        /* 0x3e0375d4 */ | 
 | #define pp1  -3.2504209876e-01f        /* 0xbea66beb */ | 
 | #define pp2  -2.8481749818e-02f        /* 0xbce9528f */ | 
 | #define pp3  -5.7702702470e-03f        /* 0xbbbd1489 */ | 
 | #define pp4  -2.3763017452e-05f        /* 0xb7c756b1 */ | 
 | #define qq1   3.9791721106e-01f        /* 0x3ecbbbce */ | 
 | #define qq2   6.5022252500e-02f        /* 0x3d852a63 */ | 
 | #define qq3   5.0813062117e-03f        /* 0x3ba68116 */ | 
 | #define qq4   1.3249473704e-04f        /* 0x390aee49 */ | 
 | #define qq5  -3.9602282413e-06f        /* 0xb684e21a */ | 
 |  | 
 | // Coefficients for approximation to  erf  in [0.84375, 1.25] | 
 |  | 
 | #define pa0  -2.3621185683e-03f        /* 0xbb1acdc6 */ | 
 | #define pa1   4.1485610604e-01f        /* 0x3ed46805 */ | 
 | #define pa2  -3.7220788002e-01f        /* 0xbebe9208 */ | 
 | #define pa3   3.1834661961e-01f        /* 0x3ea2fe54 */ | 
 | #define pa4  -1.1089469492e-01f        /* 0xbde31cc2 */ | 
 | #define pa5   3.5478305072e-02f        /* 0x3d1151b3 */ | 
 | #define pa6  -2.1663755178e-03f        /* 0xbb0df9c0 */ | 
 | #define qa1   1.0642088205e-01f        /* 0x3dd9f331 */ | 
 | #define qa2   5.4039794207e-01f        /* 0x3f0a5785 */ | 
 | #define qa3   7.1828655899e-02f        /* 0x3d931ae7 */ | 
 | #define qa4   1.2617121637e-01f        /* 0x3e013307 */ | 
 | #define qa5   1.3637083583e-02f        /* 0x3c5f6e13 */ | 
 | #define qa6   1.1984500103e-02f        /* 0x3c445aa3 */ | 
 |  | 
 | // Coefficients for approximation to  erfc in [1.25, 1/0.35] | 
 |  | 
 | #define ra0  -9.8649440333e-03f        /* 0xbc21a093 */ | 
 | #define ra1  -6.9385856390e-01f        /* 0xbf31a0b7 */ | 
 | #define ra2  -1.0558626175e+01f        /* 0xc128f022 */ | 
 | #define ra3  -6.2375331879e+01f        /* 0xc2798057 */ | 
 | #define ra4  -1.6239666748e+02f        /* 0xc322658c */ | 
 | #define ra5  -1.8460508728e+02f        /* 0xc3389ae7 */ | 
 | #define ra6  -8.1287437439e+01f        /* 0xc2a2932b */ | 
 | #define ra7  -9.8143291473e+00f        /* 0xc11d077e */ | 
 | #define sa1   1.9651271820e+01f        /* 0x419d35ce */ | 
 | #define sa2   1.3765776062e+02f        /* 0x4309a863 */ | 
 | #define sa3   4.3456588745e+02f        /* 0x43d9486f */ | 
 | #define sa4   6.4538726807e+02f        /* 0x442158c9 */ | 
 | #define sa5   4.2900814819e+02f        /* 0x43d6810b */ | 
 | #define sa6   1.0863500214e+02f        /* 0x42d9451f */ | 
 | #define sa7   6.5702495575e+00f        /* 0x40d23f7c */ | 
 | #define sa8  -6.0424413532e-02f        /* 0xbd777f97 */ | 
 |  | 
 | // Coefficients for approximation to  erfc in [1/0.35, 28] | 
 |  | 
 | #define rb0  -9.8649431020e-03f        /* 0xbc21a092 */ | 
 | #define rb1  -7.9928326607e-01f        /* 0xbf4c9dd4 */ | 
 | #define rb2  -1.7757955551e+01f        /* 0xc18e104b */ | 
 | #define rb3  -1.6063638306e+02f        /* 0xc320a2ea */ | 
 | #define rb4  -6.3756646729e+02f        /* 0xc41f6441 */ | 
 | #define rb5  -1.0250950928e+03f        /* 0xc480230b */ | 
 | #define rb6  -4.8351919556e+02f        /* 0xc3f1c275 */ | 
 | #define sb1   3.0338060379e+01f        /* 0x41f2b459 */ | 
 | #define sb2   3.2579251099e+02f        /* 0x43a2e571 */ | 
 | #define sb3   1.5367296143e+03f        /* 0x44c01759 */ | 
 | #define sb4   3.1998581543e+03f        /* 0x4547fdbb */ | 
 | #define sb5   2.5530502930e+03f        /* 0x451f90ce */ | 
 | #define sb6   4.7452853394e+02f        /* 0x43ed43a7 */ | 
 | #define sb7  -2.2440952301e+01f        /* 0xc1b38712 */ | 
 |  | 
 | _CLC_OVERLOAD _CLC_DEF float erfc(float x) { | 
 |     int hx = as_int(x); | 
 |     int ix = hx & 0x7fffffff; | 
 |     float absx = as_float(ix); | 
 |  | 
 |     // Argument for polys | 
 |     float x2 = absx * absx; | 
 |     float t = 1.0f / x2; | 
 |     float tt = absx - 1.0f; | 
 |     t = absx < 1.25f ? tt : t; | 
 |     t = absx < 0.84375f ? x2 : t; | 
 |  | 
 |     // Evaluate polys | 
 |     float tu, tv, u, v; | 
 |  | 
 |     u = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, rb6, rb5), rb4), rb3), rb2), rb1), rb0); | 
 |     v = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, sb7, sb6), sb5), sb4), sb3), sb2), sb1); | 
 |  | 
 |     tu = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, ra7, ra6), ra5), ra4), ra3), ra2), ra1), ra0); | 
 |     tv = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, sa8, sa7), sa6), sa5), sa4), sa3), sa2), sa1); | 
 |     u = absx < 0x1.6db6dap+1f ? tu : u; | 
 |     v = absx < 0x1.6db6dap+1f ? tv : v; | 
 |  | 
 |     tu = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, pa6, pa5), pa4), pa3), pa2), pa1), pa0); | 
 |     tv = mad(t, mad(t, mad(t, mad(t, mad(t, qa6, qa5), qa4), qa3), qa2), qa1); | 
 |     u = absx < 1.25f ? tu : u; | 
 |     v = absx < 1.25f ? tv : v; | 
 |  | 
 |     tu = mad(t, mad(t, mad(t, mad(t, pp4, pp3), pp2), pp1), pp0); | 
 |     tv = mad(t, mad(t, mad(t, mad(t, qq5, qq4), qq3), qq2), qq1); | 
 |     u = absx < 0.84375f ? tu : u; | 
 |     v = absx < 0.84375f ? tv : v; | 
 |  | 
 |     v = mad(t, v, 1.0f); | 
 |  | 
 |     float q = MATH_DIVIDE(u, v); | 
 |  | 
 |     float ret = 0.0f; | 
 |  | 
 |     float z = as_float(ix & 0xfffff000); | 
 |     float r = exp(-z * z) * exp(mad(z - absx, z + absx, q)); | 
 |     r *= 0x1.23ba94p-1f; // exp(-0.5625) | 
 |     r = MATH_DIVIDE(r, absx); | 
 |     t = 2.0f - r; | 
 |     r = x < 0.0f ? t : r; | 
 |     ret = absx < 28.0f ? r : ret; | 
 |  | 
 |     r = 1.0f - erx_f - q; | 
 |     t = erx_f + q + 1.0f; | 
 |     r = x < 0.0f ? t : r; | 
 |     ret = absx < 1.25f ? r : ret; | 
 |  | 
 |     r = 0.5f - mad(x, q, x - 0.5f); | 
 |     ret = absx < 0.84375f ? r : ret; | 
 |  | 
 |     ret = x < -6.0f ? 2.0f : ret; | 
 |  | 
 |     ret = isnan(x) ? x : ret; | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, erfc, float); | 
 |  | 
 | #ifdef cl_khr_fp64 | 
 |  | 
 | #pragma OPENCL EXTENSION cl_khr_fp64 : enable | 
 |  | 
 | /* | 
 |  * ==================================================== | 
 |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
 |  * | 
 |  * Developed at SunPro, a Sun Microsystems, Inc. business. | 
 |  * Permission to use, copy, modify, and distribute this | 
 |  * software is freely granted, provided that this notice | 
 |  * is preserved. | 
 |  * ==================================================== | 
 |  */ | 
 |  | 
 | /* double erf(double x) | 
 |  * double erfc(double x) | 
 |  *                             x | 
 |  *                      2      |\ | 
 |  *     erf(x)  =  ---------  | exp(-t*t)dt | 
 |  *                    sqrt(pi) \| | 
 |  *                             0 | 
 |  * | 
 |  *     erfc(x) =  1-erf(x) | 
 |  *  Note that | 
 |  *                erf(-x) = -erf(x) | 
 |  *                erfc(-x) = 2 - erfc(x) | 
 |  * | 
 |  * Method: | 
 |  *        1. For |x| in [0, 0.84375] | 
 |  *            erf(x)  = x + x*R(x^2) | 
 |  *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25] | 
 |  *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375] | 
 |  *           where R = P/Q where P is an odd poly of degree 8 and | 
 |  *           Q is an odd poly of degree 10. | 
 |  *                                                 -57.90 | 
 |  *                        | R - (erf(x)-x)/x | <= 2 | 
 |  * | 
 |  * | 
 |  *           Remark. The formula is derived by noting | 
 |  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) | 
 |  *           and that | 
 |  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688 | 
 |  *           is close to one. The interval is chosen because the fix | 
 |  *           point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is | 
 |  *           near 0.6174), and by some experiment, 0.84375 is chosen to | 
 |  *            guarantee the error is less than one ulp for erf. | 
 |  * | 
 |  *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and | 
 |  *         c = 0.84506291151 rounded to single (24 bits) | 
 |  *                 erf(x)  = sign(x) * (c  + P1(s)/Q1(s)) | 
 |  *                 erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0 | 
 |  *                          1+(c+P1(s)/Q1(s))    if x < 0 | 
 |  *                 |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 | 
 |  *           Remark: here we use the taylor series expansion at x=1. | 
 |  *                erf(1+s) = erf(1) + s*Poly(s) | 
 |  *                         = 0.845.. + P1(s)/Q1(s) | 
 |  *           That is, we use rational approximation to approximate | 
 |  *                        erf(1+s) - (c = (single)0.84506291151) | 
 |  *           Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] | 
 |  *           where | 
 |  *                P1(s) = degree 6 poly in s | 
 |  *                Q1(s) = degree 6 poly in s | 
 |  * | 
 |  *      3. For x in [1.25,1/0.35(~2.857143)], | 
 |  *                 erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) | 
 |  *                 erf(x)  = 1 - erfc(x) | 
 |  *           where | 
 |  *                R1(z) = degree 7 poly in z, (z=1/x^2) | 
 |  *                S1(z) = degree 8 poly in z | 
 |  * | 
 |  *      4. For x in [1/0.35,28] | 
 |  *                 erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 | 
 |  *                        = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 | 
 |  *                        = 2.0 - tiny                (if x <= -6) | 
 |  *                 erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else | 
 |  *                 erf(x)  = sign(x)*(1.0 - tiny) | 
 |  *           where | 
 |  *                R2(z) = degree 6 poly in z, (z=1/x^2) | 
 |  *                S2(z) = degree 7 poly in z | 
 |  * | 
 |  *      Note1: | 
 |  *           To compute exp(-x*x-0.5625+R/S), let s be a single | 
 |  *           precision number and s := x; then | 
 |  *                -x*x = -s*s + (s-x)*(s+x) | 
 |  *                exp(-x*x-0.5626+R/S) = | 
 |  *                        exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); | 
 |  *      Note2: | 
 |  *           Here 4 and 5 make use of the asymptotic series | 
 |  *                          exp(-x*x) | 
 |  *                erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) | 
 |  *                          x*sqrt(pi) | 
 |  *           We use rational approximation to approximate | 
 |  *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 | 
 |  *           Here is the error bound for R1/S1 and R2/S2 | 
 |  *              |R1/S1 - f(x)|  < 2**(-62.57) | 
 |  *              |R2/S2 - f(x)|  < 2**(-61.52) | 
 |  * | 
 |  *      5. For inf > x >= 28 | 
 |  *                 erf(x)  = sign(x) *(1 - tiny)  (raise inexact) | 
 |  *                 erfc(x) = tiny*tiny (raise underflow) if x > 0 | 
 |  *                        = 2 - tiny if x<0 | 
 |  * | 
 |  *      7. Special case: | 
 |  *                 erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1, | 
 |  *                 erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, | 
 |  *                   erfc/erf(NaN) is NaN | 
 |  */ | 
 |  | 
 | #define AU0 -9.86494292470009928597e-03 | 
 | #define AU1 -7.99283237680523006574e-01 | 
 | #define AU2 -1.77579549177547519889e+01 | 
 | #define AU3 -1.60636384855821916062e+02 | 
 | #define AU4 -6.37566443368389627722e+02 | 
 | #define AU5 -1.02509513161107724954e+03 | 
 | #define AU6 -4.83519191608651397019e+02 | 
 |  | 
 | #define AV0  3.03380607434824582924e+01 | 
 | #define AV1  3.25792512996573918826e+02 | 
 | #define AV2  1.53672958608443695994e+03 | 
 | #define AV3  3.19985821950859553908e+03 | 
 | #define AV4  2.55305040643316442583e+03 | 
 | #define AV5  4.74528541206955367215e+02 | 
 | #define AV6 -2.24409524465858183362e+01 | 
 |  | 
 | #define BU0 -9.86494403484714822705e-03 | 
 | #define BU1 -6.93858572707181764372e-01 | 
 | #define BU2 -1.05586262253232909814e+01 | 
 | #define BU3 -6.23753324503260060396e+01 | 
 | #define BU4 -1.62396669462573470355e+02 | 
 | #define BU5 -1.84605092906711035994e+02 | 
 | #define BU6 -8.12874355063065934246e+01 | 
 | #define BU7 -9.81432934416914548592e+00 | 
 |  | 
 | #define BV0  1.96512716674392571292e+01 | 
 | #define BV1  1.37657754143519042600e+02 | 
 | #define BV2  4.34565877475229228821e+02 | 
 | #define BV3  6.45387271733267880336e+02 | 
 | #define BV4  4.29008140027567833386e+02 | 
 | #define BV5  1.08635005541779435134e+02 | 
 | #define BV6  6.57024977031928170135e+00 | 
 | #define BV7 -6.04244152148580987438e-02 | 
 |  | 
 | #define CU0 -2.36211856075265944077e-03 | 
 | #define CU1  4.14856118683748331666e-01 | 
 | #define CU2 -3.72207876035701323847e-01 | 
 | #define CU3  3.18346619901161753674e-01 | 
 | #define CU4 -1.10894694282396677476e-01 | 
 | #define CU5  3.54783043256182359371e-02 | 
 | #define CU6 -2.16637559486879084300e-03 | 
 |  | 
 | #define CV0 1.06420880400844228286e-01 | 
 | #define CV1 5.40397917702171048937e-01 | 
 | #define CV2 7.18286544141962662868e-02 | 
 | #define CV3 1.26171219808761642112e-01 | 
 | #define CV4 1.36370839120290507362e-02 | 
 | #define CV5 1.19844998467991074170e-02 | 
 |  | 
 | #define DU0  1.28379167095512558561e-01 | 
 | #define DU1 -3.25042107247001499370e-01 | 
 | #define DU2 -2.84817495755985104766e-02 | 
 | #define DU3 -5.77027029648944159157e-03 | 
 | #define DU4 -2.37630166566501626084e-05 | 
 |  | 
 | #define DV0  3.97917223959155352819e-01 | 
 | #define DV1  6.50222499887672944485e-02 | 
 | #define DV2  5.08130628187576562776e-03 | 
 | #define DV3  1.32494738004321644526e-04 | 
 | #define DV4 -3.96022827877536812320e-06 | 
 |  | 
 | _CLC_OVERLOAD _CLC_DEF double erfc(double x) { | 
 |     long lx = as_long(x); | 
 |     long ax = lx & 0x7fffffffffffffffL; | 
 |     double absx = as_double(ax); | 
 |     int xneg = lx != ax; | 
 |  | 
 |     // Poly arg | 
 |     double x2 = x * x; | 
 |     double xm1 = absx - 1.0; | 
 |     double t = 1.0 / x2; | 
 |     t = absx < 1.25 ? xm1 : t; | 
 |     t = absx < 0.84375 ? x2 : t; | 
 |  | 
 |  | 
 |     // Evaluate rational poly | 
 |     // XXX Need to evaluate if we can grab the 14 coefficients from a | 
 |     // table faster than evaluating 3 pairs of polys | 
 |     double tu, tv, u, v; | 
 |  | 
 |     // |x| < 28 | 
 |     u = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, AU6, AU5), AU4), AU3), AU2), AU1), AU0); | 
 |     v = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, AV6, AV5), AV4), AV3), AV2), AV1), AV0); | 
 |  | 
 |     tu = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, BU7, BU6), BU5), BU4), BU3), BU2), BU1), BU0); | 
 |     tv = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, BV7, BV6), BV5), BV4), BV3), BV2), BV1), BV0); | 
 |     u = absx < 0x1.6db6dp+1 ? tu : u; | 
 |     v = absx < 0x1.6db6dp+1 ? tv : v; | 
 |  | 
 |     tu = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, CU6, CU5), CU4), CU3), CU2), CU1), CU0); | 
 |     tv = fma(t, fma(t, fma(t, fma(t, fma(t, CV5, CV4), CV3), CV2), CV1), CV0); | 
 |     u = absx < 1.25 ? tu : u; | 
 |     v = absx < 1.25 ? tv : v; | 
 |  | 
 |     tu = fma(t, fma(t, fma(t, fma(t, DU4, DU3), DU2), DU1), DU0); | 
 |     tv = fma(t, fma(t, fma(t, fma(t, DV4, DV3), DV2), DV1), DV0); | 
 |     u = absx < 0.84375 ? tu : u; | 
 |     v = absx < 0.84375 ? tv : v; | 
 |  | 
 |     v = fma(t, v, 1.0); | 
 |     double q = u / v; | 
 |  | 
 |  | 
 |     // Evaluate return value | 
 |  | 
 |     // |x| < 28 | 
 |     double z = as_double(ax & 0xffffffff00000000UL); | 
 |     double ret = exp(-z * z - 0.5625) * exp((z - absx) * (z + absx) + q) / absx; | 
 |     t = 2.0 - ret; | 
 |     ret = xneg ? t : ret; | 
 |  | 
 |     const double erx = 8.45062911510467529297e-01; | 
 |     z = erx + q + 1.0; | 
 |     t = 1.0 - erx - q; | 
 |     t = xneg ? z : t; | 
 |     ret = absx < 1.25 ? t : ret; | 
 |  | 
 |     // z = 1.0 - fma(x, q, x); | 
 |     // t = 0.5 - fma(x, q, x - 0.5); | 
 |     // t = xneg == 1 | absx < 0.25 ? z : t; | 
 |     t = fma(-x, q, 1.0 - x); | 
 |     ret = absx < 0.84375 ? t : ret; | 
 |  | 
 |     ret = x >= 28.0 ? 0.0 : ret; | 
 |     ret = x <= -6.0 ? 2.0 : ret; | 
 |     ret = ax > 0x7ff0000000000000UL ? x : ret; | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, erfc, double); | 
 |  | 
 | #ifdef cl_khr_fp16 | 
 |  | 
 | #pragma OPENCL EXTENSION cl_khr_fp16 : enable | 
 |  | 
 | _CLC_OVERLOAD _CLC_DEF half erfc(half h) { | 
 |     return (half)erfc((float)h); | 
 | } | 
 |  | 
 | _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, half, erfc, half); | 
 |  | 
 | #endif | 
 |  | 
 | #endif |