| //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a basic region store model. In this model, we do have field |
| // sensitivity. But we assume nothing about the heap shape. So recursive data |
| // structures are largely ignored. Basically we do 1-limiting analysis. |
| // Parameter pointers are assumed with no aliasing. Pointee objects of |
| // parameters are created lazily. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/ASTMatchers/ASTMatchFinder.h" |
| #include "clang/Analysis/Analyses/LiveVariables.h" |
| #include "clang/Analysis/AnalysisDeclContext.h" |
| #include "clang/Basic/JsonSupport.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" |
| #include "llvm/ADT/ImmutableMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/TimeProfiler.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <optional> |
| #include <utility> |
| |
| using namespace clang; |
| using namespace ento; |
| |
| //===----------------------------------------------------------------------===// |
| // Representation of binding keys. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class BindingKey { |
| public: |
| enum Kind { Default = 0x0, Direct = 0x1 }; |
| private: |
| enum { Symbolic = 0x2 }; |
| |
| llvm::PointerIntPair<const MemRegion *, 2> P; |
| uint64_t Data; |
| |
| /// Create a key for a binding to region \p r, which has a symbolic offset |
| /// from region \p Base. |
| explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k) |
| : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) { |
| assert(r && Base && "Must have known regions."); |
| assert(getConcreteOffsetRegion() == Base && "Failed to store base region"); |
| } |
| |
| /// Create a key for a binding at \p offset from base region \p r. |
| explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k) |
| : P(r, k), Data(offset) { |
| assert(r && "Must have known regions."); |
| assert(getOffset() == offset && "Failed to store offset"); |
| assert((r == r->getBaseRegion() || |
| isa<ObjCIvarRegion, CXXDerivedObjectRegion>(r)) && |
| "Not a base"); |
| } |
| |
| public: |
| bool isDirect() const { return P.getInt() & Direct; } |
| bool isDefault() const { return !isDirect(); } |
| bool hasSymbolicOffset() const { return P.getInt() & Symbolic; } |
| |
| const MemRegion *getRegion() const { return P.getPointer(); } |
| uint64_t getOffset() const { |
| assert(!hasSymbolicOffset()); |
| return Data; |
| } |
| |
| const SubRegion *getConcreteOffsetRegion() const { |
| assert(hasSymbolicOffset()); |
| return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data)); |
| } |
| |
| const MemRegion *getBaseRegion() const { |
| if (hasSymbolicOffset()) |
| return getConcreteOffsetRegion()->getBaseRegion(); |
| return getRegion()->getBaseRegion(); |
| } |
| |
| void Profile(llvm::FoldingSetNodeID& ID) const { |
| ID.AddPointer(P.getOpaqueValue()); |
| ID.AddInteger(Data); |
| } |
| |
| static BindingKey Make(const MemRegion *R, Kind k); |
| |
| bool operator<(const BindingKey &X) const { |
| if (P.getOpaqueValue() < X.P.getOpaqueValue()) |
| return true; |
| if (P.getOpaqueValue() > X.P.getOpaqueValue()) |
| return false; |
| return Data < X.Data; |
| } |
| |
| bool operator==(const BindingKey &X) const { |
| return P.getOpaqueValue() == X.P.getOpaqueValue() && |
| Data == X.Data; |
| } |
| |
| LLVM_DUMP_METHOD void dump() const; |
| }; |
| |
| std::string locDescr(Loc L) { |
| std::string S; |
| llvm::raw_string_ostream OS(S); |
| L.dumpToStream(OS); |
| return OS.str(); |
| } |
| } // end anonymous namespace |
| |
| BindingKey BindingKey::Make(const MemRegion *R, Kind k) { |
| const RegionOffset &RO = R->getAsOffset(); |
| if (RO.hasSymbolicOffset()) |
| return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k); |
| |
| return BindingKey(RO.getRegion(), RO.getOffset(), k); |
| } |
| |
| namespace llvm { |
| static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) { |
| Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default") |
| << "\", \"offset\": "; |
| |
| if (!K.hasSymbolicOffset()) |
| Out << K.getOffset(); |
| else |
| Out << "null"; |
| |
| return Out; |
| } |
| |
| } // namespace llvm |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void BindingKey::dump() const { llvm::errs() << *this; } |
| #endif |
| |
| //===----------------------------------------------------------------------===// |
| // Actual Store type. |
| //===----------------------------------------------------------------------===// |
| |
| typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings; |
| typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef; |
| typedef std::pair<BindingKey, SVal> BindingPair; |
| |
| typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings> |
| RegionBindings; |
| |
| namespace { |
| class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *, |
| ClusterBindings> { |
| ClusterBindings::Factory *CBFactory; |
| |
| // This flag indicates whether the current bindings are within the analysis |
| // that has started from main(). It affects how we perform loads from |
| // global variables that have initializers: if we have observed the |
| // program execution from the start and we know that these variables |
| // have not been overwritten yet, we can be sure that their initializers |
| // are still relevant. This flag never gets changed when the bindings are |
| // updated, so it could potentially be moved into RegionStoreManager |
| // (as if it's the same bindings but a different loading procedure) |
| // however that would have made the manager needlessly stateful. |
| bool IsMainAnalysis; |
| |
| public: |
| typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings> |
| ParentTy; |
| |
| RegionBindingsRef(ClusterBindings::Factory &CBFactory, |
| const RegionBindings::TreeTy *T, |
| RegionBindings::TreeTy::Factory *F, |
| bool IsMainAnalysis) |
| : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F), |
| CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {} |
| |
| RegionBindingsRef(const ParentTy &P, |
| ClusterBindings::Factory &CBFactory, |
| bool IsMainAnalysis) |
| : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P), |
| CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {} |
| |
| RegionBindingsRef add(key_type_ref K, data_type_ref D) const { |
| return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D), |
| *CBFactory, IsMainAnalysis); |
| } |
| |
| RegionBindingsRef remove(key_type_ref K) const { |
| return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K), |
| *CBFactory, IsMainAnalysis); |
| } |
| |
| RegionBindingsRef addBinding(BindingKey K, SVal V) const; |
| |
| RegionBindingsRef addBinding(const MemRegion *R, |
| BindingKey::Kind k, SVal V) const; |
| |
| const SVal *lookup(BindingKey K) const; |
| const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const; |
| using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup; |
| |
| RegionBindingsRef removeBinding(BindingKey K); |
| |
| RegionBindingsRef removeBinding(const MemRegion *R, |
| BindingKey::Kind k); |
| |
| RegionBindingsRef removeBinding(const MemRegion *R) { |
| return removeBinding(R, BindingKey::Direct). |
| removeBinding(R, BindingKey::Default); |
| } |
| |
| std::optional<SVal> getDirectBinding(const MemRegion *R) const; |
| |
| /// getDefaultBinding - Returns an SVal* representing an optional default |
| /// binding associated with a region and its subregions. |
| std::optional<SVal> getDefaultBinding(const MemRegion *R) const; |
| |
| /// Return the internal tree as a Store. |
| Store asStore() const { |
| llvm::PointerIntPair<Store, 1, bool> Ptr = { |
| asImmutableMap().getRootWithoutRetain(), IsMainAnalysis}; |
| return reinterpret_cast<Store>(Ptr.getOpaqueValue()); |
| } |
| |
| bool isMainAnalysis() const { |
| return IsMainAnalysis; |
| } |
| |
| void printJson(raw_ostream &Out, const char *NL = "\n", |
| unsigned int Space = 0, bool IsDot = false) const { |
| using namespace llvm; |
| DenseMap<const MemRegion *, std::string> StringifyCache; |
| auto ToString = [&StringifyCache](const MemRegion *R) { |
| auto [Place, Inserted] = StringifyCache.try_emplace(R); |
| if (!Inserted) |
| return Place->second; |
| std::string Res; |
| raw_string_ostream OS(Res); |
| OS << R; |
| Place->second = Res; |
| return Res; |
| }; |
| |
| using Cluster = |
| std::pair<const MemRegion *, ImmutableMap<BindingKey, SVal>>; |
| using Binding = std::pair<BindingKey, SVal>; |
| |
| const auto MemSpaceBeforeRegionName = [&ToString](const Cluster *L, |
| const Cluster *R) { |
| if (isa<MemSpaceRegion>(L->first) && !isa<MemSpaceRegion>(R->first)) |
| return true; |
| if (!isa<MemSpaceRegion>(L->first) && isa<MemSpaceRegion>(R->first)) |
| return false; |
| return ToString(L->first) < ToString(R->first); |
| }; |
| |
| const auto SymbolicBeforeOffset = [&ToString](const BindingKey &L, |
| const BindingKey &R) { |
| if (L.hasSymbolicOffset() && !R.hasSymbolicOffset()) |
| return true; |
| if (!L.hasSymbolicOffset() && R.hasSymbolicOffset()) |
| return false; |
| if (L.hasSymbolicOffset() && R.hasSymbolicOffset()) |
| return ToString(L.getRegion()) < ToString(R.getRegion()); |
| return L.getOffset() < R.getOffset(); |
| }; |
| |
| const auto DefaultBindingBeforeDirectBindings = |
| [&SymbolicBeforeOffset](const Binding *LPtr, const Binding *RPtr) { |
| const BindingKey &L = LPtr->first; |
| const BindingKey &R = RPtr->first; |
| if (L.isDefault() && !R.isDefault()) |
| return true; |
| if (!L.isDefault() && R.isDefault()) |
| return false; |
| assert(L.isDefault() == R.isDefault()); |
| return SymbolicBeforeOffset(L, R); |
| }; |
| |
| const auto AddrOf = [](const auto &Item) { return &Item; }; |
| |
| std::vector<const Cluster *> SortedClusters; |
| SortedClusters.reserve(std::distance(begin(), end())); |
| append_range(SortedClusters, map_range(*this, AddrOf)); |
| llvm::sort(SortedClusters, MemSpaceBeforeRegionName); |
| |
| for (auto [Idx, C] : llvm::enumerate(SortedClusters)) { |
| const auto &[BaseRegion, Bindings] = *C; |
| Indent(Out, Space, IsDot) |
| << "{ \"cluster\": \"" << BaseRegion << "\", \"pointer\": \"" |
| << (const void *)BaseRegion << "\", \"items\": [" << NL; |
| |
| std::vector<const Binding *> SortedBindings; |
| SortedBindings.reserve(std::distance(Bindings.begin(), Bindings.end())); |
| append_range(SortedBindings, map_range(Bindings, AddrOf)); |
| llvm::sort(SortedBindings, DefaultBindingBeforeDirectBindings); |
| |
| ++Space; |
| for (auto [Idx, B] : llvm::enumerate(SortedBindings)) { |
| const auto &[Key, Value] = *B; |
| Indent(Out, Space, IsDot) << "{ " << Key << ", \"value\": "; |
| Value.printJson(Out, /*AddQuotes=*/true); |
| Out << " }"; |
| if (Idx != SortedBindings.size() - 1) |
| Out << ','; |
| Out << NL; |
| } |
| --Space; |
| Indent(Out, Space, IsDot) << "]}"; |
| if (Idx != SortedClusters.size() - 1) |
| Out << ','; |
| Out << NL; |
| } |
| } |
| |
| LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); } |
| }; |
| } // end anonymous namespace |
| |
| typedef const RegionBindingsRef& RegionBindingsConstRef; |
| |
| std::optional<SVal> |
| RegionBindingsRef::getDirectBinding(const MemRegion *R) const { |
| const SVal *V = lookup(R, BindingKey::Direct); |
| return V ? std::optional<SVal>(*V) : std::nullopt; |
| } |
| |
| std::optional<SVal> |
| RegionBindingsRef::getDefaultBinding(const MemRegion *R) const { |
| const SVal *V = lookup(R, BindingKey::Default); |
| return V ? std::optional<SVal>(*V) : std::nullopt; |
| } |
| |
| RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const { |
| const MemRegion *Base = K.getBaseRegion(); |
| |
| const ClusterBindings *ExistingCluster = lookup(Base); |
| ClusterBindings Cluster = |
| (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap()); |
| |
| ClusterBindings NewCluster = CBFactory->add(Cluster, K, V); |
| return add(Base, NewCluster); |
| } |
| |
| |
| RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R, |
| BindingKey::Kind k, |
| SVal V) const { |
| return addBinding(BindingKey::Make(R, k), V); |
| } |
| |
| const SVal *RegionBindingsRef::lookup(BindingKey K) const { |
| const ClusterBindings *Cluster = lookup(K.getBaseRegion()); |
| if (!Cluster) |
| return nullptr; |
| return Cluster->lookup(K); |
| } |
| |
| const SVal *RegionBindingsRef::lookup(const MemRegion *R, |
| BindingKey::Kind k) const { |
| return lookup(BindingKey::Make(R, k)); |
| } |
| |
| RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) { |
| const MemRegion *Base = K.getBaseRegion(); |
| const ClusterBindings *Cluster = lookup(Base); |
| if (!Cluster) |
| return *this; |
| |
| ClusterBindings NewCluster = CBFactory->remove(*Cluster, K); |
| if (NewCluster.isEmpty()) |
| return remove(Base); |
| return add(Base, NewCluster); |
| } |
| |
| RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R, |
| BindingKey::Kind k){ |
| return removeBinding(BindingKey::Make(R, k)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Main RegionStore logic. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class InvalidateRegionsWorker; |
| |
| class RegionStoreManager : public StoreManager { |
| public: |
| RegionBindings::Factory RBFactory; |
| mutable ClusterBindings::Factory CBFactory; |
| |
| typedef std::vector<SVal> SValListTy; |
| private: |
| typedef llvm::DenseMap<const LazyCompoundValData *, |
| SValListTy> LazyBindingsMapTy; |
| LazyBindingsMapTy LazyBindingsMap; |
| |
| /// The largest number of fields a struct can have and still be |
| /// considered "small". |
| /// |
| /// This is currently used to decide whether or not it is worth "forcing" a |
| /// LazyCompoundVal on bind. |
| /// |
| /// This is controlled by 'region-store-small-struct-limit' option. |
| /// To disable all small-struct-dependent behavior, set the option to "0". |
| unsigned SmallStructLimit; |
| |
| /// The largest number of element an array can have and still be |
| /// considered "small". |
| /// |
| /// This is currently used to decide whether or not it is worth "forcing" a |
| /// LazyCompoundVal on bind. |
| /// |
| /// This is controlled by 'region-store-small-struct-limit' option. |
| /// To disable all small-struct-dependent behavior, set the option to "0". |
| unsigned SmallArrayLimit; |
| |
| /// A helper used to populate the work list with the given set of |
| /// regions. |
| void populateWorkList(InvalidateRegionsWorker &W, |
| ArrayRef<SVal> Values, |
| InvalidatedRegions *TopLevelRegions); |
| |
| public: |
| RegionStoreManager(ProgramStateManager &mgr) |
| : StoreManager(mgr), RBFactory(mgr.getAllocator()), |
| CBFactory(mgr.getAllocator()), SmallStructLimit(0), SmallArrayLimit(0) { |
| ExprEngine &Eng = StateMgr.getOwningEngine(); |
| AnalyzerOptions &Options = Eng.getAnalysisManager().options; |
| SmallStructLimit = Options.RegionStoreSmallStructLimit; |
| SmallArrayLimit = Options.RegionStoreSmallArrayLimit; |
| } |
| |
| /// setImplicitDefaultValue - Set the default binding for the provided |
| /// MemRegion to the value implicitly defined for compound literals when |
| /// the value is not specified. |
| RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B, |
| const MemRegion *R, QualType T); |
| |
| /// ArrayToPointer - Emulates the "decay" of an array to a pointer |
| /// type. 'Array' represents the lvalue of the array being decayed |
| /// to a pointer, and the returned SVal represents the decayed |
| /// version of that lvalue (i.e., a pointer to the first element of |
| /// the array). This is called by ExprEngine when evaluating |
| /// casts from arrays to pointers. |
| SVal ArrayToPointer(Loc Array, QualType ElementTy) override; |
| |
| /// Creates the Store that correctly represents memory contents before |
| /// the beginning of the analysis of the given top-level stack frame. |
| StoreRef getInitialStore(const LocationContext *InitLoc) override { |
| bool IsMainAnalysis = false; |
| if (const auto *FD = dyn_cast<FunctionDecl>(InitLoc->getDecl())) |
| IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus; |
| return StoreRef(RegionBindingsRef( |
| RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory), |
| CBFactory, IsMainAnalysis).asStore(), *this); |
| } |
| |
| //===-------------------------------------------------------------------===// |
| // Binding values to regions. |
| //===-------------------------------------------------------------------===// |
| RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K, const Stmt *S, |
| unsigned Count, |
| const LocationContext *LCtx, |
| RegionBindingsRef B, |
| InvalidatedRegions *Invalidated); |
| |
| StoreRef invalidateRegions(Store store, ArrayRef<SVal> Values, const Stmt *S, |
| unsigned Count, const LocationContext *LCtx, |
| const CallEvent *Call, InvalidatedSymbols &IS, |
| RegionAndSymbolInvalidationTraits &ITraits, |
| InvalidatedRegions *Invalidated, |
| InvalidatedRegions *InvalidatedTopLevel) override; |
| |
| bool scanReachableSymbols(Store S, const MemRegion *R, |
| ScanReachableSymbols &Callbacks) override; |
| |
| RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B, |
| const SubRegion *R); |
| std::optional<SVal> |
| getConstantValFromConstArrayInitializer(RegionBindingsConstRef B, |
| const ElementRegion *R); |
| std::optional<SVal> |
| getSValFromInitListExpr(const InitListExpr *ILE, |
| const SmallVector<uint64_t, 2> &ConcreteOffsets, |
| QualType ElemT); |
| SVal getSValFromStringLiteral(const StringLiteral *SL, uint64_t Offset, |
| QualType ElemT); |
| |
| public: // Part of public interface to class. |
| |
| StoreRef Bind(Store store, Loc LV, SVal V) override { |
| return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this); |
| } |
| |
| RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V); |
| |
| // BindDefaultInitial is only used to initialize a region with |
| // a default value. |
| StoreRef BindDefaultInitial(Store store, const MemRegion *R, |
| SVal V) override { |
| RegionBindingsRef B = getRegionBindings(store); |
| // Use other APIs when you have to wipe the region that was initialized |
| // earlier. |
| assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) && |
| "Double initialization!"); |
| B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V); |
| return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this); |
| } |
| |
| // BindDefaultZero is used for zeroing constructors that may accidentally |
| // overwrite existing bindings. |
| StoreRef BindDefaultZero(Store store, const MemRegion *R) override { |
| // FIXME: The offsets of empty bases can be tricky because of |
| // of the so called "empty base class optimization". |
| // If a base class has been optimized out |
| // we should not try to create a binding, otherwise we should. |
| // Unfortunately, at the moment ASTRecordLayout doesn't expose |
| // the actual sizes of the empty bases |
| // and trying to infer them from offsets/alignments |
| // seems to be error-prone and non-trivial because of the trailing padding. |
| // As a temporary mitigation we don't create bindings for empty bases. |
| if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R)) |
| if (BR->getDecl()->isEmpty()) |
| return StoreRef(store, *this); |
| |
| RegionBindingsRef B = getRegionBindings(store); |
| SVal V = svalBuilder.makeZeroVal(Ctx.CharTy); |
| B = removeSubRegionBindings(B, cast<SubRegion>(R)); |
| B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V); |
| return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this); |
| } |
| |
| /// Attempt to extract the fields of \p LCV and bind them to the struct region |
| /// \p R. |
| /// |
| /// This path is used when it seems advantageous to "force" loading the values |
| /// within a LazyCompoundVal to bind memberwise to the struct region, rather |
| /// than using a Default binding at the base of the entire region. This is a |
| /// heuristic attempting to avoid building long chains of LazyCompoundVals. |
| /// |
| /// \returns The updated store bindings, or \c std::nullopt if binding |
| /// non-lazily would be too expensive. |
| std::optional<RegionBindingsRef> |
| tryBindSmallStruct(RegionBindingsConstRef B, const TypedValueRegion *R, |
| const RecordDecl *RD, nonloc::LazyCompoundVal LCV); |
| |
| /// BindStruct - Bind a compound value to a structure. |
| RegionBindingsRef bindStruct(RegionBindingsConstRef B, |
| const TypedValueRegion* R, SVal V); |
| |
| /// BindVector - Bind a compound value to a vector. |
| RegionBindingsRef bindVector(RegionBindingsConstRef B, |
| const TypedValueRegion* R, SVal V); |
| |
| std::optional<RegionBindingsRef> |
| tryBindSmallArray(RegionBindingsConstRef B, const TypedValueRegion *R, |
| const ArrayType *AT, nonloc::LazyCompoundVal LCV); |
| |
| RegionBindingsRef bindArray(RegionBindingsConstRef B, |
| const TypedValueRegion* R, |
| SVal V); |
| |
| /// Clears out all bindings in the given region and assigns a new value |
| /// as a Default binding. |
| RegionBindingsRef bindAggregate(RegionBindingsConstRef B, |
| const TypedRegion *R, |
| SVal DefaultVal); |
| |
| /// Create a new store with the specified binding removed. |
| /// \param ST the original store, that is the basis for the new store. |
| /// \param L the location whose binding should be removed. |
| StoreRef killBinding(Store ST, Loc L) override; |
| |
| void incrementReferenceCount(Store store) override { |
| getRegionBindings(store).manualRetain(); |
| } |
| |
| /// If the StoreManager supports it, decrement the reference count of |
| /// the specified Store object. If the reference count hits 0, the memory |
| /// associated with the object is recycled. |
| void decrementReferenceCount(Store store) override { |
| getRegionBindings(store).manualRelease(); |
| } |
| |
| bool includedInBindings(Store store, const MemRegion *region) const override; |
| |
| /// Return the value bound to specified location in a given state. |
| /// |
| /// The high level logic for this method is this: |
| /// getBinding (L) |
| /// if L has binding |
| /// return L's binding |
| /// else if L is in killset |
| /// return unknown |
| /// else |
| /// if L is on stack or heap |
| /// return undefined |
| /// else |
| /// return symbolic |
| SVal getBinding(Store S, Loc L, QualType T) override { |
| return getBinding(getRegionBindings(S), L, T); |
| } |
| |
| std::optional<SVal> getUniqueDefaultBinding(RegionBindingsConstRef B, |
| const TypedValueRegion *R) const; |
| std::optional<SVal> |
| getUniqueDefaultBinding(nonloc::LazyCompoundVal LCV) const; |
| |
| std::optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override { |
| RegionBindingsRef B = getRegionBindings(S); |
| // Default bindings are always applied over a base region so look up the |
| // base region's default binding, otherwise the lookup will fail when R |
| // is at an offset from R->getBaseRegion(). |
| return B.getDefaultBinding(R->getBaseRegion()); |
| } |
| |
| SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType()); |
| |
| SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R); |
| |
| SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R); |
| |
| SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R); |
| |
| SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R); |
| |
| SVal getBindingForLazySymbol(const TypedValueRegion *R); |
| |
| SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B, |
| const TypedValueRegion *R, |
| QualType Ty); |
| |
| SVal getLazyBinding(const SubRegion *LazyBindingRegion, |
| RegionBindingsRef LazyBinding); |
| |
| /// Get bindings for the values in a struct and return a CompoundVal, used |
| /// when doing struct copy: |
| /// struct s x, y; |
| /// x = y; |
| /// y's value is retrieved by this method. |
| SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R); |
| SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R); |
| NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R); |
| |
| /// Used to lazily generate derived symbols for bindings that are defined |
| /// implicitly by default bindings in a super region. |
| /// |
| /// Note that callers may need to specially handle LazyCompoundVals, which |
| /// are returned as is in case the caller needs to treat them differently. |
| std::optional<SVal> |
| getBindingForDerivedDefaultValue(RegionBindingsConstRef B, |
| const MemRegion *superR, |
| const TypedValueRegion *R, QualType Ty); |
| |
| /// Get the state and region whose binding this region \p R corresponds to. |
| /// |
| /// If there is no lazy binding for \p R, the returned value will have a null |
| /// \c second. Note that a null pointer can represents a valid Store. |
| std::pair<Store, const SubRegion *> |
| findLazyBinding(RegionBindingsConstRef B, const SubRegion *R, |
| const SubRegion *originalRegion); |
| |
| /// Returns the cached set of interesting SVals contained within a lazy |
| /// binding. |
| /// |
| /// The precise value of "interesting" is determined for the purposes of |
| /// RegionStore's internal analysis. It must always contain all regions and |
| /// symbols, but may omit constants and other kinds of SVal. |
| /// |
| /// In contrast to compound values, LazyCompoundVals are also added |
| /// to the 'interesting values' list in addition to the child interesting |
| /// values. |
| const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV); |
| |
| //===------------------------------------------------------------------===// |
| // State pruning. |
| //===------------------------------------------------------------------===// |
| |
| /// removeDeadBindings - Scans the RegionStore of 'state' for dead values. |
| /// It returns a new Store with these values removed. |
| StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx, |
| SymbolReaper& SymReaper) override; |
| |
| //===------------------------------------------------------------------===// |
| // Utility methods. |
| //===------------------------------------------------------------------===// |
| |
| RegionBindingsRef getRegionBindings(Store store) const { |
| llvm::PointerIntPair<Store, 1, bool> Ptr; |
| Ptr.setFromOpaqueValue(const_cast<void *>(store)); |
| return RegionBindingsRef( |
| CBFactory, |
| static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()), |
| RBFactory.getTreeFactory(), |
| Ptr.getInt()); |
| } |
| |
| void printJson(raw_ostream &Out, Store S, const char *NL = "\n", |
| unsigned int Space = 0, bool IsDot = false) const override; |
| |
| void iterBindings(Store store, BindingsHandler& f) override { |
| RegionBindingsRef B = getRegionBindings(store); |
| for (const auto &[Region, Cluster] : B) { |
| for (const auto &[Key, Value] : Cluster) { |
| if (!Key.isDirect()) |
| continue; |
| if (const SubRegion *R = dyn_cast<SubRegion>(Key.getRegion())) { |
| // FIXME: Possibly incorporate the offset? |
| if (!f.HandleBinding(*this, store, R, Value)) |
| return; |
| } |
| } |
| } |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // RegionStore creation. |
| //===----------------------------------------------------------------------===// |
| |
| std::unique_ptr<StoreManager> |
| ento::CreateRegionStoreManager(ProgramStateManager &StMgr) { |
| return std::make_unique<RegionStoreManager>(StMgr); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Region Cluster analysis. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// Used to determine which global regions are automatically included in the |
| /// initial worklist of a ClusterAnalysis. |
| enum GlobalsFilterKind { |
| /// Don't include any global regions. |
| GFK_None, |
| /// Only include system globals. |
| GFK_SystemOnly, |
| /// Include all global regions. |
| GFK_All |
| }; |
| |
| template <typename DERIVED> |
| class ClusterAnalysis { |
| protected: |
| typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap; |
| typedef const MemRegion * WorkListElement; |
| typedef SmallVector<WorkListElement, 10> WorkList; |
| |
| llvm::SmallPtrSet<const ClusterBindings *, 16> Visited; |
| |
| WorkList WL; |
| |
| RegionStoreManager &RM; |
| ASTContext &Ctx; |
| SValBuilder &svalBuilder; |
| |
| RegionBindingsRef B; |
| |
| |
| protected: |
| const ClusterBindings *getCluster(const MemRegion *R) { |
| return B.lookup(R); |
| } |
| |
| /// Returns true if all clusters in the given memspace should be initially |
| /// included in the cluster analysis. Subclasses may provide their |
| /// own implementation. |
| bool includeEntireMemorySpace(const MemRegion *Base) { |
| return false; |
| } |
| |
| public: |
| ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr, |
| RegionBindingsRef b) |
| : RM(rm), Ctx(StateMgr.getContext()), |
| svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {} |
| |
| RegionBindingsRef getRegionBindings() const { return B; } |
| |
| bool isVisited(const MemRegion *R) { |
| return Visited.count(getCluster(R)); |
| } |
| |
| void GenerateClusters() { |
| // Scan the entire set of bindings and record the region clusters. |
| for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); |
| RI != RE; ++RI){ |
| const MemRegion *Base = RI.getKey(); |
| |
| const ClusterBindings &Cluster = RI.getData(); |
| assert(!Cluster.isEmpty() && "Empty clusters should be removed"); |
| static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster); |
| |
| // If the base's memspace should be entirely invalidated, add the cluster |
| // to the workspace up front. |
| if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base)) |
| AddToWorkList(WorkListElement(Base), &Cluster); |
| } |
| } |
| |
| bool AddToWorkList(WorkListElement E, const ClusterBindings *C) { |
| if (C && !Visited.insert(C).second) |
| return false; |
| WL.push_back(E); |
| return true; |
| } |
| |
| bool AddToWorkList(const MemRegion *R) { |
| return static_cast<DERIVED*>(this)->AddToWorkList(R); |
| } |
| |
| void RunWorkList() { |
| while (!WL.empty()) { |
| WorkListElement E = WL.pop_back_val(); |
| const MemRegion *BaseR = E; |
| |
| static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR)); |
| } |
| } |
| |
| void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {} |
| void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {} |
| |
| void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C, |
| bool Flag) { |
| static_cast<DERIVED*>(this)->VisitCluster(BaseR, C); |
| } |
| }; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Binding invalidation. |
| //===----------------------------------------------------------------------===// |
| |
| bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R, |
| ScanReachableSymbols &Callbacks) { |
| assert(R == R->getBaseRegion() && "Should only be called for base regions"); |
| RegionBindingsRef B = getRegionBindings(S); |
| const ClusterBindings *Cluster = B.lookup(R); |
| |
| if (!Cluster) |
| return true; |
| |
| for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end(); |
| RI != RE; ++RI) { |
| if (!Callbacks.scan(RI.getData())) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static inline bool isUnionField(const FieldRegion *FR) { |
| return FR->getDecl()->getParent()->isUnion(); |
| } |
| |
| typedef SmallVector<const FieldDecl *, 8> FieldVector; |
| |
| static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) { |
| assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys"); |
| |
| const MemRegion *Base = K.getConcreteOffsetRegion(); |
| const MemRegion *R = K.getRegion(); |
| |
| while (R != Base) { |
| if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) |
| if (!isUnionField(FR)) |
| Fields.push_back(FR->getDecl()); |
| |
| R = cast<SubRegion>(R)->getSuperRegion(); |
| } |
| } |
| |
| static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) { |
| assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys"); |
| |
| if (Fields.empty()) |
| return true; |
| |
| FieldVector FieldsInBindingKey; |
| getSymbolicOffsetFields(K, FieldsInBindingKey); |
| |
| ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size(); |
| if (Delta >= 0) |
| return std::equal(FieldsInBindingKey.begin() + Delta, |
| FieldsInBindingKey.end(), |
| Fields.begin()); |
| else |
| return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(), |
| Fields.begin() - Delta); |
| } |
| |
| /// Collects all bindings in \p Cluster that may refer to bindings within |
| /// \p Top. |
| /// |
| /// Each binding is a pair whose \c first is the key (a BindingKey) and whose |
| /// \c second is the value (an SVal). |
| /// |
| /// The \p IncludeAllDefaultBindings parameter specifies whether to include |
| /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is |
| /// an aggregate within a larger aggregate with a default binding. |
| static void |
| collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings, |
| SValBuilder &SVB, const ClusterBindings &Cluster, |
| const SubRegion *Top, BindingKey TopKey, |
| bool IncludeAllDefaultBindings) { |
| FieldVector FieldsInSymbolicSubregions; |
| if (TopKey.hasSymbolicOffset()) { |
| getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions); |
| Top = TopKey.getConcreteOffsetRegion(); |
| TopKey = BindingKey::Make(Top, BindingKey::Default); |
| } |
| |
| // Find the length (in bits) of the region being invalidated. |
| uint64_t Length = UINT64_MAX; |
| SVal Extent = Top->getMemRegionManager().getStaticSize(Top, SVB); |
| if (std::optional<nonloc::ConcreteInt> ExtentCI = |
| Extent.getAs<nonloc::ConcreteInt>()) { |
| const llvm::APSInt &ExtentInt = ExtentCI->getValue(); |
| assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned()); |
| // Extents are in bytes but region offsets are in bits. Be careful! |
| Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth(); |
| } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) { |
| if (FR->getDecl()->isBitField()) |
| Length = FR->getDecl()->getBitWidthValue(); |
| } |
| |
| for (const auto &StoreEntry : Cluster) { |
| BindingKey NextKey = StoreEntry.first; |
| if (NextKey.getRegion() == TopKey.getRegion()) { |
| // FIXME: This doesn't catch the case where we're really invalidating a |
| // region with a symbolic offset. Example: |
| // R: points[i].y |
| // Next: points[0].x |
| |
| if (NextKey.getOffset() > TopKey.getOffset() && |
| NextKey.getOffset() - TopKey.getOffset() < Length) { |
| // Case 1: The next binding is inside the region we're invalidating. |
| // Include it. |
| Bindings.push_back(StoreEntry); |
| |
| } else if (NextKey.getOffset() == TopKey.getOffset()) { |
| // Case 2: The next binding is at the same offset as the region we're |
| // invalidating. In this case, we need to leave default bindings alone, |
| // since they may be providing a default value for a regions beyond what |
| // we're invalidating. |
| // FIXME: This is probably incorrect; consider invalidating an outer |
| // struct whose first field is bound to a LazyCompoundVal. |
| if (IncludeAllDefaultBindings || NextKey.isDirect()) |
| Bindings.push_back(StoreEntry); |
| } |
| |
| } else if (NextKey.hasSymbolicOffset()) { |
| const MemRegion *Base = NextKey.getConcreteOffsetRegion(); |
| if (Top->isSubRegionOf(Base) && Top != Base) { |
| // Case 3: The next key is symbolic and we just changed something within |
| // its concrete region. We don't know if the binding is still valid, so |
| // we'll be conservative and include it. |
| if (IncludeAllDefaultBindings || NextKey.isDirect()) |
| if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions)) |
| Bindings.push_back(StoreEntry); |
| } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) { |
| // Case 4: The next key is symbolic, but we changed a known |
| // super-region. In this case the binding is certainly included. |
| if (BaseSR->isSubRegionOf(Top)) |
| if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions)) |
| Bindings.push_back(StoreEntry); |
| } |
| } |
| } |
| } |
| |
| static void |
| collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings, |
| SValBuilder &SVB, const ClusterBindings &Cluster, |
| const SubRegion *Top, bool IncludeAllDefaultBindings) { |
| collectSubRegionBindings(Bindings, SVB, Cluster, Top, |
| BindingKey::Make(Top, BindingKey::Default), |
| IncludeAllDefaultBindings); |
| } |
| |
| RegionBindingsRef |
| RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B, |
| const SubRegion *Top) { |
| BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default); |
| const MemRegion *ClusterHead = TopKey.getBaseRegion(); |
| |
| if (Top == ClusterHead) { |
| // We can remove an entire cluster's bindings all in one go. |
| return B.remove(Top); |
| } |
| |
| const ClusterBindings *Cluster = B.lookup(ClusterHead); |
| if (!Cluster) { |
| // If we're invalidating a region with a symbolic offset, we need to make |
| // sure we don't treat the base region as uninitialized anymore. |
| if (TopKey.hasSymbolicOffset()) { |
| const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); |
| return B.addBinding(Concrete, BindingKey::Default, UnknownVal()); |
| } |
| return B; |
| } |
| |
| SmallVector<BindingPair, 32> Bindings; |
| collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey, |
| /*IncludeAllDefaultBindings=*/false); |
| |
| ClusterBindingsRef Result(*Cluster, CBFactory); |
| for (BindingKey Key : llvm::make_first_range(Bindings)) |
| Result = Result.remove(Key); |
| |
| // If we're invalidating a region with a symbolic offset, we need to make sure |
| // we don't treat the base region as uninitialized anymore. |
| // FIXME: This isn't very precise; see the example in |
| // collectSubRegionBindings. |
| if (TopKey.hasSymbolicOffset()) { |
| const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); |
| Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default), |
| UnknownVal()); |
| } |
| |
| if (Result.isEmpty()) |
| return B.remove(ClusterHead); |
| return B.add(ClusterHead, Result.asImmutableMap()); |
| } |
| |
| namespace { |
| class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker> |
| { |
| const Stmt *S; |
| unsigned Count; |
| const LocationContext *LCtx; |
| InvalidatedSymbols &IS; |
| RegionAndSymbolInvalidationTraits &ITraits; |
| StoreManager::InvalidatedRegions *Regions; |
| GlobalsFilterKind GlobalsFilter; |
| public: |
| InvalidateRegionsWorker(RegionStoreManager &rm, ProgramStateManager &stateMgr, |
| RegionBindingsRef b, const Stmt *S, unsigned count, |
| const LocationContext *lctx, InvalidatedSymbols &is, |
| RegionAndSymbolInvalidationTraits &ITraitsIn, |
| StoreManager::InvalidatedRegions *r, |
| GlobalsFilterKind GFK) |
| : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b), S(S), |
| Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r), |
| GlobalsFilter(GFK) {} |
| |
| void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); |
| void VisitBinding(SVal V); |
| |
| using ClusterAnalysis::AddToWorkList; |
| |
| bool AddToWorkList(const MemRegion *R); |
| |
| /// Returns true if all clusters in the memory space for \p Base should be |
| /// be invalidated. |
| bool includeEntireMemorySpace(const MemRegion *Base); |
| |
| /// Returns true if the memory space of the given region is one of the global |
| /// regions specially included at the start of invalidation. |
| bool isInitiallyIncludedGlobalRegion(const MemRegion *R); |
| }; |
| } |
| |
| bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) { |
| bool doNotInvalidateSuperRegion = ITraits.hasTrait( |
| R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); |
| const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion(); |
| return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR)); |
| } |
| |
| void InvalidateRegionsWorker::VisitBinding(SVal V) { |
| // A symbol? Mark it touched by the invalidation. |
| if (SymbolRef Sym = V.getAsSymbol()) |
| IS.insert(Sym); |
| |
| if (const MemRegion *R = V.getAsRegion()) { |
| AddToWorkList(R); |
| return; |
| } |
| |
| // Is it a LazyCompoundVal? All references get invalidated as well. |
| if (std::optional<nonloc::LazyCompoundVal> LCS = |
| V.getAs<nonloc::LazyCompoundVal>()) { |
| |
| // `getInterestingValues()` returns SVals contained within LazyCompoundVals, |
| // so there is no need to visit them. |
| for (SVal V : RM.getInterestingValues(*LCS)) |
| if (!isa<nonloc::LazyCompoundVal>(V)) |
| VisitBinding(V); |
| |
| return; |
| } |
| } |
| |
| void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR, |
| const ClusterBindings *C) { |
| |
| bool PreserveRegionsContents = |
| ITraits.hasTrait(baseR, |
| RegionAndSymbolInvalidationTraits::TK_PreserveContents); |
| |
| if (C) { |
| for (SVal Val : llvm::make_second_range(*C)) |
| VisitBinding(Val); |
| |
| // Invalidate regions contents. |
| if (!PreserveRegionsContents) |
| B = B.remove(baseR); |
| } |
| |
| if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) { |
| if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) { |
| |
| // Lambdas can affect all static local variables without explicitly |
| // capturing those. |
| // We invalidate all static locals referenced inside the lambda body. |
| if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) { |
| using namespace ast_matchers; |
| |
| const char *DeclBind = "DeclBind"; |
| StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr( |
| to(varDecl(hasStaticStorageDuration()).bind(DeclBind))))); |
| auto Matches = |
| match(RefToStatic, *RD->getLambdaCallOperator()->getBody(), |
| RD->getASTContext()); |
| |
| for (BoundNodes &Match : Matches) { |
| auto *VD = Match.getNodeAs<VarDecl>(DeclBind); |
| const VarRegion *ToInvalidate = |
| RM.getRegionManager().getVarRegion(VD, LCtx); |
| AddToWorkList(ToInvalidate); |
| } |
| } |
| } |
| } |
| |
| // BlockDataRegion? If so, invalidate captured variables that are passed |
| // by reference. |
| if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) { |
| for (auto Var : BR->referenced_vars()) { |
| const VarRegion *VR = Var.getCapturedRegion(); |
| const VarDecl *VD = VR->getDecl(); |
| if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) { |
| AddToWorkList(VR); |
| } |
| else if (Loc::isLocType(VR->getValueType())) { |
| // Map the current bindings to a Store to retrieve the value |
| // of the binding. If that binding itself is a region, we should |
| // invalidate that region. This is because a block may capture |
| // a pointer value, but the thing pointed by that pointer may |
| // get invalidated. |
| SVal V = RM.getBinding(B, loc::MemRegionVal(VR)); |
| if (std::optional<Loc> L = V.getAs<Loc>()) { |
| if (const MemRegion *LR = L->getAsRegion()) |
| AddToWorkList(LR); |
| } |
| } |
| } |
| return; |
| } |
| |
| // Symbolic region? |
| if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) |
| IS.insert(SR->getSymbol()); |
| |
| // Nothing else should be done in the case when we preserve regions context. |
| if (PreserveRegionsContents) |
| return; |
| |
| // Otherwise, we have a normal data region. Record that we touched the region. |
| if (Regions) |
| Regions->push_back(baseR); |
| |
| if (isa<AllocaRegion, SymbolicRegion>(baseR)) { |
| // Invalidate the region by setting its default value to |
| // conjured symbol. The type of the symbol is irrelevant. |
| DefinedOrUnknownSVal V = |
| svalBuilder.conjureSymbolVal(baseR, S, LCtx, Ctx.IntTy, Count); |
| B = B.addBinding(baseR, BindingKey::Default, V); |
| return; |
| } |
| |
| if (!baseR->isBoundable()) |
| return; |
| |
| const TypedValueRegion *TR = cast<TypedValueRegion>(baseR); |
| QualType T = TR->getValueType(); |
| |
| if (isInitiallyIncludedGlobalRegion(baseR)) { |
| // If the region is a global and we are invalidating all globals, |
| // erasing the entry is good enough. This causes all globals to be lazily |
| // symbolicated from the same base symbol. |
| return; |
| } |
| |
| if (T->isRecordType()) { |
| // Invalidate the region by setting its default value to |
| // conjured symbol. The type of the symbol is irrelevant. |
| DefinedOrUnknownSVal V = |
| svalBuilder.conjureSymbolVal(baseR, S, LCtx, Ctx.IntTy, Count); |
| B = B.addBinding(baseR, BindingKey::Default, V); |
| return; |
| } |
| |
| if (const ArrayType *AT = Ctx.getAsArrayType(T)) { |
| bool doNotInvalidateSuperRegion = ITraits.hasTrait( |
| baseR, |
| RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); |
| |
| if (doNotInvalidateSuperRegion) { |
| // We are not doing blank invalidation of the whole array region so we |
| // have to manually invalidate each elements. |
| std::optional<uint64_t> NumElements; |
| |
| // Compute lower and upper offsets for region within array. |
| if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) |
| NumElements = CAT->getZExtSize(); |
| if (!NumElements) // We are not dealing with a constant size array |
| goto conjure_default; |
| QualType ElementTy = AT->getElementType(); |
| uint64_t ElemSize = Ctx.getTypeSize(ElementTy); |
| const RegionOffset &RO = baseR->getAsOffset(); |
| const MemRegion *SuperR = baseR->getBaseRegion(); |
| if (RO.hasSymbolicOffset()) { |
| // If base region has a symbolic offset, |
| // we revert to invalidating the super region. |
| if (SuperR) |
| AddToWorkList(SuperR); |
| goto conjure_default; |
| } |
| |
| uint64_t LowerOffset = RO.getOffset(); |
| uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize; |
| bool UpperOverflow = UpperOffset < LowerOffset; |
| |
| // Invalidate regions which are within array boundaries, |
| // or have a symbolic offset. |
| if (!SuperR) |
| goto conjure_default; |
| |
| const ClusterBindings *C = B.lookup(SuperR); |
| if (!C) |
| goto conjure_default; |
| |
| for (const auto &[BK, V] : *C) { |
| std::optional<uint64_t> ROffset = |
| BK.hasSymbolicOffset() ? std::optional<uint64_t>() : BK.getOffset(); |
| |
| // Check offset is not symbolic and within array's boundaries. |
| // Handles arrays of 0 elements and of 0-sized elements as well. |
| if (!ROffset || |
| ((*ROffset >= LowerOffset && *ROffset < UpperOffset) || |
| (UpperOverflow && |
| (*ROffset >= LowerOffset || *ROffset < UpperOffset)) || |
| (LowerOffset == UpperOffset && *ROffset == LowerOffset))) { |
| B = B.removeBinding(BK); |
| // Bound symbolic regions need to be invalidated for dead symbol |
| // detection. |
| const MemRegion *R = V.getAsRegion(); |
| if (isa_and_nonnull<SymbolicRegion>(R)) |
| VisitBinding(V); |
| } |
| } |
| } |
| conjure_default: |
| // Set the default value of the array to conjured symbol. |
| DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal( |
| baseR, S, LCtx, AT->getElementType(), Count); |
| B = B.addBinding(baseR, BindingKey::Default, V); |
| return; |
| } |
| |
| DefinedOrUnknownSVal V = |
| svalBuilder.conjureSymbolVal(baseR, S, LCtx, T, Count); |
| assert(SymbolManager::canSymbolicate(T) || V.isUnknown()); |
| B = B.addBinding(baseR, BindingKey::Direct, V); |
| } |
| |
| bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion( |
| const MemRegion *R) { |
| switch (GlobalsFilter) { |
| case GFK_None: |
| return false; |
| case GFK_SystemOnly: |
| return isa<GlobalSystemSpaceRegion>(R->getRawMemorySpace()); |
| case GFK_All: |
| return isa<NonStaticGlobalSpaceRegion>(R->getRawMemorySpace()); |
| } |
| |
| llvm_unreachable("unknown globals filter"); |
| } |
| |
| bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) { |
| if (isInitiallyIncludedGlobalRegion(Base)) |
| return true; |
| |
| const MemSpaceRegion *MemSpace = Base->getRawMemorySpace(); |
| return ITraits.hasTrait(MemSpace, |
| RegionAndSymbolInvalidationTraits::TK_EntireMemSpace); |
| } |
| |
| RegionBindingsRef RegionStoreManager::invalidateGlobalRegion( |
| MemRegion::Kind K, const Stmt *S, unsigned Count, |
| const LocationContext *LCtx, RegionBindingsRef B, |
| InvalidatedRegions *Invalidated) { |
| // Bind the globals memory space to a new symbol that we will use to derive |
| // the bindings for all globals. |
| const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K); |
| SVal V = |
| svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void *)GS, S, LCtx, |
| /* type does not matter */ Ctx.IntTy, Count); |
| |
| B = B.removeBinding(GS) |
| .addBinding(BindingKey::Make(GS, BindingKey::Default), V); |
| |
| // Even if there are no bindings in the global scope, we still need to |
| // record that we touched it. |
| if (Invalidated) |
| Invalidated->push_back(GS); |
| |
| return B; |
| } |
| |
| void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W, |
| ArrayRef<SVal> Values, |
| InvalidatedRegions *TopLevelRegions) { |
| for (SVal V : Values) { |
| if (auto LCS = V.getAs<nonloc::LazyCompoundVal>()) { |
| for (SVal S : getInterestingValues(*LCS)) |
| if (const MemRegion *R = S.getAsRegion()) |
| W.AddToWorkList(R); |
| |
| continue; |
| } |
| |
| if (const MemRegion *R = V.getAsRegion()) { |
| if (TopLevelRegions) |
| TopLevelRegions->push_back(R); |
| W.AddToWorkList(R); |
| continue; |
| } |
| } |
| } |
| |
| StoreRef RegionStoreManager::invalidateRegions( |
| Store store, ArrayRef<SVal> Values, const Stmt *S, unsigned Count, |
| const LocationContext *LCtx, const CallEvent *Call, InvalidatedSymbols &IS, |
| RegionAndSymbolInvalidationTraits &ITraits, |
| InvalidatedRegions *TopLevelRegions, InvalidatedRegions *Invalidated) { |
| GlobalsFilterKind GlobalsFilter; |
| if (Call) { |
| if (Call->isInSystemHeader()) |
| GlobalsFilter = GFK_SystemOnly; |
| else |
| GlobalsFilter = GFK_All; |
| } else { |
| GlobalsFilter = GFK_None; |
| } |
| |
| RegionBindingsRef B = getRegionBindings(store); |
| InvalidateRegionsWorker W(*this, StateMgr, B, S, Count, LCtx, IS, ITraits, |
| Invalidated, GlobalsFilter); |
| |
| // Scan the bindings and generate the clusters. |
| W.GenerateClusters(); |
| |
| // Add the regions to the worklist. |
| populateWorkList(W, Values, TopLevelRegions); |
| |
| W.RunWorkList(); |
| |
| // Return the new bindings. |
| B = W.getRegionBindings(); |
| |
| // For calls, determine which global regions should be invalidated and |
| // invalidate them. (Note that function-static and immutable globals are never |
| // invalidated by this.) |
| // TODO: This could possibly be more precise with modules. |
| switch (GlobalsFilter) { |
| case GFK_All: |
| B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind, S, |
| Count, LCtx, B, Invalidated); |
| [[fallthrough]]; |
| case GFK_SystemOnly: |
| B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind, S, Count, |
| LCtx, B, Invalidated); |
| [[fallthrough]]; |
| case GFK_None: |
| break; |
| } |
| |
| return StoreRef(B.asStore(), *this); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Location and region casting. |
| //===----------------------------------------------------------------------===// |
| |
| /// ArrayToPointer - Emulates the "decay" of an array to a pointer |
| /// type. 'Array' represents the lvalue of the array being decayed |
| /// to a pointer, and the returned SVal represents the decayed |
| /// version of that lvalue (i.e., a pointer to the first element of |
| /// the array). This is called by ExprEngine when evaluating casts |
| /// from arrays to pointers. |
| SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) { |
| if (isa<loc::ConcreteInt>(Array)) |
| return Array; |
| |
| if (!isa<loc::MemRegionVal>(Array)) |
| return UnknownVal(); |
| |
| const SubRegion *R = |
| cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion()); |
| NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex(); |
| return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Loading values from regions. |
| //===----------------------------------------------------------------------===// |
| |
| SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) { |
| assert(!isa<UnknownVal>(L) && "location unknown"); |
| assert(!isa<UndefinedVal>(L) && "location undefined"); |
| |
| // For access to concrete addresses, return UnknownVal. Checks |
| // for null dereferences (and similar errors) are done by checkers, not |
| // the Store. |
| // FIXME: We can consider lazily symbolicating such memory, but we really |
| // should defer this when we can reason easily about symbolicating arrays |
| // of bytes. |
| if (L.getAs<loc::ConcreteInt>()) { |
| return UnknownVal(); |
| } |
| if (!L.getAs<loc::MemRegionVal>()) { |
| return UnknownVal(); |
| } |
| |
| const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion(); |
| |
| if (isa<BlockDataRegion>(MR)) { |
| return UnknownVal(); |
| } |
| |
| // Auto-detect the binding type. |
| if (T.isNull()) { |
| if (const auto *TVR = dyn_cast<TypedValueRegion>(MR)) |
| T = TVR->getValueType(); |
| else if (const auto *TR = dyn_cast<TypedRegion>(MR)) |
| T = TR->getLocationType()->getPointeeType(); |
| else if (const auto *SR = dyn_cast<SymbolicRegion>(MR)) |
| T = SR->getPointeeStaticType(); |
| } |
| assert(!T.isNull() && "Unable to auto-detect binding type!"); |
| assert(!T->isVoidType() && "Attempting to dereference a void pointer!"); |
| |
| if (!isa<TypedValueRegion>(MR)) |
| MR = GetElementZeroRegion(cast<SubRegion>(MR), T); |
| |
| // FIXME: Perhaps this method should just take a 'const MemRegion*' argument |
| // instead of 'Loc', and have the other Loc cases handled at a higher level. |
| const TypedValueRegion *R = cast<TypedValueRegion>(MR); |
| QualType RTy = R->getValueType(); |
| |
| // FIXME: we do not yet model the parts of a complex type, so treat the |
| // whole thing as "unknown". |
| if (RTy->isAnyComplexType()) |
| return UnknownVal(); |
| |
| // FIXME: We should eventually handle funny addressing. e.g.: |
| // |
| // int x = ...; |
| // int *p = &x; |
| // char *q = (char*) p; |
| // char c = *q; // returns the first byte of 'x'. |
| // |
| // Such funny addressing will occur due to layering of regions. |
| if (RTy->isStructureOrClassType()) |
| return getBindingForStruct(B, R); |
| |
| // FIXME: Handle unions. |
| if (RTy->isUnionType()) |
| return createLazyBinding(B, R); |
| |
| if (RTy->isArrayType()) { |
| if (RTy->isConstantArrayType()) |
| return getBindingForArray(B, R); |
| else |
| return UnknownVal(); |
| } |
| |
| // FIXME: handle Vector types. |
| if (RTy->isVectorType()) |
| return UnknownVal(); |
| |
| if (const FieldRegion* FR = dyn_cast<FieldRegion>(R)) |
| return svalBuilder.evalCast(getBindingForField(B, FR), T, QualType{}); |
| |
| if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) { |
| // FIXME: Here we actually perform an implicit conversion from the loaded |
| // value to the element type. Eventually we want to compose these values |
| // more intelligently. For example, an 'element' can encompass multiple |
| // bound regions (e.g., several bound bytes), or could be a subset of |
| // a larger value. |
| return svalBuilder.evalCast(getBindingForElement(B, ER), T, QualType{}); |
| } |
| |
| if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) { |
| // FIXME: Here we actually perform an implicit conversion from the loaded |
| // value to the ivar type. What we should model is stores to ivars |
| // that blow past the extent of the ivar. If the address of the ivar is |
| // reinterpretted, it is possible we stored a different value that could |
| // fit within the ivar. Either we need to cast these when storing them |
| // or reinterpret them lazily (as we do here). |
| return svalBuilder.evalCast(getBindingForObjCIvar(B, IVR), T, QualType{}); |
| } |
| |
| if (const VarRegion *VR = dyn_cast<VarRegion>(R)) { |
| // FIXME: Here we actually perform an implicit conversion from the loaded |
| // value to the variable type. What we should model is stores to variables |
| // that blow past the extent of the variable. If the address of the |
| // variable is reinterpretted, it is possible we stored a different value |
| // that could fit within the variable. Either we need to cast these when |
| // storing them or reinterpret them lazily (as we do here). |
| return svalBuilder.evalCast(getBindingForVar(B, VR), T, QualType{}); |
| } |
| |
| const SVal *V = B.lookup(R, BindingKey::Direct); |
| |
| // Check if the region has a binding. |
| if (V) |
| return *V; |
| |
| // The location does not have a bound value. This means that it has |
| // the value it had upon its creation and/or entry to the analyzed |
| // function/method. These are either symbolic values or 'undefined'. |
| if (isa<StackLocalsSpaceRegion>(R->getRawMemorySpace())) { |
| // All stack variables are considered to have undefined values |
| // upon creation. All heap allocated blocks are considered to |
| // have undefined values as well unless they are explicitly bound |
| // to specific values. |
| return UndefinedVal(); |
| } |
| |
| // All other values are symbolic. |
| return svalBuilder.getRegionValueSymbolVal(R); |
| } |
| |
| static QualType getUnderlyingType(const SubRegion *R) { |
| QualType RegionTy; |
| if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R)) |
| RegionTy = TVR->getValueType(); |
| |
| if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) |
| RegionTy = SR->getSymbol()->getType(); |
| |
| return RegionTy; |
| } |
| |
| /// Checks to see if store \p B has a lazy binding for region \p R. |
| /// |
| /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected |
| /// if there are additional bindings within \p R. |
| /// |
| /// Note that unlike RegionStoreManager::findLazyBinding, this will not search |
| /// for lazy bindings for super-regions of \p R. |
| static std::optional<nonloc::LazyCompoundVal> |
| getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B, |
| const SubRegion *R, bool AllowSubregionBindings) { |
| std::optional<SVal> V = B.getDefaultBinding(R); |
| if (!V) |
| return std::nullopt; |
| |
| std::optional<nonloc::LazyCompoundVal> LCV = |
| V->getAs<nonloc::LazyCompoundVal>(); |
| if (!LCV) |
| return std::nullopt; |
| |
| // If the LCV is for a subregion, the types might not match, and we shouldn't |
| // reuse the binding. |
| QualType RegionTy = getUnderlyingType(R); |
| if (!RegionTy.isNull() && |
| !RegionTy->isVoidPointerType()) { |
| QualType SourceRegionTy = LCV->getRegion()->getValueType(); |
| if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy)) |
| return std::nullopt; |
| } |
| |
| if (!AllowSubregionBindings) { |
| // If there are any other bindings within this region, we shouldn't reuse |
| // the top-level binding. |
| SmallVector<BindingPair, 16> Bindings; |
| collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R, |
| /*IncludeAllDefaultBindings=*/true); |
| if (Bindings.size() > 1) |
| return std::nullopt; |
| } |
| |
| return *LCV; |
| } |
| |
| std::pair<Store, const SubRegion *> |
| RegionStoreManager::findLazyBinding(RegionBindingsConstRef B, |
| const SubRegion *R, |
| const SubRegion *originalRegion) { |
| if (originalRegion != R) { |
| if (std::optional<nonloc::LazyCompoundVal> V = |
| getExistingLazyBinding(svalBuilder, B, R, true)) |
| return std::make_pair(V->getStore(), V->getRegion()); |
| } |
| |
| typedef std::pair<Store, const SubRegion *> StoreRegionPair; |
| StoreRegionPair Result = StoreRegionPair(); |
| |
| if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { |
| Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()), |
| originalRegion); |
| |
| if (Result.second) |
| Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second); |
| |
| } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) { |
| Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()), |
| originalRegion); |
| |
| if (Result.second) |
| Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second); |
| |
| } else if (const CXXBaseObjectRegion *BaseReg = |
| dyn_cast<CXXBaseObjectRegion>(R)) { |
| // C++ base object region is another kind of region that we should blast |
| // through to look for lazy compound value. It is like a field region. |
| Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()), |
| originalRegion); |
| |
| if (Result.second) |
| Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg, |
| Result.second); |
| } |
| |
| return Result; |
| } |
| |
| /// This is a helper function for `getConstantValFromConstArrayInitializer`. |
| /// |
| /// Return an array of extents of the declared array type. |
| /// |
| /// E.g. for `int x[1][2][3];` returns { 1, 2, 3 }. |
| static SmallVector<uint64_t, 2> |
| getConstantArrayExtents(const ConstantArrayType *CAT) { |
| assert(CAT && "ConstantArrayType should not be null"); |
| CAT = cast<ConstantArrayType>(CAT->getCanonicalTypeInternal()); |
| SmallVector<uint64_t, 2> Extents; |
| do { |
| Extents.push_back(CAT->getZExtSize()); |
| } while ((CAT = dyn_cast<ConstantArrayType>(CAT->getElementType()))); |
| return Extents; |
| } |
| |
| /// This is a helper function for `getConstantValFromConstArrayInitializer`. |
| /// |
| /// Return an array of offsets from nested ElementRegions and a root base |
| /// region. The array is never empty and a base region is never null. |
| /// |
| /// E.g. for `Element{Element{Element{VarRegion},1},2},3}` returns { 3, 2, 1 }. |
| /// This represents an access through indirection: `arr[1][2][3];` |
| /// |
| /// \param ER The given (possibly nested) ElementRegion. |
| /// |
| /// \note The result array is in the reverse order of indirection expression: |
| /// arr[1][2][3] -> { 3, 2, 1 }. This helps to provide complexity O(n), where n |
| /// is a number of indirections. It may not affect performance in real-life |
| /// code, though. |
| static std::pair<SmallVector<SVal, 2>, const MemRegion *> |
| getElementRegionOffsetsWithBase(const ElementRegion *ER) { |
| assert(ER && "ConstantArrayType should not be null"); |
| const MemRegion *Base; |
| SmallVector<SVal, 2> SValOffsets; |
| do { |
| SValOffsets.push_back(ER->getIndex()); |
| Base = ER->getSuperRegion(); |
| ER = dyn_cast<ElementRegion>(Base); |
| } while (ER); |
| return {SValOffsets, Base}; |
| } |
| |
| /// This is a helper function for `getConstantValFromConstArrayInitializer`. |
| /// |
| /// Convert array of offsets from `SVal` to `uint64_t` in consideration of |
| /// respective array extents. |
| /// \param SrcOffsets [in] The array of offsets of type `SVal` in reversed |
| /// order (expectedly received from `getElementRegionOffsetsWithBase`). |
| /// \param ArrayExtents [in] The array of extents. |
| /// \param DstOffsets [out] The array of offsets of type `uint64_t`. |
| /// \returns: |
| /// - `std::nullopt` for successful convertion. |
| /// - `UndefinedVal` or `UnknownVal` otherwise. It's expected that this SVal |
| /// will be returned as a suitable value of the access operation. |
| /// which should be returned as a correct |
| /// |
| /// \example: |
| /// const int arr[10][20][30] = {}; // ArrayExtents { 10, 20, 30 } |
| /// int x1 = arr[4][5][6]; // SrcOffsets { NonLoc(6), NonLoc(5), NonLoc(4) } |
| /// // DstOffsets { 4, 5, 6 } |
| /// // returns std::nullopt |
| /// int x2 = arr[42][5][-6]; // returns UndefinedVal |
| /// int x3 = arr[4][5][x2]; // returns UnknownVal |
| static std::optional<SVal> |
| convertOffsetsFromSvalToUnsigneds(const SmallVector<SVal, 2> &SrcOffsets, |
| const SmallVector<uint64_t, 2> ArrayExtents, |
| SmallVector<uint64_t, 2> &DstOffsets) { |
| // Check offsets for being out of bounds. |
| // C++20 [expr.add] 7.6.6.4 (excerpt): |
| // If P points to an array element i of an array object x with n |
| // elements, where i < 0 or i > n, the behavior is undefined. |
| // Dereferencing is not allowed on the "one past the last |
| // element", when i == n. |
| // Example: |
| // const int arr[3][2] = {{1, 2}, {3, 4}}; |
| // arr[0][0]; // 1 |
| // arr[0][1]; // 2 |
| // arr[0][2]; // UB |
| // arr[1][0]; // 3 |
| // arr[1][1]; // 4 |
| // arr[1][-1]; // UB |
| // arr[2][0]; // 0 |
| // arr[2][1]; // 0 |
| // arr[-2][0]; // UB |
| DstOffsets.resize(SrcOffsets.size()); |
| auto ExtentIt = ArrayExtents.begin(); |
| auto OffsetIt = DstOffsets.begin(); |
| // Reverse `SValOffsets` to make it consistent with `ArrayExtents`. |
| for (SVal V : llvm::reverse(SrcOffsets)) { |
| if (auto CI = V.getAs<nonloc::ConcreteInt>()) { |
| // When offset is out of array's bounds, result is UB. |
| const llvm::APSInt &Offset = CI->getValue(); |
| if (Offset.isNegative() || Offset.uge(*(ExtentIt++))) |
| return UndefinedVal(); |
| // Store index in a reversive order. |
| *(OffsetIt++) = Offset.getZExtValue(); |
| continue; |
| } |
| // Symbolic index presented. Return Unknown value. |
| // FIXME: We also need to take ElementRegions with symbolic indexes into |
| // account. |
| return UnknownVal(); |
| } |
| return std::nullopt; |
| } |
| |
| std::optional<SVal> RegionStoreManager::getConstantValFromConstArrayInitializer( |
| RegionBindingsConstRef B, const ElementRegion *R) { |
| assert(R && "ElementRegion should not be null"); |
| |
| // Treat an n-dimensional array. |
| SmallVector<SVal, 2> SValOffsets; |
| const MemRegion *Base; |
| std::tie(SValOffsets, Base) = getElementRegionOffsetsWithBase(R); |
| const VarRegion *VR = dyn_cast<VarRegion>(Base); |
| if (!VR) |
| return std::nullopt; |
| |
| assert(!SValOffsets.empty() && "getElementRegionOffsets guarantees the " |
| "offsets vector is not empty."); |
| |
| // Check if the containing array has an initialized value that we can trust. |
| // We can trust a const value or a value of a global initializer in main(). |
| const VarDecl *VD = VR->getDecl(); |
| if (!VD->getType().isConstQualified() && |
| !R->getElementType().isConstQualified() && |
| (!B.isMainAnalysis() || !VD->hasGlobalStorage())) |
| return std::nullopt; |
| |
| // Array's declaration should have `ConstantArrayType` type, because only this |
| // type contains an array extent. It may happen that array type can be of |
| // `IncompleteArrayType` type. To get the declaration of `ConstantArrayType` |
| // type, we should find the declaration in the redeclarations chain that has |
| // the initialization expression. |
| // NOTE: `getAnyInitializer` has an out-parameter, which returns a new `VD` |
| // from which an initializer is obtained. We replace current `VD` with the new |
| // `VD`. If the return value of the function is null than `VD` won't be |
| // replaced. |
| const Expr *Init = VD->getAnyInitializer(VD); |
| // NOTE: If `Init` is non-null, then a new `VD` is non-null for sure. So check |
| // `Init` for null only and don't worry about the replaced `VD`. |
| if (!Init) |
| return std::nullopt; |
| |
| // Array's declaration should have ConstantArrayType type, because only this |
| // type contains an array extent. |
| const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(VD->getType()); |
| if (!CAT) |
| return std::nullopt; |
| |
| // Get array extents. |
| SmallVector<uint64_t, 2> Extents = getConstantArrayExtents(CAT); |
| |
| // The number of offsets should equal to the numbers of extents, |
| // otherwise wrong type punning occurred. For instance: |
| // int arr[1][2][3]; |
| // auto ptr = (int(*)[42])arr; |
| // auto x = ptr[4][2]; // UB |
| // FIXME: Should return UndefinedVal. |
| if (SValOffsets.size() != Extents.size()) |
| return std::nullopt; |
| |
| SmallVector<uint64_t, 2> ConcreteOffsets; |
| if (std::optional<SVal> V = convertOffsetsFromSvalToUnsigneds( |
| SValOffsets, Extents, ConcreteOffsets)) |
| return *V; |
| |
| // Handle InitListExpr. |
| // Example: |
| // const char arr[4][2] = { { 1, 2 }, { 3 }, 4, 5 }; |
| if (const auto *ILE = dyn_cast<InitListExpr>(Init)) |
| return getSValFromInitListExpr(ILE, ConcreteOffsets, R->getElementType()); |
| |
| // Handle StringLiteral. |
| // Example: |
| // const char arr[] = "abc"; |
| if (const auto *SL = dyn_cast<StringLiteral>(Init)) |
| return getSValFromStringLiteral(SL, ConcreteOffsets.front(), |
| R->getElementType()); |
| |
| // FIXME: Handle CompoundLiteralExpr. |
| |
| return std::nullopt; |
| } |
| |
| /// Returns an SVal, if possible, for the specified position of an |
| /// initialization list. |
| /// |
| /// \param ILE The given initialization list. |
| /// \param Offsets The array of unsigned offsets. E.g. for the expression |
| /// `int x = arr[1][2][3];` an array should be { 1, 2, 3 }. |
| /// \param ElemT The type of the result SVal expression. |
| /// \return Optional SVal for the particular position in the initialization |
| /// list. E.g. for the list `{{1, 2},[3, 4],{5, 6}, {}}` offsets: |
| /// - {1, 1} returns SVal{4}, because it's the second position in the second |
| /// sublist; |
| /// - {3, 0} returns SVal{0}, because there's no explicit value at this |
| /// position in the sublist. |
| /// |
| /// NOTE: Inorder to get a valid SVal, a caller shall guarantee valid offsets |
| /// for the given initialization list. Otherwise SVal can be an equivalent to 0 |
| /// or lead to assertion. |
| std::optional<SVal> RegionStoreManager::getSValFromInitListExpr( |
| const InitListExpr *ILE, const SmallVector<uint64_t, 2> &Offsets, |
| QualType ElemT) { |
| assert(ILE && "InitListExpr should not be null"); |
| |
| for (uint64_t Offset : Offsets) { |
| // C++20 [dcl.init.string] 9.4.2.1: |
| // An array of ordinary character type [...] can be initialized by [...] |
| // an appropriately-typed string-literal enclosed in braces. |
| // Example: |
| // const char arr[] = { "abc" }; |
| if (ILE->isStringLiteralInit()) |
| if (const auto *SL = dyn_cast<StringLiteral>(ILE->getInit(0))) |
| return getSValFromStringLiteral(SL, Offset, ElemT); |
| |
| // C++20 [expr.add] 9.4.17.5 (excerpt): |
| // i-th array element is value-initialized for each k < i ≤ n, |
| // where k is an expression-list size and n is an array extent. |
| if (Offset >= ILE->getNumInits()) |
| return svalBuilder.makeZeroVal(ElemT); |
| |
| const Expr *E = ILE->getInit(Offset); |
| const auto *IL = dyn_cast<InitListExpr>(E); |
| if (!IL) |
| // Return a constant value, if it is presented. |
| // FIXME: Support other SVals. |
| return svalBuilder.getConstantVal(E); |
| |
| // Go to the nested initializer list. |
| ILE = IL; |
| } |
| |
| assert(ILE); |
| |
| // FIXME: Unhandeled InitListExpr sub-expression, possibly constructing an |
| // enum? |
| return std::nullopt; |
| } |
| |
| /// Returns an SVal, if possible, for the specified position in a string |
| /// literal. |
| /// |
| /// \param SL The given string literal. |
| /// \param Offset The unsigned offset. E.g. for the expression |
| /// `char x = str[42];` an offset should be 42. |
| /// E.g. for the string "abc" offset: |
| /// - 1 returns SVal{b}, because it's the second position in the string. |
| /// - 42 returns SVal{0}, because there's no explicit value at this |
| /// position in the string. |
| /// \param ElemT The type of the result SVal expression. |
| /// |
| /// NOTE: We return `0` for every offset >= the literal length for array |
| /// declarations, like: |
| /// const char str[42] = "123"; // Literal length is 4. |
| /// char c = str[41]; // Offset is 41. |
| /// FIXME: Nevertheless, we can't do the same for pointer declaraions, like: |
| /// const char * const str = "123"; // Literal length is 4. |
| /// char c = str[41]; // Offset is 41. Returns `0`, but Undef |
| /// // expected. |
| /// It should be properly handled before reaching this point. |
| /// The main problem is that we can't distinguish between these declarations, |
| /// because in case of array we can get the Decl from VarRegion, but in case |
| /// of pointer the region is a StringRegion, which doesn't contain a Decl. |
| /// Possible solution could be passing an array extent along with the offset. |
| SVal RegionStoreManager::getSValFromStringLiteral(const StringLiteral *SL, |
| uint64_t Offset, |
| QualType ElemT) { |
| assert(SL && "StringLiteral should not be null"); |
| // C++20 [dcl.init.string] 9.4.2.3: |
| // If there are fewer initializers than there are array elements, each |
| // element not explicitly initialized shall be zero-initialized [dcl.init]. |
| uint32_t Code = (Offset >= SL->getLength()) ? 0 : SL->getCodeUnit(Offset); |
| return svalBuilder.makeIntVal(Code, ElemT); |
| } |
| |
| static std::optional<SVal> getDerivedSymbolForBinding( |
| RegionBindingsConstRef B, const TypedValueRegion *BaseRegion, |
| const TypedValueRegion *SubReg, const ASTContext &Ctx, SValBuilder &SVB) { |
| assert(BaseRegion); |
| QualType BaseTy = BaseRegion->getValueType(); |
| QualType Ty = SubReg->getValueType(); |
| if (BaseTy->isScalarType() && Ty->isScalarType()) { |
| if (Ctx.getTypeSizeInChars(BaseTy) >= Ctx.getTypeSizeInChars(Ty)) { |
| if (const std::optional<SVal> &ParentValue = |
| B.getDirectBinding(BaseRegion)) { |
| if (SymbolRef ParentValueAsSym = ParentValue->getAsSymbol()) |
| return SVB.getDerivedRegionValueSymbolVal(ParentValueAsSym, SubReg); |
| |
| if (ParentValue->isUndef()) |
| return UndefinedVal(); |
| |
| // Other cases: give up. We are indexing into a larger object |
| // that has some value, but we don't know how to handle that yet. |
| return UnknownVal(); |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| |
| SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B, |
| const ElementRegion* R) { |
| // Check if the region has a binding. |
| if (const std::optional<SVal> &V = B.getDirectBinding(R)) |
| return *V; |
| |
| const MemRegion* superR = R->getSuperRegion(); |
| |
| // Check if the region is an element region of a string literal. |
| if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) { |
| // FIXME: Handle loads from strings where the literal is treated as |
| // an integer, e.g., *((unsigned int*)"hello"). Such loads are UB according |
| // to C++20 7.2.1.11 [basic.lval]. |
| QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType(); |
| if (!Ctx.hasSameUnqualifiedType(T, R->getElementType())) |
| return UnknownVal(); |
| if (const auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) { |
| const llvm::APSInt &Idx = CI->getValue(); |
| if (Idx < 0) |
| return UndefinedVal(); |
| const StringLiteral *SL = StrR->getStringLiteral(); |
| return getSValFromStringLiteral(SL, Idx.getZExtValue(), T); |
| } |
| } else if (isa<ElementRegion, VarRegion>(superR)) { |
| if (std::optional<SVal> V = getConstantValFromConstArrayInitializer(B, R)) |
| return *V; |
| } |
| |
| // Check for loads from a code text region. For such loads, just give up. |
| if (isa<CodeTextRegion>(superR)) |
| return UnknownVal(); |
| |
| // Handle the case where we are indexing into a larger scalar object. |
| // For example, this handles: |
| // int x = ... |
| // char *y = &x; |
| // return *y; |
| // FIXME: This is a hack, and doesn't do anything really intelligent yet. |
| const RegionRawOffset &O = R->getAsArrayOffset(); |
| |
| // If we cannot reason about the offset, return an unknown value. |
| if (!O.getRegion()) |
| return UnknownVal(); |
| |
| if (const TypedValueRegion *baseR = dyn_cast<TypedValueRegion>(O.getRegion())) |
| if (auto V = getDerivedSymbolForBinding(B, baseR, R, Ctx, svalBuilder)) |
| return *V; |
| |
| return getBindingForFieldOrElementCommon(B, R, R->getElementType()); |
| } |
| |
| SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B, |
| const FieldRegion* R) { |
| |
| // Check if the region has a binding. |
| if (const std::optional<SVal> &V = B.getDirectBinding(R)) |
| return *V; |
| |
| // If the containing record was initialized, try to get its constant value. |
| const FieldDecl *FD = R->getDecl(); |
| QualType Ty = FD->getType(); |
| const MemRegion* superR = R->getSuperRegion(); |
| if (const auto *VR = dyn_cast<VarRegion>(superR)) { |
| const VarDecl *VD = VR->getDecl(); |
| QualType RecordVarTy = VD->getType(); |
| unsigned Index = FD->getFieldIndex(); |
| // Either the record variable or the field has an initializer that we can |
| // trust. We trust initializers of constants and, additionally, respect |
| // initializers of globals when analyzing main(). |
| if (RecordVarTy.isConstQualified() || Ty.isConstQualified() || |
| (B.isMainAnalysis() && VD->hasGlobalStorage())) |
| if (const Expr *Init = VD->getAnyInitializer()) |
| if (const auto *InitList = dyn_cast<InitListExpr>(Init)) { |
| if (Index < InitList->getNumInits()) { |
| if (const Expr *FieldInit = InitList->getInit(Index)) |
| if (std::optional<SVal> V = svalBuilder.getConstantVal(FieldInit)) |
| return *V; |
| } else { |
| return svalBuilder.makeZeroVal(Ty); |
| } |
| } |
| } |
| |
| // Handle the case where we are accessing into a larger scalar object. |
| // For example, this handles: |
| // struct header { |
| // unsigned a : 1; |
| // unsigned b : 1; |
| // }; |
| // struct parse_t { |
| // unsigned bits0 : 1; |
| // unsigned bits2 : 2; // <-- header |
| // unsigned bits4 : 4; |
| // }; |
| // int parse(parse_t *p) { |
| // unsigned copy = p->bits2; |
| // header *bits = (header *)© |
| // return bits->b; <-- here |
| // } |
| if (const auto *Base = dyn_cast<TypedValueRegion>(R->getBaseRegion())) |
| if (auto V = getDerivedSymbolForBinding(B, Base, R, Ctx, svalBuilder)) |
| return *V; |
| |
| return getBindingForFieldOrElementCommon(B, R, Ty); |
| } |
| |
| std::optional<SVal> RegionStoreManager::getBindingForDerivedDefaultValue( |
| RegionBindingsConstRef B, const MemRegion *superR, |
| const TypedValueRegion *R, QualType Ty) { |
| |
| if (const std::optional<SVal> &D = B.getDefaultBinding(superR)) { |
| SVal val = *D; |
| if (SymbolRef parentSym = val.getAsSymbol()) |
| return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); |
| |
| if (val.isZeroConstant()) |
| return svalBuilder.makeZeroVal(Ty); |
| |
| if (val.isUnknownOrUndef()) |
| return val; |
| |
| // Lazy bindings are usually handled through getExistingLazyBinding(). |
| // We should unify these two code paths at some point. |
| if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(val)) |
| return val; |
| |
| llvm_unreachable("Unknown default value"); |
| } |
| |
| return std::nullopt; |
| } |
| |
| SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion, |
| RegionBindingsRef LazyBinding) { |
| SVal Result; |
| if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion)) |
| Result = getBindingForElement(LazyBinding, ER); |
| else |
| Result = getBindingForField(LazyBinding, |
| cast<FieldRegion>(LazyBindingRegion)); |
| |
| // FIXME: This is a hack to deal with RegionStore's inability to distinguish a |
| // default value for /part/ of an aggregate from a default value for the |
| // /entire/ aggregate. The most common case of this is when struct Outer |
| // has as its first member a struct Inner, which is copied in from a stack |
| // variable. In this case, even if the Outer's default value is symbolic, 0, |
| // or unknown, it gets overridden by the Inner's default value of undefined. |
| // |
| // This is a general problem -- if the Inner is zero-initialized, the Outer |
| // will now look zero-initialized. The proper way to solve this is with a |
| // new version of RegionStore that tracks the extent of a binding as well |
| // as the offset. |
| // |
| // This hack only takes care of the undefined case because that can very |
| // quickly result in a warning. |
| if (Result.isUndef()) |
| Result = UnknownVal(); |
| |
| return Result; |
| } |
| |
| SVal |
| RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B, |
| const TypedValueRegion *R, |
| QualType Ty) { |
| |
| // At this point we have already checked in either getBindingForElement or |
| // getBindingForField if 'R' has a direct binding. |
| |
| // Lazy binding? |
| Store lazyBindingStore = nullptr; |
| const SubRegion *lazyBindingRegion = nullptr; |
| std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R); |
| if (lazyBindingRegion) |
| return getLazyBinding(lazyBindingRegion, |
| getRegionBindings(lazyBindingStore)); |
| |
| // Record whether or not we see a symbolic index. That can completely |
| // be out of scope of our lookup. |
| bool hasSymbolicIndex = false; |
| |
| // FIXME: This is a hack to deal with RegionStore's inability to distinguish a |
| // default value for /part/ of an aggregate from a default value for the |
| // /entire/ aggregate. The most common case of this is when struct Outer |
| // has as its first member a struct Inner, which is copied in from a stack |
| // variable. In this case, even if the Outer's default value is symbolic, 0, |
| // or unknown, it gets overridden by the Inner's default value of undefined. |
| // |
| // This is a general problem -- if the Inner is zero-initialized, the Outer |
| // will now look zero-initialized. The proper way to solve this is with a |
| // new version of RegionStore that tracks the extent of a binding as well |
| // as the offset. |
| // |
| // This hack only takes care of the undefined case because that can very |
| // quickly result in a warning. |
| bool hasPartialLazyBinding = false; |
| |
| const SubRegion *SR = R; |
| while (SR) { |
| const MemRegion *Base = SR->getSuperRegion(); |
| if (std::optional<SVal> D = |
| getBindingForDerivedDefaultValue(B, Base, R, Ty)) { |
| if (D->getAs<nonloc::LazyCompoundVal>()) { |
| hasPartialLazyBinding = true; |
| break; |
| } |
| |
| return *D; |
| } |
| |
| if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) { |
| NonLoc index = ER->getIndex(); |
| if (!index.isConstant()) |
| hasSymbolicIndex = true; |
| } |
| |
| // If our super region is a field or element itself, walk up the region |
| // hierarchy to see if there is a default value installed in an ancestor. |
| SR = dyn_cast<SubRegion>(Base); |
| } |
| |
| if (isa<StackLocalsSpaceRegion>(R->getRawMemorySpace())) { |
| if (isa<ElementRegion>(R)) { |
| // Currently we don't reason specially about Clang-style vectors. Check |
| // if superR is a vector and if so return Unknown. |
| if (const TypedValueRegion *typedSuperR = |
| dyn_cast<TypedValueRegion>(R->getSuperRegion())) { |
| if (typedSuperR->getValueType()->isVectorType()) |
| return UnknownVal(); |
| } |
| } |
| |
| // FIXME: We also need to take ElementRegions with symbolic indexes into |
| // account. This case handles both directly accessing an ElementRegion |
| // with a symbolic offset, but also fields within an element with |
| // a symbolic offset. |
| if (hasSymbolicIndex) |
| return UnknownVal(); |
| |
| // Additionally allow introspection of a block's internal layout. |
| // Try to get direct binding if all other attempts failed thus far. |
| // Else, return UndefinedVal() |
| if (!hasPartialLazyBinding && !isa<BlockDataRegion>(R->getBaseRegion())) { |
| if (const std::optional<SVal> &V = B.getDefaultBinding(R)) |
| return *V; |
| return UndefinedVal(); |
| } |
| } |
| |
| // All other values are symbolic. |
| return svalBuilder.getRegionValueSymbolVal(R); |
| } |
| |
| SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B, |
| const ObjCIvarRegion* R) { |
| // Check if the region has a binding. |
| if (const std::optional<SVal> &V = B.getDirectBinding(R)) |
| return *V; |
| |
| const MemRegion *superR = R->getSuperRegion(); |
| |
| // Check if the super region has a default binding. |
| if (const std::optional<SVal> &V = B.getDefaultBinding(superR)) { |
| if (SymbolRef parentSym = V->getAsSymbol()) |
| return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); |
| |
| // Other cases: give up. |
| return UnknownVal(); |
| } |
| |
| return getBindingForLazySymbol(R); |
| } |
| |
| SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B, |
| const VarRegion *R) { |
| |
| // Check if the region has a binding. |
| if (std::optional<SVal> V = B.getDirectBinding(R)) |
| return *V; |
| |
| if (std::optional<SVal> V = B.getDefaultBinding(R)) |
| return *V; |
| |
| // Lazily derive a value for the VarRegion. |
| const VarDecl *VD = R->getDecl(); |
| const MemSpaceRegion *MS = R->getRawMemorySpace(); |
| |
| // Arguments are always symbolic. |
| if (isa<StackArgumentsSpaceRegion>(MS)) |
| return svalBuilder.getRegionValueSymbolVal(R); |
| |
| // Is 'VD' declared constant? If so, retrieve the constant value. |
| if (VD->getType().isConstQualified()) { |
| if (const Expr *Init = VD->getAnyInitializer()) { |
| if (std::optional<SVal> V = svalBuilder.getConstantVal(Init)) |
| return *V; |
| |
| // If the variable is const qualified and has an initializer but |
| // we couldn't evaluate initializer to a value, treat the value as |
| // unknown. |
| return UnknownVal(); |
| } |
| } |
| |
| // This must come after the check for constants because closure-captured |
| // constant variables may appear in UnknownSpaceRegion. |
| if (isa<UnknownSpaceRegion>(MS)) |
| return svalBuilder.getRegionValueSymbolVal(R); |
| |
| if (isa<GlobalsSpaceRegion>(MS)) { |
| QualType T = VD->getType(); |
| |
| // If we're in main(), then global initializers have not become stale yet. |
| if (B.isMainAnalysis()) |
| if (const Expr *Init = VD->getAnyInitializer()) |
| if (std::optional<SVal> V = svalBuilder.getConstantVal(Init)) |
| return *V; |
| |
| // Function-scoped static variables are default-initialized to 0; if they |
| // have an initializer, it would have been processed by now. |
| // FIXME: This is only true when we're starting analysis from main(). |
| // We're losing a lot of coverage here. |
| if (isa<StaticGlobalSpaceRegion>(MS)) |
| return svalBuilder.makeZeroVal(T); |
| |
| if (std::optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) { |
| assert(!V->getAs<nonloc::LazyCompoundVal>()); |
| return *V; |
| } |
| |
| return svalBuilder.getRegionValueSymbolVal(R); |
| } |
| |
| return UndefinedVal(); |
| } |
| |
| SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) { |
| // All other values are symbolic. |
| return svalBuilder.getRegionValueSymbolVal(R); |
| } |
| |
| const RegionStoreManager::SValListTy & |
| RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) { |
| // First, check the cache. |
| LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData()); |
| if (I != LazyBindingsMap.end()) |
| return I->second; |
| |
| // If we don't have a list of values cached, start constructing it. |
| SValListTy List; |
| |
| const SubRegion *LazyR = LCV.getRegion(); |
| RegionBindingsRef B = getRegionBindings(LCV.getStore()); |
| |
| // If this region had /no/ bindings at the time, there are no interesting |
| // values to return. |
| const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion()); |
| if (!Cluster) |
| return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); |
| |
| SmallVector<BindingPair, 32> Bindings; |
| collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR, |
| /*IncludeAllDefaultBindings=*/true); |
| for (SVal V : llvm::make_second_range(Bindings)) { |
| if (V.isUnknownOrUndef() || V.isConstant()) |
| continue; |
| |
| if (auto InnerLCV = V.getAs<nonloc::LazyCompoundVal>()) { |
| const SValListTy &InnerList = getInterestingValues(*InnerLCV); |
| List.insert(List.end(), InnerList.begin(), InnerList.end()); |
| } |
| |
| List.push_back(V); |
| } |
| |
| return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); |
| } |
| |
| NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B, |
| const TypedValueRegion *R) { |
| if (std::optional<nonloc::LazyCompoundVal> V = |
| getExistingLazyBinding(svalBuilder, B, R, false)) |
| return *V; |
| |
| return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R); |
| } |
| |
| SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B, |
| const TypedValueRegion *R) { |
| const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl(); |
| if (!RD->getDefinition()) |
| return UnknownVal(); |
| |
| // We also create a LCV for copying empty structs because then the store |
| // behavior doesn't depend on the struct layout. |
| // This way even an empty struct can carry taint, no matter if creduce drops |
| // the last field member or not. |
| |
| // Try to avoid creating a LCV if it would anyways just refer to a single |
| // default binding. |
| if (std::optional<SVal> Val = getUniqueDefaultBinding(B, R)) |
| return *Val; |
| return createLazyBinding(B, R); |
| } |
| |
| SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B, |
| const TypedValueRegion *R) { |
| assert(Ctx.getAsConstantArrayType(R->getValueType()) && |
| "Only constant array types can have compound bindings."); |
| |
| return createLazyBinding(B, R); |
| } |
| |
| bool RegionStoreManager::includedInBindings(Store store, |
| const MemRegion *region) const { |
| RegionBindingsRef B = getRegionBindings(store); |
| region = region->getBaseRegion(); |
| |
| // Quick path: if the base is the head of a cluster, the region is live. |
| if (B.lookup(region)) |
| return true; |
| |
| // Slow path: if the region is the VALUE of any binding, it is live. |
| for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) { |
| const ClusterBindings &Cluster = RI.getData(); |
| for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); |
| CI != CE; ++CI) { |
| SVal D = CI.getData(); |
| if (const MemRegion *R = D.getAsRegion()) |
| if (R->getBaseRegion() == region) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Binding values to regions. |
| //===----------------------------------------------------------------------===// |
| |
| StoreRef RegionStoreManager::killBinding(Store ST, Loc L) { |
| if (std::optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>()) |
| if (const MemRegion* R = LV->getRegion()) |
| return StoreRef(getRegionBindings(ST).removeBinding(R) |
| .asImmutableMap() |
| .getRootWithoutRetain(), |
| *this); |
| |
| return StoreRef(ST, *this); |
| } |
| |
| RegionBindingsRef |
| RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) { |
| llvm::TimeTraceScope TimeScope("RegionStoreManager::bind", |
| [&L]() { return locDescr(L); }); |
| // We only care about region locations. |
| auto MemRegVal = L.getAs<loc::MemRegionVal>(); |
| if (!MemRegVal) |
| return B; |
| |
| const MemRegion *R = MemRegVal->getRegion(); |
| |
| // Check if the region is a struct region. |
| if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) { |
| QualType Ty = TR->getValueType(); |
| if (Ty->isArrayType()) |
| return bindArray(B, TR, V); |
| if (Ty->isStructureOrClassType()) |
| return bindStruct(B, TR, V); |
| if (Ty->isVectorType()) |
| return bindVector(B, TR, V); |
| if (Ty->isUnionType()) |
| return bindAggregate(B, TR, V); |
| } |
| |
| // Binding directly to a symbolic region should be treated as binding |
| // to element 0. |
| if (const auto *SymReg = dyn_cast<SymbolicRegion>(R)) { |
| QualType Ty = SymReg->getPointeeStaticType(); |
| if (Ty->isVoidType()) |
| Ty = StateMgr.getContext().CharTy; |
| R = GetElementZeroRegion(SymReg, Ty); |
| } |
| |
| assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) && |
| "'this' pointer is not an l-value and is not assignable"); |
| |
| // Clear out bindings that may overlap with this binding. |
| RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R)); |
| |
| // LazyCompoundVals should be always bound as 'default' bindings. |
| auto KeyKind = isa<nonloc::LazyCompoundVal>(V) ? BindingKey::Default |
| : BindingKey::Direct; |
| return NewB.addBinding(BindingKey::Make(R, KeyKind), V); |
| } |
| |
| RegionBindingsRef |
| RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B, |
| const MemRegion *R, |
| QualType T) { |
| SVal V; |
| |
| if (Loc::isLocType(T)) |
| V = svalBuilder.makeNullWithType(T); |
| else if (T->isIntegralOrEnumerationType()) |
| V = svalBuilder.makeZeroVal(T); |
| else if (T->isStructureOrClassType() || T->isArrayType()) { |
| // Set the default value to a zero constant when it is a structure |
| // or array. The type doesn't really matter. |
| V = svalBuilder.makeZeroVal(Ctx.IntTy); |
| } |
| else { |
| // We can't represent values of this type, but we still need to set a value |
| // to record that the region has been initialized. |
| // If this assertion ever fires, a new case should be added above -- we |
| // should know how to default-initialize any value we can symbolicate. |
| assert(!SymbolManager::canSymbolicate(T) && "This type is representable"); |
| V = UnknownVal(); |
| } |
| |
| return B.addBinding(R, BindingKey::Default, V); |
| } |
| |
| std::optional<RegionBindingsRef> RegionStoreManager::tryBindSmallArray( |
| RegionBindingsConstRef B, const TypedValueRegion *R, const ArrayType *AT, |
| nonloc::LazyCompoundVal LCV) { |
| |
| auto CAT = dyn_cast<ConstantArrayType>(AT); |
| |
| // If we don't know the size, create a lazyCompoundVal instead. |
| if (!CAT) |
| return std::nullopt; |
| |
| QualType Ty = CAT->getElementType(); |
| if (!(Ty->isScalarType() || Ty->isReferenceType())) |
| return std::nullopt; |
| |
| // If the array is too big, create a LCV instead. |
| uint64_t ArrSize = CAT->getLimitedSize(); |
| if (ArrSize > SmallArrayLimit) |
| return std::nullopt; |
| |
| RegionBindingsRef NewB = B; |
| |
| for (uint64_t i = 0; i < ArrSize; ++i) { |
| auto Idx = svalBuilder.makeArrayIndex(i); |
| const ElementRegion *SrcER = |
| MRMgr.getElementRegion(Ty, Idx, LCV.getRegion(), Ctx); |
| SVal V = getBindingForElement(getRegionBindings(LCV.getStore()), SrcER); |
| |
| const ElementRegion *DstER = MRMgr.getElementRegion(Ty, Idx, R, Ctx); |
| NewB = bind(NewB, loc::MemRegionVal(DstER), V); |
| } |
| |
| return NewB; |
| } |
| |
| RegionBindingsRef |
| RegionStoreManager::bindArray(RegionBindingsConstRef B, |
| const TypedValueRegion* R, |
| SVal Init) { |
| llvm::TimeTraceScope TimeScope("RegionStoreManager::bindArray", |
| [R]() { return R->getDescriptiveName(); }); |
| |
| const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType())); |
| QualType ElementTy = AT->getElementType(); |
| std::optional<uint64_t> Size; |
| |
| if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT)) |
| Size = CAT->getZExtSize(); |
| |
| // Check if the init expr is a literal. If so, bind the rvalue instead. |
| // FIXME: It's not responsibility of the Store to transform this lvalue |
| // to rvalue. ExprEngine or maybe even CFG should do this before binding. |
| if (std::optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) { |
| SVal V = getBinding(B.asStore(), *MRV, R->getValueType()); |
| return bindAggregate(B, R, V); |
| } |
| |
| // Handle lazy compound values. |
| if (std::optional<nonloc::LazyCompoundVal> LCV = |
| Init.getAs<nonloc::LazyCompoundVal>()) { |
| if (std::optional<RegionBindingsRef> NewB = |
| tryBindSmallArray(B, R, AT, *LCV)) |
| return *NewB; |
| |
| return bindAggregate(B, R, Init); |
| } |
| |
| if (Init.isUnknown()) |
| return bindAggregate(B, R, UnknownVal()); |
| |
| // Remaining case: explicit compound values. |
| const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>(); |
| nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); |
| uint64_t i = 0; |
| |
| RegionBindingsRef NewB(B); |
| |
| for (; Size ? i < *Size : true; ++i, ++VI) { |
| // The init list might be shorter than the array length. |
| if (VI == VE) |
| break; |
| |
| NonLoc Idx = svalBuilder.makeArrayIndex(i); |
| const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx); |
| |
| if (ElementTy->isStructureOrClassType()) |
| NewB = bindStruct(NewB, ER, *VI); |
| else if (ElementTy->isArrayType()) |
| NewB = bindArray(NewB, ER, *VI); |
| else |
| NewB = bind(NewB, loc::MemRegionVal(ER), *VI); |
| } |
| |
| // If the init list is shorter than the array length (or the array has |
| // variable length), set the array default value. Values that are already set |
| // are not overwritten. |
| if (!Size || i < *Size) |
| NewB = setImplicitDefaultValue(NewB, R, ElementTy); |
| |
| return NewB; |
| } |
| |
| RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B, |
| const TypedValueRegion* R, |
| SVal V) { |
| llvm::TimeTraceScope TimeScope("RegionStoreManager::bindVector", |
| [R]() { return R->getDescriptiveName(); }); |
| QualType T = R->getValueType(); |
| const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs. |
| |
| // Handle lazy compound values and symbolic values. |
| if (isa<nonloc::LazyCompoundVal, nonloc::SymbolVal>(V)) |
| return bindAggregate(B, R, V); |
| |
| // We may get non-CompoundVal accidentally due to imprecise cast logic or |
| // that we are binding symbolic struct value. Kill the field values, and if |
| // the value is symbolic go and bind it as a "default" binding. |
| if (!isa<nonloc::CompoundVal>(V)) { |
| return bindAggregate(B, R, UnknownVal()); |
| } |
| |
| QualType ElemType = VT->getElementType(); |
| nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>(); |
| nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); |
| unsigned index = 0, numElements = VT->getNumElements(); |
| RegionBindingsRef NewB(B); |
| |
| for ( ; index != numElements ; ++index) { |
| if (VI == VE) |
| break; |
| |
| NonLoc Idx = svalBuilder.makeArrayIndex(index); |
| const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx); |
| |
| if (ElemType->isArrayType()) |
| NewB = bindArray(NewB, ER, *VI); |
| else if (ElemType->isStructureOrClassType()) |
| NewB = bindStruct(NewB, ER, *VI); |
| else |
| NewB = bind(NewB, loc::MemRegionVal(ER), *VI); |
| } |
| return NewB; |
| } |
| |
| std::optional<SVal> |
| RegionStoreManager::getUniqueDefaultBinding(RegionBindingsConstRef B, |
| const TypedValueRegion *R) const { |
| if (R != R->getBaseRegion()) |
| return std::nullopt; |
| |
| const auto *Cluster = B.lookup(R); |
| if (!Cluster || !llvm::hasSingleElement(*Cluster)) |
| return std::nullopt; |
| |
| const auto [Key, Value] = *Cluster->begin(); |
| return Key.isDirect() ? std::optional<SVal>{} : Value; |
| } |
| |
| std::optional<SVal> |
| RegionStoreManager::getUniqueDefaultBinding(nonloc::LazyCompoundVal LCV) const { |
| RegionBindingsConstRef B = getRegionBindings(LCV.getStore()); |
| return getUniqueDefaultBinding(B, LCV.getRegion()); |
| } |
| |
| std::optional<RegionBindingsRef> RegionStoreManager::tryBindSmallStruct( |
| RegionBindingsConstRef B, const TypedValueRegion *R, const RecordDecl *RD, |
| nonloc::LazyCompoundVal LCV) { |
| // If we try to copy a Conjured value representing the value of the whole |
| // struct, don't try to element-wise copy each field. |
| // That would unnecessarily bind Derived symbols slicing off the subregion for |
| // the field from the whole Conjured symbol. |
| // |
| // struct Window { int width; int height; }; |
| // Window getWindow(); <-- opaque fn. |
| // Window w = getWindow(); <-- conjures a new Window. |
| // Window w2 = w; <-- trivial copy "w", calling "tryBindSmallStruct" |
| // |
| // We should not end up with a new Store for "w2" like this: |
| // Direct [ 0..31]: Derived{Conj{}, w.width} |
| // Direct [32..63]: Derived{Conj{}, w.height} |
| // Instead, we should just bind that Conjured value instead. |
| if (std::optional<SVal> Val = getUniqueDefaultBinding(LCV)) { |
| return B.addBinding(BindingKey::Make(R, BindingKey::Default), Val.value()); |
| } |
| |
| FieldVector Fields; |
| |
| if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD)) |
| if (Class->getNumBases() != 0 || Class->getNumVBases() != 0) |
| return std::nullopt; |
| |
| for (const auto *FD : RD->fields()) { |
| if (FD->isUnnamedBitField()) |
| continue; |
| |
| // If there are too many fields, or if any of the fields are aggregates, |
| // just use the LCV as a default binding. |
| if (Fields.size() == SmallStructLimit) |
| return std::nullopt; |
| |
| QualType Ty = FD->getType(); |
| |
| // Zero length arrays are basically no-ops, so we also ignore them here. |
| if (Ty->isConstantArrayType() && |
| Ctx.getConstantArrayElementCount(Ctx.getAsConstantArrayType(Ty)) == 0) |
| continue; |
| |
| if (!(Ty->isScalarType() || Ty->isReferenceType())) |
| return std::nullopt; |
| |
| Fields.push_back(FD); |
| } |
| |
| RegionBindingsRef NewB = B; |
| |
| for (const FieldDecl *Field : Fields) { |
| const FieldRegion *SourceFR = MRMgr.getFieldRegion(Field, LCV.getRegion()); |
| SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR); |
| |
| const FieldRegion *DestFR = MRMgr.getFieldRegion(Field, R); |
| NewB = bind(NewB, loc::MemRegionVal(DestFR), V); |
| } |
| |
| return NewB; |
| } |
| |
| RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B, |
| const TypedValueRegion *R, |
| SVal V) { |
| llvm::TimeTraceScope TimeScope("RegionStoreManager::bindStruct", |
| [R]() { return R->getDescriptiveName(); }); |
| QualType T = R->getValueType(); |
| assert(T->isStructureOrClassType()); |
| |
| const RecordType* RT = T->castAs<RecordType>(); |
| const RecordDecl *RD = RT->getDecl(); |
| |
| if (!RD->isCompleteDefinition()) |
| return B; |
| |
| // Handle lazy compound values and symbolic values. |
| if (std::optional<nonloc::LazyCompoundVal> LCV = |
| V.getAs<nonloc::LazyCompoundVal>()) { |
| if (std::optional<RegionBindingsRef> NewB = |
| tryBindSmallStruct(B, R, RD, *LCV)) |
| return *NewB; |
| return bindAggregate(B, R, V); |
| } |
| if (isa<nonloc::SymbolVal>(V)) |
| return bindAggregate(B, R, V); |
| |
| // We may get non-CompoundVal accidentally due to imprecise cast logic or |
| // that we are binding symbolic struct value. Kill the field values, and if |
| // the value is symbolic go and bind it as a "default" binding. |
| if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) |
| return bindAggregate(B, R, UnknownVal()); |
| |
| // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable) |
| // list of other values. It appears pretty much only when there's an actual |
| // initializer list expression in the program, and the analyzer tries to |
| // unwrap it as soon as possible. |
| // This code is where such unwrap happens: when the compound value is put into |
| // the object that it was supposed to initialize (it's an *initializer* list, |
| // after all), instead of binding the whole value to the whole object, we bind |
| // sub-values to sub-objects. Sub-values may themselves be compound values, |
| // and in this case the procedure becomes recursive. |
| // FIXME: The annoying part about compound values is that they don't carry |
| // any sort of information about which value corresponds to which sub-object. |
| // It's simply a list of values in the middle of nowhere; we expect to match |
| // them to sub-objects, essentially, "by index": first value binds to |
| // the first field, second value binds to the second field, etc. |
| // It would have been much safer to organize non-lazy compound values as |
| // a mapping from fields/bases to values. |
| const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>(); |
| nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); |
| |
| RegionBindingsRef NewB(B); |
| |
| // In C++17 aggregates may have base classes, handle those as well. |
| // They appear before fields in the initializer list / compound value. |
| if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) { |
| // If the object was constructed with a constructor, its value is a |
| // LazyCompoundVal. If it's a raw CompoundVal, it means that we're |
| // performing aggregate initialization. The only exception from this |
| // rule is sending an Objective-C++ message that returns a C++ object |
| // to a nil receiver; in this case the semantics is to return a |
| // zero-initialized object even if it's a C++ object that doesn't have |
| // this sort of constructor; the CompoundVal is empty in this case. |
| assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) && |
| "Non-aggregates are constructed with a constructor!"); |
| |
| for (const auto &B : CRD->bases()) { |
| // (Multiple inheritance is fine though.) |
| assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!"); |
| |
| if (VI == VE) |
| break; |
| |
| QualType BTy = B.getType(); |
| assert(BTy->isStructureOrClassType() && "Base classes must be classes!"); |
| |
| const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl(); |
| assert(BRD && "Base classes must be C++ classes!"); |
| |
| const CXXBaseObjectRegion *BR = |
| MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false); |
| |
| NewB = bindStruct(NewB, BR, *VI); |
| |
| ++VI; |
| } |
| } |
| |
| RecordDecl::field_iterator FI, FE; |
| |
| for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) { |
| |
| if (VI == VE) |
| break; |
| |
| // Skip any unnamed bitfields to stay in sync with the initializers. |
| if (FI->isUnnamedBitField()) |
| continue; |
| |
| QualType FTy = FI->getType(); |
| const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R); |
| |
| if (FTy->isArrayType()) |
| NewB = bindArray(NewB, FR, *VI); |
| else if (FTy->isStructureOrClassType()) |
| NewB = bindStruct(NewB, FR, *VI); |
| else |
| NewB = bind(NewB, loc::MemRegionVal(FR), *VI); |
| ++VI; |
| } |
| |
| // There may be fewer values in the initialize list than the fields of struct. |
| if (FI != FE) { |
| NewB = NewB.addBinding(R, BindingKey::Default, |
| svalBuilder.makeIntVal(0, false)); |
| } |
| |
| return NewB; |
| } |
| |
| RegionBindingsRef |
| RegionStoreManager::bindAggregate(RegionBindingsConstRef B, |
| const TypedRegion *R, |
| SVal Val) { |
| llvm::TimeTraceScope TimeScope("RegionStoreManager::bindAggregate", |
| [R]() { return R->getDescriptiveName(); }); |
| // Remove the old bindings, using 'R' as the root of all regions |
| // we will invalidate. Then add the new binding. |
| return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // State pruning. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class RemoveDeadBindingsWorker |
| : public ClusterAnalysis<RemoveDeadBindingsWorker> { |
| SmallVector<const SymbolicRegion *, 12> Postponed; |
| SymbolReaper &SymReaper; |
| const StackFrameContext *CurrentLCtx; |
| |
| public: |
| RemoveDeadBindingsWorker(RegionStoreManager &rm, |
| ProgramStateManager &stateMgr, |
| RegionBindingsRef b, SymbolReaper &symReaper, |
| const StackFrameContext *LCtx) |
| : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b), |
| SymReaper(symReaper), CurrentLCtx(LCtx) {} |
| |
| // Called by ClusterAnalysis. |
| void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C); |
| void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); |
| using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster; |
| |
| using ClusterAnalysis::AddToWorkList; |
| |
| bool AddToWorkList(const MemRegion *R); |
| |
| bool UpdatePostponed(); |
| void VisitBinding(SVal V); |
| }; |
| } |
| |
| bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) { |
| const MemRegion *BaseR = R->getBaseRegion(); |
| return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR)); |
| } |
| |
| void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR, |
| const ClusterBindings &C) { |
| |
| if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) { |
| if (SymReaper.isLive(VR)) |
| AddToWorkList(baseR, &C); |
| |
| return; |
| } |
| |
| if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) { |
| if (SymReaper.isLive(SR->getSymbol())) |
| AddToWorkList(SR, &C); |
| else |
| Postponed.push_back(SR); |
| |
| return; |
| } |
| |
| if (isa<NonStaticGlobalSpaceRegion>(baseR)) { |
| AddToWorkList(baseR, &C); |
| return; |
| } |
| |
| // CXXThisRegion in the current or parent location context is live. |
| if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) { |
| const auto *StackReg = |
| cast<StackArgumentsSpaceRegion>(TR->getSuperRegion()); |
| const StackFrameContext *RegCtx = StackReg->getStackFrame(); |
| if (CurrentLCtx && |
| (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))) |
| AddToWorkList(TR, &C); |
| } |
| } |
| |
| void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR, |
| const ClusterBindings *C) { |
| if (!C) |
| return; |
| |
| // Mark the symbol for any SymbolicRegion with live bindings as live itself. |
| // This means we should continue to track that symbol. |
| if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR)) |
| SymReaper.markLive(SymR->getSymbol()); |
| |
| for (const auto &[Key, Val] : *C) { |
| // Element index of a binding key is live. |
| SymReaper.markElementIndicesLive(Key.getRegion()); |
| |
| VisitBinding(Val); |
| } |
| } |
| |
| void RemoveDeadBindingsWorker::VisitBinding(SVal V) { |
| // Is it a LazyCompoundVal? All referenced regions are live as well. |
| // The LazyCompoundVal itself is not live but should be readable. |
| if (auto LCS = V.getAs<nonloc::LazyCompoundVal>()) { |
| SymReaper.markLazilyCopied(LCS->getRegion()); |
| |
| for (SVal V : RM.getInterestingValues(*LCS)) { |
| if (auto DepLCS = V.getAs<nonloc::LazyCompoundVal>()) |
| SymReaper.markLazilyCopied(DepLCS->getRegion()); |
| else |
| VisitBinding(V); |
| } |
| |
| return; |
| } |
| |
| // If V is a region, then add it to the worklist. |
| if (const MemRegion *R = V.getAsRegion()) { |
| AddToWorkList(R); |
| SymReaper.markLive(R); |
| |
| // All regions captured by a block are also live. |
| if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) { |
| for (auto Var : BR->referenced_vars()) |
| AddToWorkList(Var.getCapturedRegion()); |
| } |
| } |
| |
| |
| // Update the set of live symbols. |
| for (SymbolRef Sym : V.symbols()) |
| SymReaper.markLive(Sym); |
| } |
| |
| bool RemoveDeadBindingsWorker::UpdatePostponed() { |
| // See if any postponed SymbolicRegions are actually live now, after |
| // having done a scan. |
| bool Changed = false; |
| |
| for (const SymbolicRegion *SR : Postponed) { |
| if (SymReaper.isLive(SR->getSymbol())) { |
| Changed |= AddToWorkList(SR); |
| SR = nullptr; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| StoreRef RegionStoreManager::removeDeadBindings(Store store, |
| const StackFrameContext *LCtx, |
| SymbolReaper& SymReaper) { |
| RegionBindingsRef B = getRegionBindings(store); |
| RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx); |
| W.GenerateClusters(); |
| |
| // Enqueue the region roots onto the worklist. |
| for (const MemRegion *Reg : SymReaper.regions()) { |
| W.AddToWorkList(Reg); |
| } |
| |
| do W.RunWorkList(); while (W.UpdatePostponed()); |
| |
| // We have now scanned the store, marking reachable regions and symbols |
| // as live. We now remove all the regions that are dead from the store |
| // as well as update DSymbols with the set symbols that are now dead. |
| for (const MemRegion *Base : llvm::make_first_range(B)) { |
| // If the cluster has been visited, we know the region has been marked. |
| // Otherwise, remove the dead entry. |
| if (!W.isVisited(Base)) |
| B = B.remove(Base); |
| } |
| |
| return StoreRef(B.asStore(), *this); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Utility methods. |
| //===----------------------------------------------------------------------===// |
| |
| void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL, |
| unsigned int Space, bool IsDot) const { |
| RegionBindingsRef Bindings = getRegionBindings(S); |
| |
| Indent(Out, Space, IsDot) << "\"store\": "; |
| |
| if (Bindings.isEmpty()) { |
| Out << "null," << NL; |
| return; |
| } |
| |
| Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL; |
| Bindings.printJson(Out, NL, Space + 1, IsDot); |
| Indent(Out, Space, IsDot) << "]}," << NL; |
| } |