| //===- LowerContractionToSVEI8MMPattern.cpp - Contract to I8MM --*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements lowering patterns from vector.contract to operations |
| // that map to instructions from the SVE FEAT_I8MM extension. |
| // |
| // TODO: There may be opportunities to unify this with a similar pattern |
| // for Neon. See: |
| // https://github.com/llvm/llvm-project/issues/145559 |
| // LowerContractionToNeonI8MMPattern.cpp |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/ArmSVE/IR/ArmSVEDialect.h" |
| #include "mlir/Dialect/ArmSVE/Transforms/Transforms.h" |
| #include "mlir/Dialect/Func/IR/FuncOps.h" |
| #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/PatternMatch.h" |
| |
| #include "mlir/Dialect/UB/IR/UBOps.h" |
| |
| #define DEBUG_TYPE "lower-contract-to-arm-sve-i8mm" |
| |
| using namespace mlir; |
| |
| namespace { |
| // Get the operand of a `vector.contract`. This function is intended to abstract |
| // away from the particular way a value is extended before feeding it into the |
| // `vector.contract` - via zero-extend or an explicit or implicit sign-extend |
| // (for implicit sign-extension see `vector.contract` documentation). |
| // |
| // The template parameter `Op` indicates the extension operation (explicit or |
| // implicit) for which we are checking. |
| // |
| // Return success only for extensions from `i8` to `i32`. |
| template <typename Op> |
| std::optional<Value> getExtOperand(Value v) { |
| |
| static_assert(llvm::is_one_of<Op, arith::ExtSIOp, arith::ExtUIOp>::value, |
| "Must be instantiated with either sign- or zero- extension op"); |
| |
| // If the operand is not defined by an explicit extend operation of the |
| // accepted operation type allow for an implicit sign-extension. |
| auto extOp = dyn_cast_or_null<Op>(v.getDefiningOp()); |
| if (!extOp) { |
| if constexpr (std::is_same<Op, arith::ExtSIOp>::value) { |
| auto vTy = cast<VectorType>(v.getType()); |
| if (!vTy.getElementType().isSignlessInteger(8)) |
| return {}; |
| return v; |
| } |
| return {}; |
| } |
| |
| // If the operand is defined by an explicit extend operation of the accepted |
| // operation type, check it's extended from `i8` to `i32`. |
| auto inOp = extOp.getIn(); |
| auto inTy = dyn_cast<VectorType>(inOp.getType()); |
| if (!inTy || !inTy.getElementType().isSignlessInteger(8)) |
| return {}; |
| |
| auto outTy = dyn_cast<VectorType>(extOp.getType()); |
| if (!outTy || !outTy.getElementType().isSignlessInteger(32)) |
| return {}; |
| |
| return inOp; |
| } |
| |
| // Designate the operation (resp. instruction) used to do sub-tile matrix |
| // multiplications. |
| enum class MMLA { |
| Signed, // smmla |
| Unsigned, // ummla |
| Mixed, // usmmla |
| MixedSwapped // usmmla with LHS and RHS swapped |
| }; |
| |
| // Create the matrix mulitply and accumulate operation according to `op`. |
| Value createMMLA(PatternRewriter &rewriter, MMLA op, Location loc, |
| mlir::VectorType accType, Value acc, Value lhs, Value rhs) { |
| switch (op) { |
| case MMLA::Signed: |
| return rewriter.create<arm_sve::SmmlaOp>(loc, accType, acc, lhs, rhs); |
| case MMLA::Unsigned: |
| return rewriter.create<arm_sve::UmmlaOp>(loc, accType, acc, lhs, rhs); |
| case MMLA::Mixed: |
| return rewriter.create<arm_sve::UsmmlaOp>(loc, accType, acc, lhs, rhs); |
| case MMLA::MixedSwapped: |
| // The accumulator comes transposed and the result will be transposed |
| // later, so all we have to do here is swap the operands. |
| return rewriter.create<arm_sve::UsmmlaOp>(loc, accType, acc, rhs, lhs); |
| } |
| } |
| |
| /// Lower a contraction operation that performs a matrix multiplication |
| /// of two 8-bit integer matrix tiles with logical dimensions <Mx8> and <8x[N]> |
| /// for the left-hand side and the right-hand side, respectively, |
| /// yielding a <Mx[N]> 32-bit integer result. |
| /// |
| /// The operands' shapes are such that the operands can be evenly split into |
| /// sub-tiles with dimensions as expected by the targeted FEAT_I8MM |
| /// instructions. The intent is that M and N are chosen (by higher level |
| /// transforms) in such a way as to maximise register usage. The main use case |
| /// we envision as of now is MMT4D, thus the RHS operand is expected |
| /// pre-transposed. |
| /// |
| /// The matrix multiplication is performed by unrolling the usual tiled matrix |
| /// multiplication algorithm using sub-tiles with dimensions <2x8> for the LHS, |
| /// <8x[2]> for the RHS, and <2x[2]> for the result and the input accumulator. |
| /// |
| /// One way to illustrate the operation is as follows: |
| /// |
| /// RHS<8x[N]>: <8x[2]> <8x[2]> ... <8x[2]> |
| /// +----------------------------- |
| /// LHS<Mx8>: <2x8> | <2x[2]> <2x[2]> ... <2x[2]> |
| /// <2x8> | <2x[2]> <2x[2]> ... <2x[2]> |
| /// ... | ... ... ... ... |
| /// <2x8> | <2x[2]> <2x[2]> ... <2x[2]> |
| /// |
| /// The RHS operand is unpacked into N/2 values, each representing a sequence of |
| /// VSCALE number of sub-tiles with dimensions <8x2>. |
| /// The LHS operand is initially unpacked into M/2 values, each representing a |
| /// sub-tile with dimensions <2x8>, and then each such sub-tile is replicated |
| /// VSCALE times. |
| /// Multiplying thus replicated LHS sub-tile by the corresponding RHS sub-tile |
| /// correctly computes an entire result sub-tile. |
| class LowerContractionToSVEI8MMPattern |
| : public OpRewritePattern<vector::ContractionOp> { |
| public: |
| using OpRewritePattern::OpRewritePattern; |
| LogicalResult matchAndRewrite(vector::ContractionOp op, |
| PatternRewriter &rewriter) const override { |
| |
| Location loc = op.getLoc(); |
| mlir::VectorType lhsType = op.getLhsType(); |
| mlir::VectorType rhsType = op.getRhsType(); |
| |
| // Check the rank the types so we can safely examine their dimensions. |
| if (lhsType.getRank() != 2 || rhsType.getRank() != 2) |
| return rewriter.notifyMatchFailure(op, "non-matching operand shape"); |
| |
| auto M = lhsType.getDimSize(0); |
| auto N = rhsType.getDimSize(0); |
| auto K = rhsType.getDimSize(1); |
| |
| // Check the operands have the expected shape: |
| // * for LHS: fixed vector MxK |
| // * for RHS: scalable vector [N]xK |
| // * K == 8 |
| // * M and N even and at least 2 |
| if (lhsType.isScalable() || !rhsType.getScalableDims()[0] || |
| rhsType.getScalableDims()[1] || lhsType.getDimSize(1) != K || K != 8 || |
| M < 2 || M % 2 != 0 || N < 2 || N % 2 != 0 || |
| !rhsType.getScalableDims()[0]) |
| return rewriter.notifyMatchFailure(op, "non-matching operand shape"); |
| |
| // Check permutation maps. For now only accept |
| // lhs: (d0, d1, d2) -> (d0, d2) |
| // rhs: (d0, d1, d2) -> (d1, d2) |
| // acc: (d0, d1, d2) -> (d0, d1) |
| // This corresponds to matrix multiplication with transposed RHS. |
| if (op.getIndexingMapsArray()[0] != |
| AffineMap::getMultiDimMapWithTargets(3, ArrayRef{0u, 2u}, |
| op.getContext()) || |
| op.getIndexingMapsArray()[1] != |
| AffineMap::getMultiDimMapWithTargets(3, ArrayRef{1u, 2u}, |
| op.getContext()) || |
| op.getIndexingMapsArray()[2] != |
| AffineMap::getMultiDimMapWithTargets(3, ArrayRef{0u, 1u}, |
| op.getContext())) |
| return rewriter.notifyMatchFailure(op, "non-matching permutation maps"); |
| |
| // Check iterator types for matrix multiplication. |
| auto itTypes = op.getIteratorTypesArray(); |
| if (itTypes.size() != 3 || itTypes[0] != vector::IteratorType::parallel || |
| itTypes[1] != vector::IteratorType::parallel || |
| itTypes[2] != vector::IteratorType::reduction) |
| return rewriter.notifyMatchFailure( |
| op, "iterator types do not correspond to matrix multiplication"); |
| |
| // Check the combining kind is addition. |
| if (op.getKind() != vector::CombiningKind::ADD) |
| return rewriter.notifyMatchFailure(op, |
| "combining kind is not an addition"); |
| |
| // Check the output is a vector of i32 elements. |
| auto outTy = dyn_cast<VectorType>(op.getResultType()); |
| if (!outTy || outTy.getElementType() != rewriter.getI32Type()) |
| return rewriter.notifyMatchFailure(op, |
| "output type is not a vector of i32"); |
| |
| // Check inputs are sign-/zero- extensions from i8 to i32. Get the values |
| // before the extension. All four signed/unsigned combinations for input |
| // operands are supported, but they are lowered to different operations. |
| // Determine which is the appropriate operation to lower to. |
| MMLA mmlaOp = MMLA::Signed; |
| auto maybeLhs = getExtOperand<arith::ExtSIOp>(op.getLhs()); |
| if (!maybeLhs) { |
| mmlaOp = MMLA::Unsigned; |
| maybeLhs = getExtOperand<arith::ExtUIOp>(op.getLhs()); |
| } |
| if (!maybeLhs) |
| return rewriter.notifyMatchFailure( |
| op, "LHS is not a sign- or zero- extended i8"); |
| |
| auto maybeRhs = getExtOperand<arith::ExtSIOp>(op.getRhs()); |
| if (maybeRhs) { |
| if (mmlaOp == MMLA::Unsigned) |
| mmlaOp = MMLA::Mixed; |
| } else { |
| if (mmlaOp == MMLA::Signed) |
| mmlaOp = MMLA::MixedSwapped; |
| maybeRhs = getExtOperand<arith::ExtUIOp>(op.getRhs()); |
| } |
| if (!maybeRhs) |
| return rewriter.notifyMatchFailure( |
| op, "RHS is not a sign- or zero- extended i8"); |
| |
| // One-dimensional vector types for arm_sve.*mmla |
| auto nxv16i8 = VectorType::get(/*shape=*/16, rewriter.getI8Type(), |
| /*scalableDims=*/{true}); |
| auto nxv4i32 = VectorType::get(/*shape=*/4, rewriter.getI32Type(), |
| /*scalableDims=*/{true}); |
| |
| // Extract LHS sub-tiles with logicall shape <2x8>. |
| SmallVector<Value> lhsTile; |
| for (int64_t i = 0; i < M; i += 2) { |
| // Extract two consecutive rows of the LHS tile. |
| auto r0 = rewriter.create<vector::ExtractOp>(loc, *maybeLhs, |
| ArrayRef<int64_t>{i}); |
| auto r1 = rewriter.create<vector::ExtractOp>(loc, *maybeLhs, |
| ArrayRef<int64_t>{i + 1}); |
| // Concatenate to obtain a 16 x i8 flattened sub-tile. |
| auto t = rewriter.create<vector::ShuffleOp>( |
| loc, r0, r1, |
| llvm::ArrayRef<int64_t>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, |
| 14, 15}); |
| // Turn it into a scalable vector. |
| auto s = rewriter.create<vector::ScalableInsertOp>( |
| loc, t, rewriter.create<ub::PoisonOp>(loc, nxv16i8), 0); |
| // Replicate the sub-tile VSCALE times to fill the entire vector. |
| auto r = rewriter.create<arm_sve::DupQLaneOp>(loc, s, 0); |
| lhsTile.push_back(r); |
| } |
| |
| // "Flatten" the RHS tile from <[N]x8> to <[8*N]>. |
| auto rhs = rewriter.create<vector::ShapeCastOp>( |
| maybeRhs->getLoc(), |
| VectorType::get(/*shape=*/8 * N, rewriter.getI8Type(), |
| /*scalableDims=*/{true}), |
| *maybeRhs); |
| |
| // Extract the RHS sub-tiles with logical shape <8x[2]>. |
| SmallVector<Value> rhsTile; |
| for (int64_t j = 0; j < N; j += 2) |
| rhsTile.push_back( |
| rewriter.create<vector::ScalableExtractOp>(loc, nxv16i8, rhs, j * 8)); |
| |
| // Handy types for packing/unpacking of the accumulator tile. |
| auto accRowTy = VectorType::get(/*shape=*/N, rewriter.getI32Type(), |
| /*scalableDims=*/{true}); |
| auto accRowX2Ty = VectorType::get(/*shape=*/2 * N, rewriter.getI32Type(), |
| /*scalableDims=*/{true}); |
| auto accRow64Ty = VectorType::get(/*shape=*/N / 2, rewriter.getI64Type(), |
| /*scalableDims=*/{true}); |
| auto accRowX264Ty = VectorType::get(/*shape=*/N, rewriter.getI64Type(), |
| /*scalableDims=*/{true}); |
| |
| // Extract and pack the ACC sub-tiles. |
| SmallVector<Value> accTile; |
| for (int64_t i = 0; i < M; i += 2) { |
| // Extract two consecutive rows of the accumulator tile. |
| auto r0 = rewriter.create<vector::ExtractOp>(loc, op.getAcc(), |
| ArrayRef<int64_t>{i}); |
| auto r1 = rewriter.create<vector::ExtractOp>(loc, op.getAcc(), |
| ArrayRef<int64_t>{i + 1}); |
| Value accTileVec; |
| if (mmlaOp == MMLA::MixedSwapped) { |
| // We need to swap the positions of the LHS and RHS (since we don't have |
| // a signed * unsigned operation), but then each individual 2x2 tile of |
| // the acumulator and (later) the result need to be transposed. |
| accTileVec = rewriter.create<vector::InterleaveOp>(loc, r0, r1); |
| } else { |
| // Bitcast them to 64-bit elements, so subsequent |
| // interleave/deinterleave work on pairs of 32-bit numbers. |
| auto r0I64 = rewriter.create<vector::BitCastOp>(loc, accRow64Ty, r0); |
| auto r1I64 = rewriter.create<vector::BitCastOp>(loc, accRow64Ty, r1); |
| |
| // Interleave the rows, effectively flattening each 2x2 tile into 4 |
| // consecutive elements. |
| auto intrI64 = rewriter.create<vector::InterleaveOp>(loc, r0I64, r1I64); |
| |
| // Bitcast back to 32-bit elements. |
| accTileVec = |
| rewriter.create<vector::BitCastOp>(loc, accRowX2Ty, intrI64); |
| } |
| // Extract ACC sub-tiles. |
| for (int64_t j = 0; j < N; j += 2) |
| accTile.push_back(rewriter.create<vector::ScalableExtractOp>( |
| loc, nxv4i32, accTileVec, j * 2)); |
| } |
| |
| // Emit sub-tile matrix multiplications. |
| SmallVector<Value> outTile; |
| for (int64_t i = 0; i < M / 2; ++i) |
| for (int64_t j = 0; j < N / 2; ++j) { |
| Value mmla = createMMLA(rewriter, mmlaOp, loc, nxv4i32, |
| accTile[i * N / 2 + j], lhsTile[i], rhsTile[j]); |
| outTile.push_back(mmla); |
| } |
| |
| // Unpack the OUT sub-tiles and insert into the result. |
| Value result = rewriter.create<ub::PoisonOp>(loc, op.getResultType()); |
| for (int64_t i = 0; i < M / 2; ++i) { |
| // Collect a number of sub-tiles in a row. |
| Value row = rewriter.create<ub::PoisonOp>(loc, accRowX2Ty); |
| for (int64_t j = 0; j < N / 2; ++j) |
| row = rewriter.create<vector::ScalableInsertOp>( |
| loc, outTile[i * N / 2 + j], row, j * 4); |
| |
| // Unpack the row to obtain two rows of the output. If we have the out |
| // sub-tiles transposed we obtain two consecutive output rows by |
| // separating even and odd elements, i.e. a simple deinterleave. |
| // Otherwise, the interleave is by pairs. |
| Value out0, out1; |
| if (mmlaOp == MMLA::MixedSwapped) { |
| auto tmp = rewriter.create<vector::DeinterleaveOp>(loc, row); |
| out0 = tmp.getRes1(); |
| out1 = tmp.getRes2(); |
| } else { |
| // Deinterleave by pairs. |
| auto row64 = rewriter.create<vector::BitCastOp>(loc, accRowX264Ty, row); |
| auto deintr64 = rewriter.create<vector::DeinterleaveOp>(loc, row64); |
| |
| // Bitcast back into 32-bit elements and insert into the result. |
| out0 = rewriter.create<vector::BitCastOp>(loc, accRowTy, |
| deintr64.getRes1()); |
| out1 = rewriter.create<vector::BitCastOp>(loc, accRowTy, |
| deintr64.getRes2()); |
| } |
| result = rewriter.create<vector::InsertOp>(loc, out0, result, i * 2); |
| result = rewriter.create<vector::InsertOp>(loc, out1, result, i * 2 + 1); |
| } |
| |
| rewriter.replaceOp(op, result); |
| return success(); |
| } |
| }; |
| |
| } // namespace |
| |
| void mlir::populateLowerContractionToSVEI8MMPatternPatterns( |
| RewritePatternSet &patterns) { |
| MLIRContext *context = patterns.getContext(); |
| patterns.add<LowerContractionToSVEI8MMPattern>(context, /*benefit=*/2); |
| } |