| ; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py UTC_ARGS: --version 4 |
| ; RUN: opt -disable-output "-passes=print<scalar-evolution>" -scalar-evolution-classify-expressions=0 < %s 2>&1 | FileCheck %s |
| |
| define void @ule_from_zero(i32 %M, i32 %N) { |
| ; CHECK-LABEL: 'ule_from_zero' |
| ; CHECK-NEXT: Determining loop execution counts for: @ule_from_zero |
| ; CHECK-NEXT: Loop %loop: <multiple exits> backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))<nuw><nsw>) |
| ; CHECK-NEXT: exit count for loop: (1 + (zext i32 %M to i64))<nuw><nsw> |
| ; CHECK-NEXT: exit count for latch: %N |
| ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 4294967295 |
| ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))<nuw><nsw>) |
| ; CHECK-NEXT: symbolic max exit count for loop: (1 + (zext i32 %M to i64))<nuw><nsw> |
| ; CHECK-NEXT: symbolic max exit count for latch: %N |
| ; CHECK-NEXT: Loop %loop: Trip multiple is 1 |
| ; |
| entry: |
| br label %loop |
| |
| loop: |
| %iv = phi i32 [ 0, %entry ], [ %iv.next, %latch ] |
| %cmp1 = icmp ule i32 %iv, %M |
| br i1 %cmp1, label %latch, label %exit |
| |
| latch: |
| %iv.next = add nuw i32 %iv, 1 |
| %exitcond.not = icmp eq i32 %iv, %N |
| br i1 %exitcond.not, label %exit, label %loop |
| |
| exit: |
| ret void |
| } |
| |
| define void @le_from_zero(i32 %M, i32 %N) { |
| ; CHECK-LABEL: 'le_from_zero' |
| ; CHECK-NEXT: Determining loop execution counts for: @le_from_zero |
| ; CHECK-NEXT: Loop %loop: <multiple exits> backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))<nuw><nsw>) |
| ; CHECK-NEXT: exit count for loop: (1 + (zext i32 %M to i64))<nuw><nsw> |
| ; CHECK-NEXT: exit count for latch: %N |
| ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 4294967295 |
| ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))<nuw><nsw>) |
| ; CHECK-NEXT: symbolic max exit count for loop: (1 + (zext i32 %M to i64))<nuw><nsw> |
| ; CHECK-NEXT: symbolic max exit count for latch: %N |
| ; CHECK-NEXT: Loop %loop: Trip multiple is 1 |
| ; |
| entry: |
| br label %loop |
| |
| loop: |
| %iv = phi i32 [ 0, %entry ], [ %iv.next, %latch ] |
| %cmp1 = icmp samesign ule i32 %iv, %M |
| br i1 %cmp1, label %latch, label %exit |
| |
| latch: |
| %iv.next = add nuw i32 %iv, 1 |
| %exitcond.not = icmp eq i32 %iv, %N |
| br i1 %exitcond.not, label %exit, label %loop |
| |
| exit: |
| ret void |
| } |
| |
| define void @ule_from_one(i32 %M, i32 %N) { |
| ; CHECK-LABEL: 'ule_from_one' |
| ; CHECK-NEXT: Determining loop execution counts for: @ule_from_one |
| ; CHECK-NEXT: Loop %loop: <multiple exits> backedge-taken count is (%M umin_seq (-1 + %N)) |
| ; CHECK-NEXT: exit count for loop: %M |
| ; CHECK-NEXT: exit count for latch: (-1 + %N) |
| ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1 |
| ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (%M umin_seq (-1 + %N)) |
| ; CHECK-NEXT: symbolic max exit count for loop: %M |
| ; CHECK-NEXT: symbolic max exit count for latch: (-1 + %N) |
| ; CHECK-NEXT: Loop %loop: Trip multiple is 1 |
| ; |
| entry: |
| br label %loop |
| |
| loop: |
| %iv = phi i32 [ 1, %entry ], [ %iv.next, %latch ] |
| %cmp1 = icmp ule i32 %iv, %M |
| br i1 %cmp1, label %latch, label %exit |
| |
| latch: |
| %iv.next = add nuw i32 %iv, 1 |
| %exitcond.not = icmp eq i32 %iv, %N |
| br i1 %exitcond.not, label %exit, label %loop |
| |
| exit: |
| ret void |
| } |
| |
| define void @le_from_one(i32 %M, i32 %N) { |
| ; CHECK-LABEL: 'le_from_one' |
| ; CHECK-NEXT: Determining loop execution counts for: @le_from_one |
| ; CHECK-NEXT: Loop %loop: <multiple exits> backedge-taken count is (%M umin_seq (-1 + %N)) |
| ; CHECK-NEXT: exit count for loop: %M |
| ; CHECK-NEXT: exit count for latch: (-1 + %N) |
| ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1 |
| ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (%M umin_seq (-1 + %N)) |
| ; CHECK-NEXT: symbolic max exit count for loop: %M |
| ; CHECK-NEXT: symbolic max exit count for latch: (-1 + %N) |
| ; CHECK-NEXT: Loop %loop: Trip multiple is 1 |
| ; |
| entry: |
| br label %loop |
| |
| loop: |
| %iv = phi i32 [ 1, %entry ], [ %iv.next, %latch ] |
| %cmp1 = icmp samesign ule i32 %iv, %M |
| br i1 %cmp1, label %latch, label %exit |
| |
| latch: |
| %iv.next = add nuw i32 %iv, 1 |
| %exitcond.not = icmp eq i32 %iv, %N |
| br i1 %exitcond.not, label %exit, label %loop |
| |
| exit: |
| ret void |
| } |
| |
| define void @ule_from_unknown(i32 %M, i32 %N, i32 %S) { |
| ; CHECK-LABEL: 'ule_from_unknown' |
| ; CHECK-NEXT: Determining loop execution counts for: @ule_from_unknown |
| ; CHECK-NEXT: Loop %loop: <multiple exits> backedge-taken count is (((-1 * (zext i32 %S to i64))<nsw> + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64))<nuw><nsw>)) umin_seq (zext i32 ((-1 * %S) + %N) to i64)) |
| ; CHECK-NEXT: exit count for loop: ((-1 * (zext i32 %S to i64))<nsw> + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64))<nuw><nsw>)) |
| ; CHECK-NEXT: exit count for latch: ((-1 * %S) + %N) |
| ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 4294967295 |
| ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (((-1 * (zext i32 %S to i64))<nsw> + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64))<nuw><nsw>)) umin_seq (zext i32 ((-1 * %S) + %N) to i64)) |
| ; CHECK-NEXT: symbolic max exit count for loop: ((-1 * (zext i32 %S to i64))<nsw> + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64))<nuw><nsw>)) |
| ; CHECK-NEXT: symbolic max exit count for latch: ((-1 * %S) + %N) |
| ; CHECK-NEXT: Loop %loop: Trip multiple is 1 |
| ; |
| entry: |
| br label %loop |
| |
| loop: |
| %iv = phi i32 [ %S, %entry ], [ %iv.next, %latch ] |
| %cmp1 = icmp ule i32 %iv, %M |
| br i1 %cmp1, label %latch, label %exit |
| |
| latch: |
| %iv.next = add nuw i32 %iv, 1 |
| %exitcond.not = icmp eq i32 %iv, %N |
| br i1 %exitcond.not, label %exit, label %loop |
| |
| exit: |
| ret void |
| } |
| |
| define void @ule_from_zero_no_nuw(i32 %M, i32 %N) { |
| ; CHECK-LABEL: 'ule_from_zero_no_nuw' |
| ; CHECK-NEXT: Determining loop execution counts for: @ule_from_zero_no_nuw |
| ; CHECK-NEXT: Loop %loop: <multiple exits> Unpredictable backedge-taken count. |
| ; CHECK-NEXT: exit count for loop: ***COULDNOTCOMPUTE*** |
| ; CHECK-NEXT: predicated exit count for loop: (1 + (zext i32 %M to i64))<nuw><nsw> |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: <nusw> |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: exit count for latch: %N |
| ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1 |
| ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is %N |
| ; CHECK-NEXT: symbolic max exit count for loop: ***COULDNOTCOMPUTE*** |
| ; CHECK-NEXT: predicated symbolic max exit count for loop: (1 + (zext i32 %M to i64))<nuw><nsw> |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: <nusw> |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: symbolic max exit count for latch: %N |
| ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))<nuw><nsw>) |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: <nusw> |
| ; CHECK-NEXT: Loop %loop: Predicated constant max backedge-taken count is i64 4294967295 |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: <nusw> |
| ; CHECK-NEXT: Loop %loop: Predicated symbolic max backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))<nuw><nsw>) |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: <nusw> |
| ; |
| entry: |
| br label %loop |
| |
| loop: |
| %iv = phi i32 [ 0, %entry ], [ %iv.next, %latch ] |
| %cmp1 = icmp ule i32 %iv, %M |
| br i1 %cmp1, label %latch, label %exit |
| |
| latch: |
| %iv.next = add i32 %iv, 1 |
| %exitcond.not = icmp eq i32 %iv, %N |
| br i1 %exitcond.not, label %exit, label %loop |
| |
| exit: |
| ret void |
| } |
| |
| define void @le_from_zero_no_nuw(i32 %M, i32 %N) { |
| ; CHECK-LABEL: 'le_from_zero_no_nuw' |
| ; CHECK-NEXT: Determining loop execution counts for: @le_from_zero_no_nuw |
| ; CHECK-NEXT: Loop %loop: <multiple exits> Unpredictable backedge-taken count. |
| ; CHECK-NEXT: exit count for loop: ***COULDNOTCOMPUTE*** |
| ; CHECK-NEXT: predicated exit count for loop: (1 + (zext i32 %M to i64))<nuw><nsw> |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: <nusw> |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: exit count for latch: %N |
| ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1 |
| ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is %N |
| ; CHECK-NEXT: symbolic max exit count for loop: ***COULDNOTCOMPUTE*** |
| ; CHECK-NEXT: predicated symbolic max exit count for loop: (1 + (zext i32 %M to i64))<nuw><nsw> |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: <nusw> |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: symbolic max exit count for latch: %N |
| ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))<nuw><nsw>) |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: <nusw> |
| ; CHECK-NEXT: Loop %loop: Predicated constant max backedge-taken count is i64 4294967295 |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: <nusw> |
| ; CHECK-NEXT: Loop %loop: Predicated symbolic max backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))<nuw><nsw>) |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: <nusw> |
| ; |
| entry: |
| br label %loop |
| |
| loop: |
| %iv = phi i32 [ 0, %entry ], [ %iv.next, %latch ] |
| %cmp1 = icmp samesign ule i32 %iv, %M |
| br i1 %cmp1, label %latch, label %exit |
| |
| latch: |
| %iv.next = add i32 %iv, 1 |
| %exitcond.not = icmp eq i32 %iv, %N |
| br i1 %exitcond.not, label %exit, label %loop |
| |
| exit: |
| ret void |
| } |
| |
| define void @sle_from_int_min(i32 %M, i32 %N) { |
| ; CHECK-LABEL: 'sle_from_int_min' |
| ; CHECK-NEXT: Determining loop execution counts for: @sle_from_int_min |
| ; CHECK-NEXT: Loop %loop: <multiple exits> backedge-taken count is ((zext i32 (-2147483648 + %N) to i64) umin (2147483649 + (sext i32 %M to i64))<nsw>) |
| ; CHECK-NEXT: exit count for loop: (2147483649 + (sext i32 %M to i64))<nsw> |
| ; CHECK-NEXT: exit count for latch: (-2147483648 + %N) |
| ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 4294967295 |
| ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((zext i32 (-2147483648 + %N) to i64) umin (2147483649 + (sext i32 %M to i64))<nsw>) |
| ; CHECK-NEXT: symbolic max exit count for loop: (2147483649 + (sext i32 %M to i64))<nsw> |
| ; CHECK-NEXT: symbolic max exit count for latch: (-2147483648 + %N) |
| ; CHECK-NEXT: Loop %loop: Trip multiple is 1 |
| ; |
| entry: |
| br label %loop |
| |
| loop: |
| %iv = phi i32 [ u0x80000000, %entry ], [ %iv.next, %latch ] |
| %cmp1 = icmp sle i32 %iv, %M |
| br i1 %cmp1, label %latch, label %exit |
| |
| latch: |
| %iv.next = add nsw i32 %iv, 1 |
| %exitcond.not = icmp eq i32 %iv, %N |
| br i1 %exitcond.not, label %exit, label %loop |
| |
| exit: |
| ret void |
| } |
| |
| define void @le_from_int_min(i32 %M, i32 %N) { |
| ; CHECK-LABEL: 'le_from_int_min' |
| ; CHECK-NEXT: Determining loop execution counts for: @le_from_int_min |
| ; CHECK-NEXT: Loop %loop: <multiple exits> backedge-taken count is ((-2147483647 + (2147483647 umax %M)) umin_seq (-2147483648 + %N)) |
| ; CHECK-NEXT: exit count for loop: (-2147483647 + (2147483647 umax %M)) |
| ; CHECK-NEXT: exit count for latch: (-2147483648 + %N) |
| ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -2147483648 |
| ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((-2147483647 + (2147483647 umax %M)) umin_seq (-2147483648 + %N)) |
| ; CHECK-NEXT: symbolic max exit count for loop: (-2147483647 + (2147483647 umax %M)) |
| ; CHECK-NEXT: symbolic max exit count for latch: (-2147483648 + %N) |
| ; CHECK-NEXT: Loop %loop: Trip multiple is 1 |
| ; |
| entry: |
| br label %loop |
| |
| loop: |
| %iv = phi i32 [ u0x80000000, %entry ], [ %iv.next, %latch ] |
| %cmp1 = icmp samesign ule i32 %iv, %M |
| br i1 %cmp1, label %latch, label %exit |
| |
| latch: |
| %iv.next = add nuw nsw i32 %iv, 1 |
| %exitcond.not = icmp eq i32 %iv, %N |
| br i1 %exitcond.not, label %exit, label %loop |
| |
| exit: |
| ret void |
| } |
| |
| define void @sle_from_int_min_plus_one(i32 %M, i32 %N) { |
| ; CHECK-LABEL: 'sle_from_int_min_plus_one' |
| ; CHECK-NEXT: Determining loop execution counts for: @sle_from_int_min_plus_one |
| ; CHECK-NEXT: Loop %loop: <multiple exits> backedge-taken count is ((-2147483648 + %M) umin_seq (2147483647 + %N)) |
| ; CHECK-NEXT: exit count for loop: (-2147483648 + %M) |
| ; CHECK-NEXT: exit count for latch: (2147483647 + %N) |
| ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1 |
| ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((-2147483648 + %M) umin_seq (2147483647 + %N)) |
| ; CHECK-NEXT: symbolic max exit count for loop: (-2147483648 + %M) |
| ; CHECK-NEXT: symbolic max exit count for latch: (2147483647 + %N) |
| ; CHECK-NEXT: Loop %loop: Trip multiple is 1 |
| ; |
| entry: |
| br label %loop |
| |
| loop: |
| %iv = phi i32 [ u0x80000001, %entry ], [ %iv.next, %latch ] |
| %cmp1 = icmp sle i32 %iv, %M |
| br i1 %cmp1, label %latch, label %exit |
| |
| latch: |
| %iv.next = add nsw i32 %iv, 1 |
| %exitcond.not = icmp eq i32 %iv, %N |
| br i1 %exitcond.not, label %exit, label %loop |
| |
| exit: |
| ret void |
| } |
| |
| define void @le_from_int_min_plus_one(i32 %M, i32 %N) { |
| ; CHECK-LABEL: 'le_from_int_min_plus_one' |
| ; CHECK-NEXT: Determining loop execution counts for: @le_from_int_min_plus_one |
| ; CHECK-NEXT: Loop %loop: <multiple exits> backedge-taken count is ((-2147483648 + (-2147483648 umax %M)) umin_seq (2147483647 + %N)) |
| ; CHECK-NEXT: exit count for loop: (-2147483648 + (-2147483648 umax %M)) |
| ; CHECK-NEXT: exit count for latch: (2147483647 + %N) |
| ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 2147483647 |
| ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((-2147483648 + (-2147483648 umax %M)) umin_seq (2147483647 + %N)) |
| ; CHECK-NEXT: symbolic max exit count for loop: (-2147483648 + (-2147483648 umax %M)) |
| ; CHECK-NEXT: symbolic max exit count for latch: (2147483647 + %N) |
| ; CHECK-NEXT: Loop %loop: Trip multiple is 1 |
| ; |
| entry: |
| br label %loop |
| |
| loop: |
| %iv = phi i32 [ u0x80000001, %entry ], [ %iv.next, %latch ] |
| %cmp1 = icmp samesign ule i32 %iv, %M |
| br i1 %cmp1, label %latch, label %exit |
| |
| latch: |
| %iv.next = add nuw nsw i32 %iv, 1 |
| %exitcond.not = icmp eq i32 %iv, %N |
| br i1 %exitcond.not, label %exit, label %loop |
| |
| exit: |
| ret void |
| } |
| |
| define void @sle_from_unknown(i32 %M, i32 %N, i32 %S) { |
| ; CHECK-LABEL: 'sle_from_unknown' |
| ; CHECK-NEXT: Determining loop execution counts for: @sle_from_unknown |
| ; CHECK-NEXT: Loop %loop: <multiple exits> backedge-taken count is (((-1 * (sext i32 %S to i64))<nsw> + ((sext i32 %S to i64) smax (1 + (sext i32 %M to i64))<nsw>)) umin_seq (zext i32 ((-1 * %S) + %N) to i64)) |
| ; CHECK-NEXT: exit count for loop: ((-1 * (sext i32 %S to i64))<nsw> + ((sext i32 %S to i64) smax (1 + (sext i32 %M to i64))<nsw>)) |
| ; CHECK-NEXT: exit count for latch: ((-1 * %S) + %N) |
| ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 4294967295 |
| ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (((-1 * (sext i32 %S to i64))<nsw> + ((sext i32 %S to i64) smax (1 + (sext i32 %M to i64))<nsw>)) umin_seq (zext i32 ((-1 * %S) + %N) to i64)) |
| ; CHECK-NEXT: symbolic max exit count for loop: ((-1 * (sext i32 %S to i64))<nsw> + ((sext i32 %S to i64) smax (1 + (sext i32 %M to i64))<nsw>)) |
| ; CHECK-NEXT: symbolic max exit count for latch: ((-1 * %S) + %N) |
| ; CHECK-NEXT: Loop %loop: Trip multiple is 1 |
| ; |
| entry: |
| br label %loop |
| |
| loop: |
| %iv = phi i32 [ %S, %entry ], [ %iv.next, %latch ] |
| %cmp1 = icmp sle i32 %iv, %M |
| br i1 %cmp1, label %latch, label %exit |
| |
| latch: |
| %iv.next = add nsw i32 %iv, 1 |
| %exitcond.not = icmp eq i32 %iv, %N |
| br i1 %exitcond.not, label %exit, label %loop |
| |
| exit: |
| ret void |
| } |
| |
| define void @le_from_unknown(i32 %M, i32 %N, i32 %S) { |
| ; CHECK-LABEL: 'le_from_unknown' |
| ; CHECK-NEXT: Determining loop execution counts for: @le_from_unknown |
| ; CHECK-NEXT: Loop %loop: <multiple exits> backedge-taken count is (((-1 * (zext i32 %S to i64))<nsw> + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64))<nuw><nsw>)) umin_seq (zext i32 ((-1 * %S) + %N) to i64)) |
| ; CHECK-NEXT: exit count for loop: ((-1 * (zext i32 %S to i64))<nsw> + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64))<nuw><nsw>)) |
| ; CHECK-NEXT: exit count for latch: ((-1 * %S) + %N) |
| ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 4294967295 |
| ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (((-1 * (zext i32 %S to i64))<nsw> + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64))<nuw><nsw>)) umin_seq (zext i32 ((-1 * %S) + %N) to i64)) |
| ; CHECK-NEXT: symbolic max exit count for loop: ((-1 * (zext i32 %S to i64))<nsw> + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64))<nuw><nsw>)) |
| ; CHECK-NEXT: symbolic max exit count for latch: ((-1 * %S) + %N) |
| ; CHECK-NEXT: Loop %loop: Trip multiple is 1 |
| ; |
| entry: |
| br label %loop |
| |
| loop: |
| %iv = phi i32 [ %S, %entry ], [ %iv.next, %latch ] |
| %cmp1 = icmp samesign ule i32 %iv, %M |
| br i1 %cmp1, label %latch, label %exit |
| |
| latch: |
| %iv.next = add nuw nsw i32 %iv, 1 |
| %exitcond.not = icmp eq i32 %iv, %N |
| br i1 %exitcond.not, label %exit, label %loop |
| |
| exit: |
| ret void |
| } |
| |
| define void @sle_from_int_min_no_nsw(i32 %M, i32 %N) { |
| ; CHECK-LABEL: 'sle_from_int_min_no_nsw' |
| ; CHECK-NEXT: Determining loop execution counts for: @sle_from_int_min_no_nsw |
| ; CHECK-NEXT: Loop %loop: <multiple exits> Unpredictable backedge-taken count. |
| ; CHECK-NEXT: exit count for loop: ***COULDNOTCOMPUTE*** |
| ; CHECK-NEXT: predicated exit count for loop: (2147483649 + (sext i32 %M to i64))<nsw> |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: <nssw> |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: exit count for latch: (-2147483648 + %N) |
| ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1 |
| ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (-2147483648 + %N) |
| ; CHECK-NEXT: symbolic max exit count for loop: ***COULDNOTCOMPUTE*** |
| ; CHECK-NEXT: predicated symbolic max exit count for loop: (2147483649 + (sext i32 %M to i64))<nsw> |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: <nssw> |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: symbolic max exit count for latch: (-2147483648 + %N) |
| ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((zext i32 (-2147483648 + %N) to i64) umin (2147483649 + (sext i32 %M to i64))<nsw>) |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: <nssw> |
| ; CHECK-NEXT: Loop %loop: Predicated constant max backedge-taken count is i64 4294967295 |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: <nssw> |
| ; CHECK-NEXT: Loop %loop: Predicated symbolic max backedge-taken count is ((zext i32 (-2147483648 + %N) to i64) umin (2147483649 + (sext i32 %M to i64))<nsw>) |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: <nssw> |
| ; |
| entry: |
| br label %loop |
| |
| loop: |
| %iv = phi i32 [ u0x80000000, %entry ], [ %iv.next, %latch ] |
| %cmp1 = icmp sle i32 %iv, %M |
| br i1 %cmp1, label %latch, label %exit |
| |
| latch: |
| %iv.next = add i32 %iv, 1 |
| %exitcond.not = icmp eq i32 %iv, %N |
| br i1 %exitcond.not, label %exit, label %loop |
| |
| exit: |
| ret void |
| } |
| |
| define void @le_from_int_min_no_nuw_nsw(i32 %M, i32 %N) { |
| ; CHECK-LABEL: 'le_from_int_min_no_nuw_nsw' |
| ; CHECK-NEXT: Determining loop execution counts for: @le_from_int_min_no_nuw_nsw |
| ; CHECK-NEXT: Loop %loop: <multiple exits> Unpredictable backedge-taken count. |
| ; CHECK-NEXT: exit count for loop: ***COULDNOTCOMPUTE*** |
| ; CHECK-NEXT: predicated exit count for loop: (-2147483648 + (2147483648 umax (1 + (zext i32 %M to i64))<nuw><nsw>))<nsw> |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: <nusw> |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: exit count for latch: (-2147483648 + %N) |
| ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1 |
| ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (-2147483648 + %N) |
| ; CHECK-NEXT: symbolic max exit count for loop: ***COULDNOTCOMPUTE*** |
| ; CHECK-NEXT: predicated symbolic max exit count for loop: (-2147483648 + (2147483648 umax (1 + (zext i32 %M to i64))<nuw><nsw>))<nsw> |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: <nusw> |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: symbolic max exit count for latch: (-2147483648 + %N) |
| ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((-2147483648 + (2147483648 umax (1 + (zext i32 %M to i64))<nuw><nsw>))<nsw> umin_seq (zext i32 (-2147483648 + %N) to i64)) |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: <nusw> |
| ; CHECK-NEXT: Loop %loop: Predicated constant max backedge-taken count is i64 2147483648 |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: <nusw> |
| ; CHECK-NEXT: Loop %loop: Predicated symbolic max backedge-taken count is ((-2147483648 + (2147483648 umax (1 + (zext i32 %M to i64))<nuw><nsw>))<nsw> umin_seq (zext i32 (-2147483648 + %N) to i64)) |
| ; CHECK-NEXT: Predicates: |
| ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: <nusw> |
| ; |
| entry: |
| br label %loop |
| |
| loop: |
| %iv = phi i32 [ u0x80000000, %entry ], [ %iv.next, %latch ] |
| %cmp1 = icmp samesign ule i32 %iv, %M |
| br i1 %cmp1, label %latch, label %exit |
| |
| latch: |
| %iv.next = add i32 %iv, 1 |
| %exitcond.not = icmp eq i32 %iv, %N |
| br i1 %exitcond.not, label %exit, label %loop |
| |
| exit: |
| ret void |
| } |