| //===- SyntheticSections.cpp ---------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SyntheticSections.h" |
| #include "ConcatOutputSection.h" |
| #include "Config.h" |
| #include "ExportTrie.h" |
| #include "InputFiles.h" |
| #include "MachOStructs.h" |
| #include "OutputSegment.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| |
| #include "lld/Common/ErrorHandler.h" |
| #include "lld/Common/Memory.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/Support/EndianStream.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/LEB128.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/SHA256.h" |
| |
| #if defined(__APPLE__) |
| #include <sys/mman.h> |
| #endif |
| |
| #ifdef LLVM_HAVE_LIBXAR |
| #include <fcntl.h> |
| extern "C" { |
| #include <xar/xar.h> |
| } |
| #endif |
| |
| using namespace llvm; |
| using namespace llvm::MachO; |
| using namespace llvm::support; |
| using namespace llvm::support::endian; |
| using namespace lld; |
| using namespace lld::macho; |
| |
| InStruct macho::in; |
| std::vector<SyntheticSection *> macho::syntheticSections; |
| |
| SyntheticSection::SyntheticSection(const char *segname, const char *name) |
| : OutputSection(SyntheticKind, name) { |
| std::tie(this->segname, this->name) = maybeRenameSection({segname, name}); |
| isec = make<ConcatInputSection>(segname, name); |
| isec->parent = this; |
| syntheticSections.push_back(this); |
| } |
| |
| // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts |
| // from the beginning of the file (i.e. the header). |
| MachHeaderSection::MachHeaderSection() |
| : SyntheticSection(segment_names::text, section_names::header) { |
| // XXX: This is a hack. (See D97007) |
| // Setting the index to 1 to pretend that this section is the text |
| // section. |
| index = 1; |
| isec->isFinal = true; |
| } |
| |
| void MachHeaderSection::addLoadCommand(LoadCommand *lc) { |
| loadCommands.push_back(lc); |
| sizeOfCmds += lc->getSize(); |
| } |
| |
| uint64_t MachHeaderSection::getSize() const { |
| uint64_t size = target->headerSize + sizeOfCmds + config->headerPad; |
| // If we are emitting an encryptable binary, our load commands must have a |
| // separate (non-encrypted) page to themselves. |
| if (config->emitEncryptionInfo) |
| size = alignTo(size, target->getPageSize()); |
| return size; |
| } |
| |
| static uint32_t cpuSubtype() { |
| uint32_t subtype = target->cpuSubtype; |
| |
| if (config->outputType == MH_EXECUTE && !config->staticLink && |
| target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL && |
| config->platform() == PlatformKind::macOS && |
| config->platformInfo.minimum >= VersionTuple(10, 5)) |
| subtype |= CPU_SUBTYPE_LIB64; |
| |
| return subtype; |
| } |
| |
| void MachHeaderSection::writeTo(uint8_t *buf) const { |
| auto *hdr = reinterpret_cast<mach_header *>(buf); |
| hdr->magic = target->magic; |
| hdr->cputype = target->cpuType; |
| hdr->cpusubtype = cpuSubtype(); |
| hdr->filetype = config->outputType; |
| hdr->ncmds = loadCommands.size(); |
| hdr->sizeofcmds = sizeOfCmds; |
| hdr->flags = MH_DYLDLINK; |
| |
| if (config->namespaceKind == NamespaceKind::twolevel) |
| hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL; |
| |
| if (config->outputType == MH_DYLIB && !config->hasReexports) |
| hdr->flags |= MH_NO_REEXPORTED_DYLIBS; |
| |
| if (config->markDeadStrippableDylib) |
| hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB; |
| |
| if (config->outputType == MH_EXECUTE && config->isPic) |
| hdr->flags |= MH_PIE; |
| |
| if (config->outputType == MH_DYLIB && config->applicationExtension) |
| hdr->flags |= MH_APP_EXTENSION_SAFE; |
| |
| if (in.exports->hasWeakSymbol || in.weakBinding->hasNonWeakDefinition()) |
| hdr->flags |= MH_WEAK_DEFINES; |
| |
| if (in.exports->hasWeakSymbol || in.weakBinding->hasEntry()) |
| hdr->flags |= MH_BINDS_TO_WEAK; |
| |
| for (const OutputSegment *seg : outputSegments) { |
| for (const OutputSection *osec : seg->getSections()) { |
| if (isThreadLocalVariables(osec->flags)) { |
| hdr->flags |= MH_HAS_TLV_DESCRIPTORS; |
| break; |
| } |
| } |
| } |
| |
| uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize; |
| for (const LoadCommand *lc : loadCommands) { |
| lc->writeTo(p); |
| p += lc->getSize(); |
| } |
| } |
| |
| PageZeroSection::PageZeroSection() |
| : SyntheticSection(segment_names::pageZero, section_names::pageZero) {} |
| |
| RebaseSection::RebaseSection() |
| : LinkEditSection(segment_names::linkEdit, section_names::rebase) {} |
| |
| namespace { |
| struct Rebase { |
| OutputSegment *segment = nullptr; |
| uint64_t offset = 0; |
| uint64_t consecutiveCount = 0; |
| }; |
| } // namespace |
| |
| // Rebase opcodes allow us to describe a contiguous sequence of rebase location |
| // using a single DO_REBASE opcode. To take advantage of it, we delay emitting |
| // `DO_REBASE` until we have reached the end of a contiguous sequence. |
| static void encodeDoRebase(Rebase &rebase, raw_svector_ostream &os) { |
| assert(rebase.consecutiveCount != 0); |
| if (rebase.consecutiveCount <= REBASE_IMMEDIATE_MASK) { |
| os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES | |
| rebase.consecutiveCount); |
| } else { |
| os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES); |
| encodeULEB128(rebase.consecutiveCount, os); |
| } |
| rebase.consecutiveCount = 0; |
| } |
| |
| static void encodeRebase(const OutputSection *osec, uint64_t outSecOff, |
| Rebase &lastRebase, raw_svector_ostream &os) { |
| OutputSegment *seg = osec->parent; |
| uint64_t offset = osec->getSegmentOffset() + outSecOff; |
| if (lastRebase.segment != seg || lastRebase.offset != offset) { |
| if (lastRebase.consecutiveCount != 0) |
| encodeDoRebase(lastRebase, os); |
| |
| if (lastRebase.segment != seg) { |
| os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | |
| seg->index); |
| encodeULEB128(offset, os); |
| lastRebase.segment = seg; |
| lastRebase.offset = offset; |
| } else { |
| assert(lastRebase.offset != offset); |
| os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB); |
| encodeULEB128(offset - lastRebase.offset, os); |
| lastRebase.offset = offset; |
| } |
| } |
| ++lastRebase.consecutiveCount; |
| // DO_REBASE causes dyld to both perform the binding and increment the offset |
| lastRebase.offset += target->wordSize; |
| } |
| |
| void RebaseSection::finalizeContents() { |
| if (locations.empty()) |
| return; |
| |
| raw_svector_ostream os{contents}; |
| Rebase lastRebase; |
| |
| os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER); |
| |
| llvm::sort(locations, [](const Location &a, const Location &b) { |
| return a.isec->getVA(a.offset) < b.isec->getVA(b.offset); |
| }); |
| for (const Location &loc : locations) |
| encodeRebase(loc.isec->parent, loc.isec->getOffset(loc.offset), lastRebase, |
| os); |
| if (lastRebase.consecutiveCount != 0) |
| encodeDoRebase(lastRebase, os); |
| |
| os << static_cast<uint8_t>(REBASE_OPCODE_DONE); |
| } |
| |
| void RebaseSection::writeTo(uint8_t *buf) const { |
| memcpy(buf, contents.data(), contents.size()); |
| } |
| |
| NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname, |
| const char *name) |
| : SyntheticSection(segname, name) { |
| align = target->wordSize; |
| } |
| |
| void macho::addNonLazyBindingEntries(const Symbol *sym, |
| const InputSection *isec, uint64_t offset, |
| int64_t addend) { |
| if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) { |
| in.binding->addEntry(dysym, isec, offset, addend); |
| if (dysym->isWeakDef()) |
| in.weakBinding->addEntry(sym, isec, offset, addend); |
| } else if (const auto *defined = dyn_cast<Defined>(sym)) { |
| in.rebase->addEntry(isec, offset); |
| if (defined->isExternalWeakDef()) |
| in.weakBinding->addEntry(sym, isec, offset, addend); |
| } else { |
| // Undefined symbols are filtered out in scanRelocations(); we should never |
| // get here |
| llvm_unreachable("cannot bind to an undefined symbol"); |
| } |
| } |
| |
| void NonLazyPointerSectionBase::addEntry(Symbol *sym) { |
| if (entries.insert(sym)) { |
| assert(!sym->isInGot()); |
| sym->gotIndex = entries.size() - 1; |
| |
| addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize); |
| } |
| } |
| |
| void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const { |
| for (size_t i = 0, n = entries.size(); i < n; ++i) |
| if (auto *defined = dyn_cast<Defined>(entries[i])) |
| write64le(&buf[i * target->wordSize], defined->getVA()); |
| } |
| |
| GotSection::GotSection() |
| : NonLazyPointerSectionBase(segment_names::data, section_names::got) { |
| flags = S_NON_LAZY_SYMBOL_POINTERS; |
| } |
| |
| TlvPointerSection::TlvPointerSection() |
| : NonLazyPointerSectionBase(segment_names::data, |
| section_names::threadPtrs) { |
| flags = S_THREAD_LOCAL_VARIABLE_POINTERS; |
| } |
| |
| BindingSection::BindingSection() |
| : LinkEditSection(segment_names::linkEdit, section_names::binding) {} |
| |
| namespace { |
| struct Binding { |
| OutputSegment *segment = nullptr; |
| uint64_t offset = 0; |
| int64_t addend = 0; |
| }; |
| struct BindIR { |
| // Default value of 0xF0 is not valid opcode and should make the program |
| // scream instead of accidentally writing "valid" values. |
| uint8_t opcode = 0xF0; |
| uint64_t data = 0; |
| uint64_t consecutiveCount = 0; |
| }; |
| } // namespace |
| |
| // Encode a sequence of opcodes that tell dyld to write the address of symbol + |
| // addend at osec->addr + outSecOff. |
| // |
| // The bind opcode "interpreter" remembers the values of each binding field, so |
| // we only need to encode the differences between bindings. Hence the use of |
| // lastBinding. |
| static void encodeBinding(const OutputSection *osec, uint64_t outSecOff, |
| int64_t addend, Binding &lastBinding, |
| std::vector<BindIR> &opcodes) { |
| OutputSegment *seg = osec->parent; |
| uint64_t offset = osec->getSegmentOffset() + outSecOff; |
| if (lastBinding.segment != seg) { |
| opcodes.push_back( |
| {static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | |
| seg->index), |
| offset}); |
| lastBinding.segment = seg; |
| lastBinding.offset = offset; |
| } else if (lastBinding.offset != offset) { |
| opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset}); |
| lastBinding.offset = offset; |
| } |
| |
| if (lastBinding.addend != addend) { |
| opcodes.push_back( |
| {BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)}); |
| lastBinding.addend = addend; |
| } |
| |
| opcodes.push_back({BIND_OPCODE_DO_BIND, 0}); |
| // DO_BIND causes dyld to both perform the binding and increment the offset |
| lastBinding.offset += target->wordSize; |
| } |
| |
| static void optimizeOpcodes(std::vector<BindIR> &opcodes) { |
| // Pass 1: Combine bind/add pairs |
| size_t i; |
| int pWrite = 0; |
| for (i = 1; i < opcodes.size(); ++i, ++pWrite) { |
| if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) && |
| (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) { |
| opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB; |
| opcodes[pWrite].data = opcodes[i].data; |
| ++i; |
| } else { |
| opcodes[pWrite] = opcodes[i - 1]; |
| } |
| } |
| if (i == opcodes.size()) |
| opcodes[pWrite] = opcodes[i - 1]; |
| opcodes.resize(pWrite + 1); |
| |
| // Pass 2: Compress two or more bind_add opcodes |
| pWrite = 0; |
| for (i = 1; i < opcodes.size(); ++i, ++pWrite) { |
| if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && |
| (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && |
| (opcodes[i].data == opcodes[i - 1].data)) { |
| opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB; |
| opcodes[pWrite].consecutiveCount = 2; |
| opcodes[pWrite].data = opcodes[i].data; |
| ++i; |
| while (i < opcodes.size() && |
| (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && |
| (opcodes[i].data == opcodes[i - 1].data)) { |
| opcodes[pWrite].consecutiveCount++; |
| ++i; |
| } |
| } else { |
| opcodes[pWrite] = opcodes[i - 1]; |
| } |
| } |
| if (i == opcodes.size()) |
| opcodes[pWrite] = opcodes[i - 1]; |
| opcodes.resize(pWrite + 1); |
| |
| // Pass 3: Use immediate encodings |
| // Every binding is the size of one pointer. If the next binding is a |
| // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the |
| // opcode can be scaled by wordSize into a single byte and dyld will |
| // expand it to the correct address. |
| for (auto &p : opcodes) { |
| // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK, |
| // but ld64 currently does this. This could be a potential bug, but |
| // for now, perform the same behavior to prevent mysterious bugs. |
| if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && |
| ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) && |
| ((p.data % target->wordSize) == 0)) { |
| p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED; |
| p.data /= target->wordSize; |
| } |
| } |
| } |
| |
| static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) { |
| uint8_t opcode = op.opcode & BIND_OPCODE_MASK; |
| switch (opcode) { |
| case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: |
| case BIND_OPCODE_ADD_ADDR_ULEB: |
| case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB: |
| os << op.opcode; |
| encodeULEB128(op.data, os); |
| break; |
| case BIND_OPCODE_SET_ADDEND_SLEB: |
| os << op.opcode; |
| encodeSLEB128(static_cast<int64_t>(op.data), os); |
| break; |
| case BIND_OPCODE_DO_BIND: |
| os << op.opcode; |
| break; |
| case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB: |
| os << op.opcode; |
| encodeULEB128(op.consecutiveCount, os); |
| encodeULEB128(op.data, os); |
| break; |
| case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED: |
| os << static_cast<uint8_t>(op.opcode | op.data); |
| break; |
| default: |
| llvm_unreachable("cannot bind to an unrecognized symbol"); |
| } |
| } |
| |
| // Non-weak bindings need to have their dylib ordinal encoded as well. |
| static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) { |
| if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup()) |
| return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP); |
| assert(dysym.getFile()->isReferenced()); |
| return dysym.getFile()->ordinal; |
| } |
| |
| static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) { |
| if (ordinal <= 0) { |
| os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM | |
| (ordinal & BIND_IMMEDIATE_MASK)); |
| } else if (ordinal <= BIND_IMMEDIATE_MASK) { |
| os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal); |
| } else { |
| os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB); |
| encodeULEB128(ordinal, os); |
| } |
| } |
| |
| static void encodeWeakOverride(const Defined *defined, |
| raw_svector_ostream &os) { |
| os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM | |
| BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) |
| << defined->getName() << '\0'; |
| } |
| |
| // Organize the bindings so we can encoded them with fewer opcodes. |
| // |
| // First, all bindings for a given symbol should be grouped together. |
| // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it |
| // has an associated symbol string), so we only want to emit it once per symbol. |
| // |
| // Within each group, we sort the bindings by address. Since bindings are |
| // delta-encoded, sorting them allows for a more compact result. Note that |
| // sorting by address alone ensures that bindings for the same segment / section |
| // are located together, minimizing the number of times we have to emit |
| // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB. |
| // |
| // Finally, we sort the symbols by the address of their first binding, again |
| // to facilitate the delta-encoding process. |
| template <class Sym> |
| std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> |
| sortBindings(const BindingsMap<const Sym *> &bindingsMap) { |
| std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec( |
| bindingsMap.begin(), bindingsMap.end()); |
| for (auto &p : bindingsVec) { |
| std::vector<BindingEntry> &bindings = p.second; |
| llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) { |
| return a.target.getVA() < b.target.getVA(); |
| }); |
| } |
| llvm::sort(bindingsVec, [](const auto &a, const auto &b) { |
| return a.second[0].target.getVA() < b.second[0].target.getVA(); |
| }); |
| return bindingsVec; |
| } |
| |
| // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld |
| // interprets to update a record with the following fields: |
| // * segment index (of the segment to write the symbol addresses to, typically |
| // the __DATA_CONST segment which contains the GOT) |
| // * offset within the segment, indicating the next location to write a binding |
| // * symbol type |
| // * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command) |
| // * symbol name |
| // * addend |
| // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind |
| // a symbol in the GOT, and increments the segment offset to point to the next |
| // entry. It does *not* clear the record state after doing the bind, so |
| // subsequent opcodes only need to encode the differences between bindings. |
| void BindingSection::finalizeContents() { |
| raw_svector_ostream os{contents}; |
| Binding lastBinding; |
| int16_t lastOrdinal = 0; |
| |
| for (auto &p : sortBindings(bindingsMap)) { |
| const DylibSymbol *sym = p.first; |
| std::vector<BindingEntry> &bindings = p.second; |
| uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; |
| if (sym->isWeakRef()) |
| flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; |
| os << flags << sym->getName() << '\0' |
| << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); |
| int16_t ordinal = ordinalForDylibSymbol(*sym); |
| if (ordinal != lastOrdinal) { |
| encodeDylibOrdinal(ordinal, os); |
| lastOrdinal = ordinal; |
| } |
| std::vector<BindIR> opcodes; |
| for (const BindingEntry &b : bindings) |
| encodeBinding(b.target.isec->parent, |
| b.target.isec->getOffset(b.target.offset), b.addend, |
| lastBinding, opcodes); |
| if (config->optimize > 1) |
| optimizeOpcodes(opcodes); |
| for (const auto &op : opcodes) |
| flushOpcodes(op, os); |
| } |
| if (!bindingsMap.empty()) |
| os << static_cast<uint8_t>(BIND_OPCODE_DONE); |
| } |
| |
| void BindingSection::writeTo(uint8_t *buf) const { |
| memcpy(buf, contents.data(), contents.size()); |
| } |
| |
| WeakBindingSection::WeakBindingSection() |
| : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {} |
| |
| void WeakBindingSection::finalizeContents() { |
| raw_svector_ostream os{contents}; |
| Binding lastBinding; |
| |
| for (const Defined *defined : definitions) |
| encodeWeakOverride(defined, os); |
| |
| for (auto &p : sortBindings(bindingsMap)) { |
| const Symbol *sym = p.first; |
| std::vector<BindingEntry> &bindings = p.second; |
| os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM) |
| << sym->getName() << '\0' |
| << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); |
| std::vector<BindIR> opcodes; |
| for (const BindingEntry &b : bindings) |
| encodeBinding(b.target.isec->parent, |
| b.target.isec->getOffset(b.target.offset), b.addend, |
| lastBinding, opcodes); |
| if (config->optimize > 1) |
| optimizeOpcodes(opcodes); |
| for (const auto &op : opcodes) |
| flushOpcodes(op, os); |
| } |
| if (!bindingsMap.empty() || !definitions.empty()) |
| os << static_cast<uint8_t>(BIND_OPCODE_DONE); |
| } |
| |
| void WeakBindingSection::writeTo(uint8_t *buf) const { |
| memcpy(buf, contents.data(), contents.size()); |
| } |
| |
| StubsSection::StubsSection() |
| : SyntheticSection(segment_names::text, section_names::stubs) { |
| flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; |
| // The stubs section comprises machine instructions, which are aligned to |
| // 4 bytes on the archs we care about. |
| align = 4; |
| reserved2 = target->stubSize; |
| } |
| |
| uint64_t StubsSection::getSize() const { |
| return entries.size() * target->stubSize; |
| } |
| |
| void StubsSection::writeTo(uint8_t *buf) const { |
| size_t off = 0; |
| for (const Symbol *sym : entries) { |
| target->writeStub(buf + off, *sym); |
| off += target->stubSize; |
| } |
| } |
| |
| void StubsSection::finalize() { isFinal = true; } |
| |
| bool StubsSection::addEntry(Symbol *sym) { |
| bool inserted = entries.insert(sym); |
| if (inserted) |
| sym->stubsIndex = entries.size() - 1; |
| return inserted; |
| } |
| |
| StubHelperSection::StubHelperSection() |
| : SyntheticSection(segment_names::text, section_names::stubHelper) { |
| flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; |
| align = 4; // This section comprises machine instructions |
| } |
| |
| uint64_t StubHelperSection::getSize() const { |
| return target->stubHelperHeaderSize + |
| in.lazyBinding->getEntries().size() * target->stubHelperEntrySize; |
| } |
| |
| bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); } |
| |
| void StubHelperSection::writeTo(uint8_t *buf) const { |
| target->writeStubHelperHeader(buf); |
| size_t off = target->stubHelperHeaderSize; |
| for (const DylibSymbol *sym : in.lazyBinding->getEntries()) { |
| target->writeStubHelperEntry(buf + off, *sym, addr + off); |
| off += target->stubHelperEntrySize; |
| } |
| } |
| |
| void StubHelperSection::setup() { |
| Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr, |
| /*isWeakRef=*/false); |
| if (auto *undefined = dyn_cast<Undefined>(binder)) |
| treatUndefinedSymbol(*undefined, |
| "lazy binding (normally in libSystem.dylib)"); |
| |
| // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check. |
| stubBinder = dyn_cast_or_null<DylibSymbol>(binder); |
| if (stubBinder == nullptr) |
| return; |
| |
| in.got->addEntry(stubBinder); |
| |
| in.imageLoaderCache->parent = |
| ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache); |
| inputSections.push_back(in.imageLoaderCache); |
| // Since this isn't in the symbol table or in any input file, the noDeadStrip |
| // argument doesn't matter. |
| dyldPrivate = |
| make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0, |
| /*isWeakDef=*/false, |
| /*isExternal=*/false, /*isPrivateExtern=*/false, |
| /*isThumb=*/false, /*isReferencedDynamically=*/false, |
| /*noDeadStrip=*/false); |
| dyldPrivate->used = true; |
| } |
| |
| LazyPointerSection::LazyPointerSection() |
| : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) { |
| align = target->wordSize; |
| flags = S_LAZY_SYMBOL_POINTERS; |
| } |
| |
| uint64_t LazyPointerSection::getSize() const { |
| return in.stubs->getEntries().size() * target->wordSize; |
| } |
| |
| bool LazyPointerSection::isNeeded() const { |
| return !in.stubs->getEntries().empty(); |
| } |
| |
| void LazyPointerSection::writeTo(uint8_t *buf) const { |
| size_t off = 0; |
| for (const Symbol *sym : in.stubs->getEntries()) { |
| if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) { |
| if (dysym->hasStubsHelper()) { |
| uint64_t stubHelperOffset = |
| target->stubHelperHeaderSize + |
| dysym->stubsHelperIndex * target->stubHelperEntrySize; |
| write64le(buf + off, in.stubHelper->addr + stubHelperOffset); |
| } |
| } else { |
| write64le(buf + off, sym->getVA()); |
| } |
| off += target->wordSize; |
| } |
| } |
| |
| LazyBindingSection::LazyBindingSection() |
| : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {} |
| |
| void LazyBindingSection::finalizeContents() { |
| // TODO: Just precompute output size here instead of writing to a temporary |
| // buffer |
| for (DylibSymbol *sym : entries) |
| sym->lazyBindOffset = encode(*sym); |
| } |
| |
| void LazyBindingSection::writeTo(uint8_t *buf) const { |
| memcpy(buf, contents.data(), contents.size()); |
| } |
| |
| void LazyBindingSection::addEntry(DylibSymbol *dysym) { |
| if (entries.insert(dysym)) { |
| dysym->stubsHelperIndex = entries.size() - 1; |
| in.rebase->addEntry(in.lazyPointers->isec, |
| dysym->stubsIndex * target->wordSize); |
| } |
| } |
| |
| // Unlike the non-lazy binding section, the bind opcodes in this section aren't |
| // interpreted all at once. Rather, dyld will start interpreting opcodes at a |
| // given offset, typically only binding a single symbol before it finds a |
| // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case, |
| // we cannot encode just the differences between symbols; we have to emit the |
| // complete bind information for each symbol. |
| uint32_t LazyBindingSection::encode(const DylibSymbol &sym) { |
| uint32_t opstreamOffset = contents.size(); |
| OutputSegment *dataSeg = in.lazyPointers->parent; |
| os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | |
| dataSeg->index); |
| uint64_t offset = in.lazyPointers->addr - dataSeg->addr + |
| sym.stubsIndex * target->wordSize; |
| encodeULEB128(offset, os); |
| encodeDylibOrdinal(ordinalForDylibSymbol(sym), os); |
| |
| uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; |
| if (sym.isWeakRef()) |
| flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; |
| |
| os << flags << sym.getName() << '\0' |
| << static_cast<uint8_t>(BIND_OPCODE_DO_BIND) |
| << static_cast<uint8_t>(BIND_OPCODE_DONE); |
| return opstreamOffset; |
| } |
| |
| ExportSection::ExportSection() |
| : LinkEditSection(segment_names::linkEdit, section_names::export_) {} |
| |
| void ExportSection::finalizeContents() { |
| trieBuilder.setImageBase(in.header->addr); |
| for (const Symbol *sym : symtab->getSymbols()) { |
| if (const auto *defined = dyn_cast<Defined>(sym)) { |
| if (defined->privateExtern || !defined->isLive()) |
| continue; |
| trieBuilder.addSymbol(*defined); |
| hasWeakSymbol = hasWeakSymbol || sym->isWeakDef(); |
| } |
| } |
| size = trieBuilder.build(); |
| } |
| |
| void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); } |
| |
| DataInCodeSection::DataInCodeSection() |
| : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {} |
| |
| template <class LP> |
| static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() { |
| using SegmentCommand = typename LP::segment_command; |
| using SectionHeader = typename LP::section; |
| |
| std::vector<MachO::data_in_code_entry> dataInCodeEntries; |
| for (const InputFile *inputFile : inputFiles) { |
| if (!isa<ObjFile>(inputFile)) |
| continue; |
| const ObjFile *objFile = cast<ObjFile>(inputFile); |
| const auto *c = reinterpret_cast<const SegmentCommand *>( |
| findCommand(objFile->mb.getBufferStart(), LP::segmentLCType)); |
| if (!c) |
| continue; |
| ArrayRef<SectionHeader> sectionHeaders{ |
| reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; |
| |
| ArrayRef<MachO::data_in_code_entry> entries = objFile->dataInCodeEntries; |
| if (entries.empty()) |
| continue; |
| // For each code subsection find 'data in code' entries residing in it. |
| // Compute the new offset values as |
| // <offset within subsection> + <subsection address> - <__TEXT address>. |
| for (size_t i = 0, n = sectionHeaders.size(); i < n; ++i) { |
| for (const Subsection &subsec : objFile->sections[i].subsections) { |
| const InputSection *isec = subsec.isec; |
| if (!isCodeSection(isec)) |
| continue; |
| if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput()) |
| continue; |
| const uint64_t beginAddr = sectionHeaders[i].addr + subsec.offset; |
| auto it = llvm::lower_bound( |
| entries, beginAddr, |
| [](const MachO::data_in_code_entry &entry, uint64_t addr) { |
| return entry.offset < addr; |
| }); |
| const uint64_t endAddr = beginAddr + isec->getFileSize(); |
| for (const auto end = entries.end(); |
| it != end && it->offset + it->length <= endAddr; ++it) |
| dataInCodeEntries.push_back( |
| {static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) - |
| in.header->addr), |
| it->length, it->kind}); |
| } |
| } |
| } |
| return dataInCodeEntries; |
| } |
| |
| void DataInCodeSection::finalizeContents() { |
| entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>() |
| : collectDataInCodeEntries<ILP32>(); |
| } |
| |
| void DataInCodeSection::writeTo(uint8_t *buf) const { |
| if (!entries.empty()) |
| memcpy(buf, entries.data(), getRawSize()); |
| } |
| |
| FunctionStartsSection::FunctionStartsSection() |
| : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {} |
| |
| void FunctionStartsSection::finalizeContents() { |
| raw_svector_ostream os{contents}; |
| std::vector<uint64_t> addrs; |
| for (const InputFile *file : inputFiles) { |
| if (auto *objFile = dyn_cast<ObjFile>(file)) { |
| for (const Symbol *sym : objFile->symbols) { |
| if (const auto *defined = dyn_cast_or_null<Defined>(sym)) { |
| if (!defined->isec || !isCodeSection(defined->isec) || |
| !defined->isLive()) |
| continue; |
| // TODO: Add support for thumbs, in that case |
| // the lowest bit of nextAddr needs to be set to 1. |
| addrs.push_back(defined->getVA()); |
| } |
| } |
| } |
| } |
| llvm::sort(addrs); |
| uint64_t addr = in.header->addr; |
| for (uint64_t nextAddr : addrs) { |
| uint64_t delta = nextAddr - addr; |
| if (delta == 0) |
| continue; |
| encodeULEB128(delta, os); |
| addr = nextAddr; |
| } |
| os << '\0'; |
| } |
| |
| void FunctionStartsSection::writeTo(uint8_t *buf) const { |
| memcpy(buf, contents.data(), contents.size()); |
| } |
| |
| SymtabSection::SymtabSection(StringTableSection &stringTableSection) |
| : LinkEditSection(segment_names::linkEdit, section_names::symbolTable), |
| stringTableSection(stringTableSection) {} |
| |
| void SymtabSection::emitBeginSourceStab(DWARFUnit *compileUnit) { |
| StabsEntry stab(N_SO); |
| SmallString<261> dir(compileUnit->getCompilationDir()); |
| StringRef sep = sys::path::get_separator(); |
| // We don't use `path::append` here because we want an empty `dir` to result |
| // in an absolute path. `append` would give us a relative path for that case. |
| if (!dir.endswith(sep)) |
| dir += sep; |
| stab.strx = stringTableSection.addString( |
| saver.save(dir + compileUnit->getUnitDIE().getShortName())); |
| stabs.emplace_back(std::move(stab)); |
| } |
| |
| void SymtabSection::emitEndSourceStab() { |
| StabsEntry stab(N_SO); |
| stab.sect = 1; |
| stabs.emplace_back(std::move(stab)); |
| } |
| |
| void SymtabSection::emitObjectFileStab(ObjFile *file) { |
| StabsEntry stab(N_OSO); |
| stab.sect = target->cpuSubtype; |
| SmallString<261> path(!file->archiveName.empty() ? file->archiveName |
| : file->getName()); |
| std::error_code ec = sys::fs::make_absolute(path); |
| if (ec) |
| fatal("failed to get absolute path for " + path); |
| |
| if (!file->archiveName.empty()) |
| path.append({"(", file->getName(), ")"}); |
| |
| StringRef adjustedPath = saver.save(path.str()); |
| adjustedPath.consume_front(config->osoPrefix); |
| |
| stab.strx = stringTableSection.addString(adjustedPath); |
| stab.desc = 1; |
| stab.value = file->modTime; |
| stabs.emplace_back(std::move(stab)); |
| } |
| |
| void SymtabSection::emitEndFunStab(Defined *defined) { |
| StabsEntry stab(N_FUN); |
| stab.value = defined->size; |
| stabs.emplace_back(std::move(stab)); |
| } |
| |
| void SymtabSection::emitStabs() { |
| if (config->omitDebugInfo) |
| return; |
| |
| for (const std::string &s : config->astPaths) { |
| StabsEntry astStab(N_AST); |
| astStab.strx = stringTableSection.addString(s); |
| stabs.emplace_back(std::move(astStab)); |
| } |
| |
| std::vector<Defined *> symbolsNeedingStabs; |
| for (const SymtabEntry &entry : |
| concat<SymtabEntry>(localSymbols, externalSymbols)) { |
| Symbol *sym = entry.sym; |
| assert(sym->isLive() && |
| "dead symbols should not be in localSymbols, externalSymbols"); |
| if (auto *defined = dyn_cast<Defined>(sym)) { |
| if (defined->isAbsolute()) |
| continue; |
| InputSection *isec = defined->isec; |
| ObjFile *file = dyn_cast_or_null<ObjFile>(isec->getFile()); |
| if (!file || !file->compileUnit) |
| continue; |
| symbolsNeedingStabs.push_back(defined); |
| } |
| } |
| |
| llvm::stable_sort(symbolsNeedingStabs, [&](Defined *a, Defined *b) { |
| return a->isec->getFile()->id < b->isec->getFile()->id; |
| }); |
| |
| // Emit STABS symbols so that dsymutil and/or the debugger can map address |
| // regions in the final binary to the source and object files from which they |
| // originated. |
| InputFile *lastFile = nullptr; |
| for (Defined *defined : symbolsNeedingStabs) { |
| InputSection *isec = defined->isec; |
| ObjFile *file = cast<ObjFile>(isec->getFile()); |
| |
| if (lastFile == nullptr || lastFile != file) { |
| if (lastFile != nullptr) |
| emitEndSourceStab(); |
| lastFile = file; |
| |
| emitBeginSourceStab(file->compileUnit); |
| emitObjectFileStab(file); |
| } |
| |
| StabsEntry symStab; |
| symStab.sect = defined->isec->parent->index; |
| symStab.strx = stringTableSection.addString(defined->getName()); |
| symStab.value = defined->getVA(); |
| |
| if (isCodeSection(isec)) { |
| symStab.type = N_FUN; |
| stabs.emplace_back(std::move(symStab)); |
| emitEndFunStab(defined); |
| } else { |
| symStab.type = defined->isExternal() ? N_GSYM : N_STSYM; |
| stabs.emplace_back(std::move(symStab)); |
| } |
| } |
| |
| if (!stabs.empty()) |
| emitEndSourceStab(); |
| } |
| |
| void SymtabSection::finalizeContents() { |
| auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) { |
| uint32_t strx = stringTableSection.addString(sym->getName()); |
| symbols.push_back({sym, strx}); |
| }; |
| |
| // Local symbols aren't in the SymbolTable, so we walk the list of object |
| // files to gather them. |
| for (const InputFile *file : inputFiles) { |
| if (auto *objFile = dyn_cast<ObjFile>(file)) { |
| for (Symbol *sym : objFile->symbols) { |
| if (auto *defined = dyn_cast_or_null<Defined>(sym)) { |
| if (!defined->isExternal() && defined->isLive()) { |
| StringRef name = defined->getName(); |
| if (!name.startswith("l") && !name.startswith("L")) |
| addSymbol(localSymbols, sym); |
| } |
| } |
| } |
| } |
| } |
| |
| // __dyld_private is a local symbol too. It's linker-created and doesn't |
| // exist in any object file. |
| if (Defined *dyldPrivate = in.stubHelper->dyldPrivate) |
| addSymbol(localSymbols, dyldPrivate); |
| |
| for (Symbol *sym : symtab->getSymbols()) { |
| if (!sym->isLive()) |
| continue; |
| if (auto *defined = dyn_cast<Defined>(sym)) { |
| if (!defined->includeInSymtab) |
| continue; |
| assert(defined->isExternal()); |
| if (defined->privateExtern) |
| addSymbol(localSymbols, defined); |
| else |
| addSymbol(externalSymbols, defined); |
| } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) { |
| if (dysym->isReferenced()) |
| addSymbol(undefinedSymbols, sym); |
| } |
| } |
| |
| emitStabs(); |
| uint32_t symtabIndex = stabs.size(); |
| for (const SymtabEntry &entry : |
| concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) { |
| entry.sym->symtabIndex = symtabIndex++; |
| } |
| } |
| |
| uint32_t SymtabSection::getNumSymbols() const { |
| return stabs.size() + localSymbols.size() + externalSymbols.size() + |
| undefinedSymbols.size(); |
| } |
| |
| // This serves to hide (type-erase) the template parameter from SymtabSection. |
| template <class LP> class SymtabSectionImpl final : public SymtabSection { |
| public: |
| SymtabSectionImpl(StringTableSection &stringTableSection) |
| : SymtabSection(stringTableSection) {} |
| uint64_t getRawSize() const override; |
| void writeTo(uint8_t *buf) const override; |
| }; |
| |
| template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const { |
| return getNumSymbols() * sizeof(typename LP::nlist); |
| } |
| |
| template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const { |
| auto *nList = reinterpret_cast<typename LP::nlist *>(buf); |
| // Emit the stabs entries before the "real" symbols. We cannot emit them |
| // after as that would render Symbol::symtabIndex inaccurate. |
| for (const StabsEntry &entry : stabs) { |
| nList->n_strx = entry.strx; |
| nList->n_type = entry.type; |
| nList->n_sect = entry.sect; |
| nList->n_desc = entry.desc; |
| nList->n_value = entry.value; |
| ++nList; |
| } |
| |
| for (const SymtabEntry &entry : concat<const SymtabEntry>( |
| localSymbols, externalSymbols, undefinedSymbols)) { |
| nList->n_strx = entry.strx; |
| // TODO populate n_desc with more flags |
| if (auto *defined = dyn_cast<Defined>(entry.sym)) { |
| uint8_t scope = 0; |
| if (defined->privateExtern) { |
| // Private external -- dylib scoped symbol. |
| // Promote to non-external at link time. |
| scope = N_PEXT; |
| } else if (defined->isExternal()) { |
| // Normal global symbol. |
| scope = N_EXT; |
| } else { |
| // TU-local symbol from localSymbols. |
| scope = 0; |
| } |
| |
| if (defined->isAbsolute()) { |
| nList->n_type = scope | N_ABS; |
| nList->n_sect = NO_SECT; |
| nList->n_value = defined->value; |
| } else { |
| nList->n_type = scope | N_SECT; |
| nList->n_sect = defined->isec->parent->index; |
| // For the N_SECT symbol type, n_value is the address of the symbol |
| nList->n_value = defined->getVA(); |
| } |
| nList->n_desc |= defined->thumb ? N_ARM_THUMB_DEF : 0; |
| nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0; |
| nList->n_desc |= |
| defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0; |
| } else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) { |
| uint16_t n_desc = nList->n_desc; |
| int16_t ordinal = ordinalForDylibSymbol(*dysym); |
| if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP) |
| SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL); |
| else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE) |
| SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL); |
| else { |
| assert(ordinal > 0); |
| SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal)); |
| } |
| |
| nList->n_type = N_EXT; |
| n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0; |
| n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0; |
| nList->n_desc = n_desc; |
| } |
| ++nList; |
| } |
| } |
| |
| template <class LP> |
| SymtabSection * |
| macho::makeSymtabSection(StringTableSection &stringTableSection) { |
| return make<SymtabSectionImpl<LP>>(stringTableSection); |
| } |
| |
| IndirectSymtabSection::IndirectSymtabSection() |
| : LinkEditSection(segment_names::linkEdit, |
| section_names::indirectSymbolTable) {} |
| |
| uint32_t IndirectSymtabSection::getNumSymbols() const { |
| return in.got->getEntries().size() + in.tlvPointers->getEntries().size() + |
| 2 * in.stubs->getEntries().size(); |
| } |
| |
| bool IndirectSymtabSection::isNeeded() const { |
| return in.got->isNeeded() || in.tlvPointers->isNeeded() || |
| in.stubs->isNeeded(); |
| } |
| |
| void IndirectSymtabSection::finalizeContents() { |
| uint32_t off = 0; |
| in.got->reserved1 = off; |
| off += in.got->getEntries().size(); |
| in.tlvPointers->reserved1 = off; |
| off += in.tlvPointers->getEntries().size(); |
| in.stubs->reserved1 = off; |
| off += in.stubs->getEntries().size(); |
| in.lazyPointers->reserved1 = off; |
| } |
| |
| static uint32_t indirectValue(const Symbol *sym) { |
| if (sym->symtabIndex == UINT32_MAX) |
| return INDIRECT_SYMBOL_LOCAL; |
| if (auto *defined = dyn_cast<Defined>(sym)) |
| if (defined->privateExtern) |
| return INDIRECT_SYMBOL_LOCAL; |
| return sym->symtabIndex; |
| } |
| |
| void IndirectSymtabSection::writeTo(uint8_t *buf) const { |
| uint32_t off = 0; |
| for (const Symbol *sym : in.got->getEntries()) { |
| write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); |
| ++off; |
| } |
| for (const Symbol *sym : in.tlvPointers->getEntries()) { |
| write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); |
| ++off; |
| } |
| for (const Symbol *sym : in.stubs->getEntries()) { |
| write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); |
| ++off; |
| } |
| // There is a 1:1 correspondence between stubs and LazyPointerSection |
| // entries. But giving __stubs and __la_symbol_ptr the same reserved1 |
| // (the offset into the indirect symbol table) so that they both refer |
| // to the same range of offsets confuses `strip`, so write the stubs |
| // symbol table offsets a second time. |
| for (const Symbol *sym : in.stubs->getEntries()) { |
| write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); |
| ++off; |
| } |
| } |
| |
| StringTableSection::StringTableSection() |
| : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {} |
| |
| uint32_t StringTableSection::addString(StringRef str) { |
| uint32_t strx = size; |
| strings.push_back(str); // TODO: consider deduplicating strings |
| size += str.size() + 1; // account for null terminator |
| return strx; |
| } |
| |
| void StringTableSection::writeTo(uint8_t *buf) const { |
| uint32_t off = 0; |
| for (StringRef str : strings) { |
| memcpy(buf + off, str.data(), str.size()); |
| off += str.size() + 1; // account for null terminator |
| } |
| } |
| |
| static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0, ""); |
| static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0, ""); |
| |
| CodeSignatureSection::CodeSignatureSection() |
| : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) { |
| align = 16; // required by libstuff |
| // FIXME: Consider using finalOutput instead of outputFile. |
| fileName = config->outputFile; |
| size_t slashIndex = fileName.rfind("/"); |
| if (slashIndex != std::string::npos) |
| fileName = fileName.drop_front(slashIndex + 1); |
| |
| // NOTE: Any changes to these calculations should be repeated |
| // in llvm-objcopy's MachOLayoutBuilder::layoutTail. |
| allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1); |
| fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size(); |
| } |
| |
| uint32_t CodeSignatureSection::getBlockCount() const { |
| return (fileOff + blockSize - 1) / blockSize; |
| } |
| |
| uint64_t CodeSignatureSection::getRawSize() const { |
| return allHeadersSize + getBlockCount() * hashSize; |
| } |
| |
| void CodeSignatureSection::writeHashes(uint8_t *buf) const { |
| // NOTE: Changes to this functionality should be repeated in llvm-objcopy's |
| // MachOWriter::writeSignatureData. |
| uint8_t *code = buf; |
| uint8_t *codeEnd = buf + fileOff; |
| uint8_t *hashes = codeEnd + allHeadersSize; |
| while (code < codeEnd) { |
| StringRef block(reinterpret_cast<char *>(code), |
| std::min(codeEnd - code, static_cast<ssize_t>(blockSize))); |
| SHA256 hasher; |
| hasher.update(block); |
| StringRef hash = hasher.final(); |
| assert(hash.size() == hashSize); |
| memcpy(hashes, hash.data(), hashSize); |
| code += blockSize; |
| hashes += hashSize; |
| } |
| #if defined(__APPLE__) |
| // This is macOS-specific work-around and makes no sense for any |
| // other host OS. See https://openradar.appspot.com/FB8914231 |
| // |
| // The macOS kernel maintains a signature-verification cache to |
| // quickly validate applications at time of execve(2). The trouble |
| // is that for the kernel creates the cache entry at the time of the |
| // mmap(2) call, before we have a chance to write either the code to |
| // sign or the signature header+hashes. The fix is to invalidate |
| // all cached data associated with the output file, thus discarding |
| // the bogus prematurely-cached signature. |
| msync(buf, fileOff + getSize(), MS_INVALIDATE); |
| #endif |
| } |
| |
| void CodeSignatureSection::writeTo(uint8_t *buf) const { |
| // NOTE: Changes to this functionality should be repeated in llvm-objcopy's |
| // MachOWriter::writeSignatureData. |
| uint32_t signatureSize = static_cast<uint32_t>(getSize()); |
| auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf); |
| write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE); |
| write32be(&superBlob->length, signatureSize); |
| write32be(&superBlob->count, 1); |
| auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]); |
| write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY); |
| write32be(&blobIndex->offset, blobHeadersSize); |
| auto *codeDirectory = |
| reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize); |
| write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY); |
| write32be(&codeDirectory->length, signatureSize - blobHeadersSize); |
| write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG); |
| write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED); |
| write32be(&codeDirectory->hashOffset, |
| sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad); |
| write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory)); |
| codeDirectory->nSpecialSlots = 0; |
| write32be(&codeDirectory->nCodeSlots, getBlockCount()); |
| write32be(&codeDirectory->codeLimit, fileOff); |
| codeDirectory->hashSize = static_cast<uint8_t>(hashSize); |
| codeDirectory->hashType = kSecCodeSignatureHashSHA256; |
| codeDirectory->platform = 0; |
| codeDirectory->pageSize = blockSizeShift; |
| codeDirectory->spare2 = 0; |
| codeDirectory->scatterOffset = 0; |
| codeDirectory->teamOffset = 0; |
| codeDirectory->spare3 = 0; |
| codeDirectory->codeLimit64 = 0; |
| OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text); |
| write64be(&codeDirectory->execSegBase, textSeg->fileOff); |
| write64be(&codeDirectory->execSegLimit, textSeg->fileSize); |
| write64be(&codeDirectory->execSegFlags, |
| config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0); |
| auto *id = reinterpret_cast<char *>(&codeDirectory[1]); |
| memcpy(id, fileName.begin(), fileName.size()); |
| memset(id + fileName.size(), 0, fileNamePad); |
| } |
| |
| BitcodeBundleSection::BitcodeBundleSection() |
| : SyntheticSection(segment_names::llvm, section_names::bitcodeBundle) {} |
| |
| class ErrorCodeWrapper { |
| public: |
| explicit ErrorCodeWrapper(std::error_code ec) : errorCode(ec.value()) {} |
| explicit ErrorCodeWrapper(int ec) : errorCode(ec) {} |
| operator int() const { return errorCode; } |
| |
| private: |
| int errorCode; |
| }; |
| |
| #define CHECK_EC(exp) \ |
| do { \ |
| ErrorCodeWrapper ec(exp); \ |
| if (ec) \ |
| fatal(Twine("operation failed with error code ") + Twine(ec) + ": " + \ |
| #exp); \ |
| } while (0); |
| |
| void BitcodeBundleSection::finalize() { |
| #ifdef LLVM_HAVE_LIBXAR |
| using namespace llvm::sys::fs; |
| CHECK_EC(createTemporaryFile("bitcode-bundle", "xar", xarPath)); |
| |
| xar_t xar(xar_open(xarPath.data(), O_RDWR)); |
| if (!xar) |
| fatal("failed to open XAR temporary file at " + xarPath); |
| CHECK_EC(xar_opt_set(xar, XAR_OPT_COMPRESSION, XAR_OPT_VAL_NONE)); |
| // FIXME: add more data to XAR |
| CHECK_EC(xar_close(xar)); |
| |
| file_size(xarPath, xarSize); |
| #endif // defined(LLVM_HAVE_LIBXAR) |
| } |
| |
| void BitcodeBundleSection::writeTo(uint8_t *buf) const { |
| using namespace llvm::sys::fs; |
| file_t handle = |
| CHECK(openNativeFile(xarPath, CD_OpenExisting, FA_Read, OF_None), |
| "failed to open XAR file"); |
| std::error_code ec; |
| mapped_file_region xarMap(handle, mapped_file_region::mapmode::readonly, |
| xarSize, 0, ec); |
| if (ec) |
| fatal("failed to map XAR file"); |
| memcpy(buf, xarMap.const_data(), xarSize); |
| |
| closeFile(handle); |
| remove(xarPath); |
| } |
| |
| CStringSection::CStringSection() |
| : SyntheticSection(segment_names::text, section_names::cString) { |
| flags = S_CSTRING_LITERALS; |
| } |
| |
| void CStringSection::addInput(CStringInputSection *isec) { |
| isec->parent = this; |
| inputs.push_back(isec); |
| if (isec->align > align) |
| align = isec->align; |
| } |
| |
| void CStringSection::writeTo(uint8_t *buf) const { |
| for (const CStringInputSection *isec : inputs) { |
| for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) { |
| if (!isec->pieces[i].live) |
| continue; |
| StringRef string = isec->getStringRef(i); |
| memcpy(buf + isec->pieces[i].outSecOff, string.data(), string.size()); |
| } |
| } |
| } |
| |
| void CStringSection::finalizeContents() { |
| uint64_t offset = 0; |
| for (CStringInputSection *isec : inputs) { |
| for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) { |
| if (!isec->pieces[i].live) |
| continue; |
| uint32_t pieceAlign = MinAlign(isec->pieces[i].inSecOff, align); |
| offset = alignTo(offset, pieceAlign); |
| isec->pieces[i].outSecOff = offset; |
| isec->isFinal = true; |
| StringRef string = isec->getStringRef(i); |
| offset += string.size(); |
| } |
| } |
| size = offset; |
| } |
| // Mergeable cstring literals are found under the __TEXT,__cstring section. In |
| // contrast to ELF, which puts strings that need different alignments into |
| // different sections, clang's Mach-O backend puts them all in one section. |
| // Strings that need to be aligned have the .p2align directive emitted before |
| // them, which simply translates into zero padding in the object file. |
| // |
| // I *think* ld64 extracts the desired per-string alignment from this data by |
| // preserving each string's offset from the last section-aligned address. I'm |
| // not entirely certain since it doesn't seem consistent about doing this, and |
| // in fact doesn't seem to be correct in general: we can in fact can induce ld64 |
| // to produce a crashing binary just by linking in an additional object file |
| // that only contains a duplicate cstring at a different alignment. See PR50563 |
| // for details. |
| // |
| // On x86_64, the cstrings we've seen so far that require special alignment are |
| // all accessed by SIMD operations -- x86_64 requires SIMD accesses to be |
| // 16-byte-aligned. arm64 also seems to require 16-byte-alignment in some cases |
| // (PR50791), but I haven't tracked down the root cause. So for now, I'm just |
| // aligning all strings to 16 bytes. This is indeed wasteful, but |
| // implementation-wise it's simpler than preserving per-string |
| // alignment+offsets. It also avoids the aforementioned crash after |
| // deduplication of differently-aligned strings. Finally, the overhead is not |
| // huge: using 16-byte alignment (vs no alignment) is only a 0.5% size overhead |
| // when linking chromium_framework on x86_64. |
| DeduplicatedCStringSection::DeduplicatedCStringSection() |
| : builder(StringTableBuilder::RAW, /*Alignment=*/16) {} |
| |
| void DeduplicatedCStringSection::finalizeContents() { |
| // Add all string pieces to the string table builder to create section |
| // contents. |
| for (const CStringInputSection *isec : inputs) |
| for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) |
| if (isec->pieces[i].live) |
| builder.add(isec->getCachedHashStringRef(i)); |
| |
| // Fix the string table content. After this, the contents will never change. |
| builder.finalizeInOrder(); |
| |
| // finalize() fixed tail-optimized strings, so we can now get |
| // offsets of strings. Get an offset for each string and save it |
| // to a corresponding SectionPiece for easy access. |
| for (CStringInputSection *isec : inputs) { |
| for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) { |
| if (!isec->pieces[i].live) |
| continue; |
| isec->pieces[i].outSecOff = |
| builder.getOffset(isec->getCachedHashStringRef(i)); |
| isec->isFinal = true; |
| } |
| } |
| } |
| |
| // This section is actually emitted as __TEXT,__const by ld64, but clang may |
| // emit input sections of that name, and LLD doesn't currently support mixing |
| // synthetic and concat-type OutputSections. To work around this, I've given |
| // our merged-literals section a different name. |
| WordLiteralSection::WordLiteralSection() |
| : SyntheticSection(segment_names::text, section_names::literals) { |
| align = 16; |
| } |
| |
| void WordLiteralSection::addInput(WordLiteralInputSection *isec) { |
| isec->parent = this; |
| inputs.push_back(isec); |
| } |
| |
| void WordLiteralSection::finalizeContents() { |
| for (WordLiteralInputSection *isec : inputs) { |
| // We do all processing of the InputSection here, so it will be effectively |
| // finalized. |
| isec->isFinal = true; |
| const uint8_t *buf = isec->data.data(); |
| switch (sectionType(isec->getFlags())) { |
| case S_4BYTE_LITERALS: { |
| for (size_t off = 0, e = isec->data.size(); off < e; off += 4) { |
| if (!isec->isLive(off)) |
| continue; |
| uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off); |
| literal4Map.emplace(value, literal4Map.size()); |
| } |
| break; |
| } |
| case S_8BYTE_LITERALS: { |
| for (size_t off = 0, e = isec->data.size(); off < e; off += 8) { |
| if (!isec->isLive(off)) |
| continue; |
| uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off); |
| literal8Map.emplace(value, literal8Map.size()); |
| } |
| break; |
| } |
| case S_16BYTE_LITERALS: { |
| for (size_t off = 0, e = isec->data.size(); off < e; off += 16) { |
| if (!isec->isLive(off)) |
| continue; |
| UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off); |
| literal16Map.emplace(value, literal16Map.size()); |
| } |
| break; |
| } |
| default: |
| llvm_unreachable("invalid literal section type"); |
| } |
| } |
| } |
| |
| void WordLiteralSection::writeTo(uint8_t *buf) const { |
| // Note that we don't attempt to do any endianness conversion in addInput(), |
| // so we don't do it here either -- just write out the original value, |
| // byte-for-byte. |
| for (const auto &p : literal16Map) |
| memcpy(buf + p.second * 16, &p.first, 16); |
| buf += literal16Map.size() * 16; |
| |
| for (const auto &p : literal8Map) |
| memcpy(buf + p.second * 8, &p.first, 8); |
| buf += literal8Map.size() * 8; |
| |
| for (const auto &p : literal4Map) |
| memcpy(buf + p.second * 4, &p.first, 4); |
| } |
| |
| void macho::createSyntheticSymbols() { |
| auto addHeaderSymbol = [](const char *name) { |
| symtab->addSynthetic(name, in.header->isec, /*value=*/0, |
| /*privateExtern=*/true, /*includeInSymtab=*/false, |
| /*referencedDynamically=*/false); |
| }; |
| |
| switch (config->outputType) { |
| // FIXME: Assign the right address value for these symbols |
| // (rather than 0). But we need to do that after assignAddresses(). |
| case MH_EXECUTE: |
| // If linking PIE, __mh_execute_header is a defined symbol in |
| // __TEXT, __text) |
| // Otherwise, it's an absolute symbol. |
| if (config->isPic) |
| symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0, |
| /*privateExtern=*/false, /*includeInSymtab=*/true, |
| /*referencedDynamically=*/true); |
| else |
| symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0, |
| /*privateExtern=*/false, /*includeInSymtab=*/true, |
| /*referencedDynamically=*/true); |
| break; |
| |
| // The following symbols are N_SECT symbols, even though the header is not |
| // part of any section and that they are private to the bundle/dylib/object |
| // they are part of. |
| case MH_BUNDLE: |
| addHeaderSymbol("__mh_bundle_header"); |
| break; |
| case MH_DYLIB: |
| addHeaderSymbol("__mh_dylib_header"); |
| break; |
| case MH_DYLINKER: |
| addHeaderSymbol("__mh_dylinker_header"); |
| break; |
| case MH_OBJECT: |
| addHeaderSymbol("__mh_object_header"); |
| break; |
| default: |
| llvm_unreachable("unexpected outputType"); |
| break; |
| } |
| |
| // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit |
| // which does e.g. cleanup of static global variables. The ABI document |
| // says that the pointer can point to any address in one of the dylib's |
| // segments, but in practice ld64 seems to set it to point to the header, |
| // so that's what's implemented here. |
| addHeaderSymbol("___dso_handle"); |
| } |
| |
| template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &); |
| template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &); |