| //===-- lib/Semantics/expression.cpp --------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "flang/Semantics/expression.h" |
| #include "check-call.h" |
| #include "pointer-assignment.h" |
| #include "resolve-names.h" |
| #include "flang/Common/Fortran.h" |
| #include "flang/Common/idioms.h" |
| #include "flang/Evaluate/common.h" |
| #include "flang/Evaluate/fold.h" |
| #include "flang/Evaluate/tools.h" |
| #include "flang/Parser/characters.h" |
| #include "flang/Parser/dump-parse-tree.h" |
| #include "flang/Parser/parse-tree-visitor.h" |
| #include "flang/Parser/parse-tree.h" |
| #include "flang/Semantics/scope.h" |
| #include "flang/Semantics/semantics.h" |
| #include "flang/Semantics/symbol.h" |
| #include "flang/Semantics/tools.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <functional> |
| #include <optional> |
| #include <set> |
| |
| // Typedef for optional generic expressions (ubiquitous in this file) |
| using MaybeExpr = |
| std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; |
| |
| // Much of the code that implements semantic analysis of expressions is |
| // tightly coupled with their typed representations in lib/Evaluate, |
| // and appears here in namespace Fortran::evaluate for convenience. |
| namespace Fortran::evaluate { |
| |
| using common::LanguageFeature; |
| using common::NumericOperator; |
| using common::TypeCategory; |
| |
| static inline std::string ToUpperCase(const std::string &str) { |
| return parser::ToUpperCaseLetters(str); |
| } |
| |
| struct DynamicTypeWithLength : public DynamicType { |
| explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} |
| std::optional<Expr<SubscriptInteger>> LEN() const; |
| std::optional<Expr<SubscriptInteger>> length; |
| }; |
| |
| std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { |
| if (length) { |
| return length; |
| } else { |
| return GetCharLength(); |
| } |
| } |
| |
| static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( |
| const std::optional<parser::TypeSpec> &spec) { |
| if (spec) { |
| if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { |
| // Name resolution sets TypeSpec::declTypeSpec only when it's valid |
| // (viz., an intrinsic type with valid known kind or a non-polymorphic |
| // & non-ABSTRACT derived type). |
| if (const semantics::IntrinsicTypeSpec * |
| intrinsic{typeSpec->AsIntrinsic()}) { |
| TypeCategory category{intrinsic->category()}; |
| if (auto optKind{ToInt64(intrinsic->kind())}) { |
| int kind{static_cast<int>(*optKind)}; |
| if (category == TypeCategory::Character) { |
| const semantics::CharacterTypeSpec &cts{ |
| typeSpec->characterTypeSpec()}; |
| const semantics::ParamValue &len{cts.length()}; |
| // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & |
| // type guards, but not in array constructors. |
| return DynamicTypeWithLength{DynamicType{kind, len}}; |
| } else { |
| return DynamicTypeWithLength{DynamicType{category, kind}}; |
| } |
| } |
| } else if (const semantics::DerivedTypeSpec * |
| derived{typeSpec->AsDerived()}) { |
| return DynamicTypeWithLength{DynamicType{*derived}}; |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| |
| class ArgumentAnalyzer { |
| public: |
| explicit ArgumentAnalyzer(ExpressionAnalyzer &context) |
| : context_{context}, source_{context.GetContextualMessages().at()}, |
| isProcedureCall_{false} {} |
| ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, |
| bool isProcedureCall = false) |
| : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} |
| bool fatalErrors() const { return fatalErrors_; } |
| ActualArguments &&GetActuals() { |
| CHECK(!fatalErrors_); |
| return std::move(actuals_); |
| } |
| const Expr<SomeType> &GetExpr(std::size_t i) const { |
| return DEREF(actuals_.at(i).value().UnwrapExpr()); |
| } |
| Expr<SomeType> &&MoveExpr(std::size_t i) { |
| return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); |
| } |
| void Analyze(const common::Indirection<parser::Expr> &x) { |
| Analyze(x.value()); |
| } |
| void Analyze(const parser::Expr &x) { |
| actuals_.emplace_back(AnalyzeExpr(x)); |
| fatalErrors_ |= !actuals_.back(); |
| } |
| void Analyze(const parser::Variable &); |
| void Analyze(const parser::ActualArgSpec &, bool isSubroutine); |
| void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i, |
| std::optional<DynamicType> otherType); |
| |
| bool IsIntrinsicRelational( |
| RelationalOperator, const DynamicType &, const DynamicType &) const; |
| bool IsIntrinsicLogical() const; |
| bool IsIntrinsicNumeric(NumericOperator) const; |
| bool IsIntrinsicConcat() const; |
| |
| bool CheckConformance(); |
| bool CheckForNullPointer(const char *where = "as an operand here"); |
| |
| // Find and return a user-defined operator or report an error. |
| // The provided message is used if there is no such operator. |
| MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText, |
| const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false); |
| template <typename E> |
| MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) { |
| return TryDefinedOp( |
| context_.context().languageFeatures().GetNames(opr), msg); |
| } |
| // Find and return a user-defined assignment |
| std::optional<ProcedureRef> TryDefinedAssignment(); |
| std::optional<ProcedureRef> GetDefinedAssignmentProc(); |
| std::optional<DynamicType> GetType(std::size_t) const; |
| void Dump(llvm::raw_ostream &); |
| |
| private: |
| MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText); |
| MaybeExpr TryBoundOp(const Symbol &, int passIndex); |
| std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); |
| MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); |
| bool AreConformable() const; |
| const Symbol *FindBoundOp( |
| parser::CharBlock, int passIndex, const Symbol *&definedOp); |
| void AddAssignmentConversion( |
| const DynamicType &lhsType, const DynamicType &rhsType); |
| bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); |
| int GetRank(std::size_t) const; |
| bool IsBOZLiteral(std::size_t i) const { |
| return evaluate::IsBOZLiteral(GetExpr(i)); |
| } |
| void SayNoMatch(const std::string &, bool isAssignment = false); |
| std::string TypeAsFortran(std::size_t); |
| bool AnyUntypedOrMissingOperand(); |
| |
| ExpressionAnalyzer &context_; |
| ActualArguments actuals_; |
| parser::CharBlock source_; |
| bool fatalErrors_{false}; |
| const bool isProcedureCall_; // false for user-defined op or assignment |
| }; |
| |
| // Wraps a data reference in a typed Designator<>, and a procedure |
| // or procedure pointer reference in a ProcedureDesignator. |
| MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { |
| const Symbol &last{ref.GetLastSymbol()}; |
| const Symbol &symbol{BypassGeneric(last).GetUltimate()}; |
| if (semantics::IsProcedure(symbol)) { |
| if (auto *component{std::get_if<Component>(&ref.u)}) { |
| return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; |
| } else if (!std::holds_alternative<SymbolRef>(ref.u)) { |
| DIE("unexpected alternative in DataRef"); |
| } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { |
| if (symbol.has<semantics::GenericDetails>()) { |
| Say("'%s' is not a specific procedure"_err_en_US, symbol.name()); |
| } else { |
| return Expr<SomeType>{ProcedureDesignator{symbol}}; |
| } |
| } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( |
| symbol.name().ToString())}; |
| interface && !interface->isRestrictedSpecific) { |
| SpecificIntrinsic intrinsic{ |
| symbol.name().ToString(), std::move(*interface)}; |
| intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; |
| return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; |
| } else { |
| Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US, |
| symbol.name()); |
| } |
| return std::nullopt; |
| } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) { |
| return result; |
| } else { |
| if (!context_.HasError(last) && !context_.HasError(symbol)) { |
| AttachDeclaration( |
| Say("'%s' is not an object that can appear in an expression"_err_en_US, |
| last.name()), |
| symbol); |
| context_.SetError(last); |
| } |
| return std::nullopt; |
| } |
| } |
| |
| // Some subscript semantic checks must be deferred until all of the |
| // subscripts are in hand. |
| MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { |
| const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; |
| int symbolRank{symbol.Rank()}; |
| int subscripts{static_cast<int>(ref.size())}; |
| if (subscripts == 0) { |
| return std::nullopt; // error recovery |
| } else if (subscripts != symbolRank) { |
| if (symbolRank != 0) { |
| Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, |
| symbolRank, symbol.name(), subscripts); |
| } |
| return std::nullopt; |
| } else if (Component * component{ref.base().UnwrapComponent()}) { |
| int baseRank{component->base().Rank()}; |
| if (baseRank > 0) { |
| int subscriptRank{0}; |
| for (const auto &expr : ref.subscript()) { |
| subscriptRank += expr.Rank(); |
| } |
| if (subscriptRank > 0) { // C919a |
| Say("Subscripts of component '%s' of rank-%d derived type " |
| "array have rank %d but must all be scalar"_err_en_US, |
| symbol.name(), baseRank, subscriptRank); |
| return std::nullopt; |
| } |
| } |
| } else if (const auto *object{ |
| symbol.detailsIf<semantics::ObjectEntityDetails>()}) { |
| // C928 & C1002 |
| if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { |
| if (!last->upper() && object->IsAssumedSize()) { |
| Say("Assumed-size array '%s' must have explicit final " |
| "subscript upper bound value"_err_en_US, |
| symbol.name()); |
| return std::nullopt; |
| } |
| } |
| } else { |
| // Shouldn't get here from Analyze(ArrayElement) without a valid base, |
| // which, if not an object, must be a construct entity from |
| // SELECT TYPE/RANK or ASSOCIATE. |
| CHECK(symbol.has<semantics::AssocEntityDetails>()); |
| } |
| return Designate(DataRef{std::move(ref)}); |
| } |
| |
| // Applies subscripts to a data reference. |
| MaybeExpr ExpressionAnalyzer::ApplySubscripts( |
| DataRef &&dataRef, std::vector<Subscript> &&subscripts) { |
| if (subscripts.empty()) { |
| return std::nullopt; // error recovery |
| } |
| return std::visit( |
| common::visitors{ |
| [&](SymbolRef &&symbol) { |
| return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); |
| }, |
| [&](Component &&c) { |
| return CompleteSubscripts( |
| ArrayRef{std::move(c), std::move(subscripts)}); |
| }, |
| [&](auto &&) -> MaybeExpr { |
| DIE("bad base for ArrayRef"); |
| return std::nullopt; |
| }, |
| }, |
| std::move(dataRef.u)); |
| } |
| |
| // Top-level checks for data references. |
| MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { |
| if (Component * component{std::get_if<Component>(&dataRef.u)}) { |
| const Symbol &symbol{component->GetLastSymbol()}; |
| int componentRank{symbol.Rank()}; |
| if (componentRank > 0) { |
| int baseRank{component->base().Rank()}; |
| if (baseRank > 0) { // C919a |
| Say("Reference to whole rank-%d component '%%%s' of " |
| "rank-%d array of derived type is not allowed"_err_en_US, |
| componentRank, symbol.name(), baseRank); |
| } |
| } |
| } |
| return Designate(std::move(dataRef)); |
| } |
| |
| // Parse tree correction after a substring S(j:k) was misparsed as an |
| // array section. N.B. Fortran substrings have to have a range, not a |
| // single index. |
| static void FixMisparsedSubstring(const parser::Designator &d) { |
| auto &mutate{const_cast<parser::Designator &>(d)}; |
| if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { |
| if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( |
| &dataRef->u)}) { |
| parser::ArrayElement &arrElement{ae->value()}; |
| if (!arrElement.subscripts.empty()) { |
| auto iter{arrElement.subscripts.begin()}; |
| if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { |
| if (!std::get<2>(triplet->t) /* no stride */ && |
| ++iter == arrElement.subscripts.end() /* one subscript */) { |
| if (Symbol * |
| symbol{std::visit( |
| common::visitors{ |
| [](parser::Name &n) { return n.symbol; }, |
| [](common::Indirection<parser::StructureComponent> |
| &sc) { return sc.value().component.symbol; }, |
| [](auto &) -> Symbol * { return nullptr; }, |
| }, |
| arrElement.base.u)}) { |
| const Symbol &ultimate{symbol->GetUltimate()}; |
| if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { |
| if (!ultimate.IsObjectArray() && |
| type->category() == semantics::DeclTypeSpec::Character) { |
| // The ambiguous S(j:k) was parsed as an array section |
| // reference, but it's now clear that it's a substring. |
| // Fix the parse tree in situ. |
| mutate.u = arrElement.ConvertToSubstring(); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { |
| auto restorer{GetContextualMessages().SetLocation(d.source)}; |
| FixMisparsedSubstring(d); |
| // These checks have to be deferred to these "top level" data-refs where |
| // we can be sure that there are no following subscripts (yet). |
| // Substrings have already been run through TopLevelChecks() and |
| // won't be returned by ExtractDataRef(). |
| if (MaybeExpr result{Analyze(d.u)}) { |
| if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { |
| return TopLevelChecks(std::move(*dataRef)); |
| } |
| return result; |
| } |
| return std::nullopt; |
| } |
| |
| // A utility subroutine to repackage optional expressions of various levels |
| // of type specificity as fully general MaybeExpr values. |
| template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { |
| return AsGenericExpr(std::move(x)); |
| } |
| template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { |
| if (x) { |
| return AsMaybeExpr(std::move(*x)); |
| } |
| return std::nullopt; |
| } |
| |
| // Type kind parameter values for literal constants. |
| int ExpressionAnalyzer::AnalyzeKindParam( |
| const std::optional<parser::KindParam> &kindParam, int defaultKind) { |
| if (!kindParam) { |
| return defaultKind; |
| } |
| return std::visit( |
| common::visitors{ |
| [](std::uint64_t k) { return static_cast<int>(k); }, |
| [&](const parser::Scalar< |
| parser::Integer<parser::Constant<parser::Name>>> &n) { |
| if (MaybeExpr ie{Analyze(n)}) { |
| if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { |
| int iv = *i64; |
| if (iv == *i64) { |
| return iv; |
| } |
| } |
| } |
| return defaultKind; |
| }, |
| }, |
| kindParam->u); |
| } |
| |
| // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant |
| struct IntTypeVisitor { |
| using Result = MaybeExpr; |
| using Types = IntegerTypes; |
| template <typename T> Result Test() { |
| if (T::kind >= kind) { |
| const char *p{digits.begin()}; |
| auto value{T::Scalar::Read(p, 10, true /*signed*/)}; |
| if (!value.overflow) { |
| if (T::kind > kind) { |
| if (!isDefaultKind || |
| !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { |
| return std::nullopt; |
| } else if (analyzer.context().ShouldWarn( |
| LanguageFeature::BigIntLiterals)) { |
| analyzer.Say(digits, |
| "Integer literal is too large for default INTEGER(KIND=%d); " |
| "assuming INTEGER(KIND=%d)"_en_US, |
| kind, T::kind); |
| } |
| } |
| return Expr<SomeType>{ |
| Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; |
| } |
| } |
| return std::nullopt; |
| } |
| ExpressionAnalyzer &analyzer; |
| parser::CharBlock digits; |
| int kind; |
| bool isDefaultKind; |
| }; |
| |
| template <typename PARSED> |
| MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { |
| const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; |
| bool isDefaultKind{!kindParam}; |
| int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; |
| if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { |
| auto digits{std::get<parser::CharBlock>(x.t)}; |
| if (MaybeExpr result{common::SearchTypes( |
| IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { |
| return result; |
| } else if (isDefaultKind) { |
| Say(digits, |
| "Integer literal is too large for any allowable " |
| "kind of INTEGER"_err_en_US); |
| } else { |
| Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, |
| kind); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { |
| auto restorer{ |
| GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; |
| return IntLiteralConstant(x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::SignedIntLiteralConstant &x) { |
| auto restorer{GetContextualMessages().SetLocation(x.source)}; |
| return IntLiteralConstant(x); |
| } |
| |
| template <typename TYPE> |
| Constant<TYPE> ReadRealLiteral( |
| parser::CharBlock source, FoldingContext &context) { |
| const char *p{source.begin()}; |
| auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; |
| CHECK(p == source.end()); |
| RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); |
| auto value{valWithFlags.value}; |
| if (context.flushSubnormalsToZero()) { |
| value = value.FlushSubnormalToZero(); |
| } |
| return {value}; |
| } |
| |
| struct RealTypeVisitor { |
| using Result = std::optional<Expr<SomeReal>>; |
| using Types = RealTypes; |
| |
| RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) |
| : kind{k}, literal{lit}, context{ctx} {} |
| |
| template <typename T> Result Test() { |
| if (kind == T::kind) { |
| return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; |
| } |
| return std::nullopt; |
| } |
| |
| int kind; |
| parser::CharBlock literal; |
| FoldingContext &context; |
| }; |
| |
| // Reads a real literal constant and encodes it with the right kind. |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { |
| // Use a local message context around the real literal for better |
| // provenance on any messages. |
| auto restorer{GetContextualMessages().SetLocation(x.real.source)}; |
| // If a kind parameter appears, it defines the kind of the literal and the |
| // letter used in an exponent part must be 'E' (e.g., the 'E' in |
| // "6.02214E+23"). In the absence of an explicit kind parameter, any |
| // exponent letter determines the kind. Otherwise, defaults apply. |
| auto &defaults{context_.defaultKinds()}; |
| int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; |
| const char *end{x.real.source.end()}; |
| char expoLetter{' '}; |
| std::optional<int> letterKind; |
| for (const char *p{x.real.source.begin()}; p < end; ++p) { |
| if (parser::IsLetter(*p)) { |
| expoLetter = *p; |
| switch (expoLetter) { |
| case 'e': |
| letterKind = defaults.GetDefaultKind(TypeCategory::Real); |
| break; |
| case 'd': |
| letterKind = defaults.doublePrecisionKind(); |
| break; |
| case 'q': |
| letterKind = defaults.quadPrecisionKind(); |
| break; |
| default: |
| Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); |
| } |
| break; |
| } |
| } |
| if (letterKind) { |
| defaultKind = *letterKind; |
| } |
| // C716 requires 'E' as an exponent, but this is more useful |
| auto kind{AnalyzeKindParam(x.kind, defaultKind)}; |
| if (letterKind && kind != *letterKind && expoLetter != 'e') { |
| Say("Explicit kind parameter on real constant disagrees with " |
| "exponent letter '%c'"_en_US, |
| expoLetter); |
| } |
| auto result{common::SearchTypes( |
| RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; |
| if (!result) { // C717 |
| Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); |
| } |
| return AsMaybeExpr(std::move(result)); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::SignedRealLiteralConstant &x) { |
| if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { |
| auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; |
| if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { |
| if (sign == parser::Sign::Negative) { |
| return AsGenericExpr(-std::move(realExpr)); |
| } |
| } |
| return result; |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::SignedComplexLiteralConstant &x) { |
| auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; |
| if (!result) { |
| return std::nullopt; |
| } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { |
| return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); |
| } else { |
| return result; |
| } |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { |
| return Analyze(x.u); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { |
| return AsMaybeExpr( |
| ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), |
| Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); |
| } |
| |
| // CHARACTER literal processing. |
| MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { |
| if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { |
| return std::nullopt; |
| } |
| switch (kind) { |
| case 1: |
| return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ |
| parser::DecodeString<std::string, parser::Encoding::LATIN_1>( |
| string, true)}); |
| case 2: |
| return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ |
| parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( |
| string, true)}); |
| case 4: |
| return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ |
| parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( |
| string, true)}); |
| default: |
| CRASH_NO_CASE; |
| } |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { |
| int kind{ |
| AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; |
| auto value{std::get<std::string>(x.t)}; |
| return AnalyzeString(std::move(value), kind); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::HollerithLiteralConstant &x) { |
| int kind{GetDefaultKind(TypeCategory::Character)}; |
| auto value{x.v}; |
| return AnalyzeString(std::move(value), kind); |
| } |
| |
| // .TRUE. and .FALSE. of various kinds |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { |
| auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), |
| GetDefaultKind(TypeCategory::Logical))}; |
| bool value{std::get<bool>(x.t)}; |
| auto result{common::SearchTypes( |
| TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ |
| kind, std::move(value)})}; |
| if (!result) { |
| Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 |
| } |
| return result; |
| } |
| |
| // BOZ typeless literals |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { |
| const char *p{x.v.c_str()}; |
| std::uint64_t base{16}; |
| switch (*p++) { |
| case 'b': |
| base = 2; |
| break; |
| case 'o': |
| base = 8; |
| break; |
| case 'z': |
| break; |
| case 'x': |
| break; |
| default: |
| CRASH_NO_CASE; |
| } |
| CHECK(*p == '"'); |
| ++p; |
| auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; |
| if (*p != '"') { |
| Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, |
| x.v); // C7107, C7108 |
| return std::nullopt; |
| } |
| if (value.overflow) { |
| Say("BOZ literal '%s' too large"_err_en_US, x.v); |
| return std::nullopt; |
| } |
| return AsGenericExpr(std::move(value.value)); |
| } |
| |
| // Names and named constants |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { |
| auto restorer{GetContextualMessages().SetLocation(n.source)}; |
| if (std::optional<int> kind{IsImpliedDo(n.source)}) { |
| return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( |
| *kind, AsExpr(ImpliedDoIndex{n.source}))); |
| } else if (context_.HasError(n)) { |
| return std::nullopt; |
| } else if (!n.symbol) { |
| SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source); |
| return std::nullopt; |
| } else { |
| const Symbol &ultimate{n.symbol->GetUltimate()}; |
| if (ultimate.has<semantics::TypeParamDetails>()) { |
| // A bare reference to a derived type parameter (within a parameterized |
| // derived type definition) |
| return Fold(ConvertToType( |
| ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); |
| } else { |
| if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { |
| if (const semantics::Scope * |
| pure{semantics::FindPureProcedureContaining( |
| context_.FindScope(n.source))}) { |
| SayAt(n, |
| "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, |
| n.source, DEREF(pure->symbol()).name()); |
| n.symbol->attrs().reset(semantics::Attr::VOLATILE); |
| } |
| } |
| if (!isWholeAssumedSizeArrayOk_ && |
| semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231 |
| AttachDeclaration( |
| SayAt(n, |
| "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, |
| n.source), |
| *n.symbol); |
| } |
| return Designate(DataRef{*n.symbol}); |
| } |
| } |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { |
| auto restorer{GetContextualMessages().SetLocation(n.v.source)}; |
| if (MaybeExpr value{Analyze(n.v)}) { |
| Expr<SomeType> folded{Fold(std::move(*value))}; |
| if (IsConstantExpr(folded)) { |
| return folded; |
| } |
| Say(n.v.source, "must be a constant"_err_en_US); // C718 |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) { |
| if (MaybeExpr value{Analyze(n.v)}) { |
| // Subtle: when the NullInit is a DataStmtConstant, it might |
| // be a misparse of a structure constructor without parameters |
| // or components (e.g., T()). Checking the result to ensure |
| // that a "=>" data entity initializer actually resolved to |
| // a null pointer has to be done by the caller. |
| return Fold(std::move(*value)); |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { |
| return Analyze(x.value()); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { |
| if (const auto &repeat{ |
| std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { |
| x.repetitions = -1; |
| if (MaybeExpr expr{Analyze(repeat->u)}) { |
| Expr<SomeType> folded{Fold(std::move(*expr))}; |
| if (auto value{ToInt64(folded)}) { |
| if (*value >= 0) { // C882 |
| x.repetitions = *value; |
| } else { |
| Say(FindSourceLocation(repeat), |
| "Repeat count (%jd) for data value must not be negative"_err_en_US, |
| *value); |
| } |
| } |
| } |
| } |
| return Analyze(std::get<parser::DataStmtConstant>(x.t)); |
| } |
| |
| // Substring references |
| std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( |
| const std::optional<parser::ScalarIntExpr> &bound) { |
| if (bound) { |
| if (MaybeExpr expr{Analyze(*bound)}) { |
| if (expr->Rank() > 1) { |
| Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); |
| } |
| if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { |
| if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { |
| return {std::move(*ssIntExpr)}; |
| } |
| return {Expr<SubscriptInteger>{ |
| Convert<SubscriptInteger, TypeCategory::Integer>{ |
| std::move(*intExpr)}}}; |
| } else { |
| Say("substring bound expression is not INTEGER"_err_en_US); |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { |
| if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { |
| if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { |
| if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { |
| if (std::optional<DataRef> checked{ |
| ExtractDataRef(std::move(*newBaseExpr))}) { |
| const parser::SubstringRange &range{ |
| std::get<parser::SubstringRange>(ss.t)}; |
| std::optional<Expr<SubscriptInteger>> first{ |
| GetSubstringBound(std::get<0>(range.t))}; |
| std::optional<Expr<SubscriptInteger>> last{ |
| GetSubstringBound(std::get<1>(range.t))}; |
| const Symbol &symbol{checked->GetLastSymbol()}; |
| if (std::optional<DynamicType> dynamicType{ |
| DynamicType::From(symbol)}) { |
| if (dynamicType->category() == TypeCategory::Character) { |
| return WrapperHelper<TypeCategory::Character, Designator, |
| Substring>(dynamicType->kind(), |
| Substring{std::move(checked.value()), std::move(first), |
| std::move(last)}); |
| } |
| } |
| Say("substring may apply only to CHARACTER"_err_en_US); |
| } |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| |
| // CHARACTER literal substrings |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::CharLiteralConstantSubstring &x) { |
| const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; |
| std::optional<Expr<SubscriptInteger>> lower{ |
| GetSubstringBound(std::get<0>(range.t))}; |
| std::optional<Expr<SubscriptInteger>> upper{ |
| GetSubstringBound(std::get<1>(range.t))}; |
| if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { |
| if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { |
| Expr<SubscriptInteger> length{ |
| std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, |
| charExpr->u)}; |
| if (!lower) { |
| lower = Expr<SubscriptInteger>{1}; |
| } |
| if (!upper) { |
| upper = Expr<SubscriptInteger>{ |
| static_cast<std::int64_t>(ToInt64(length).value())}; |
| } |
| return std::visit( |
| [&](auto &&ckExpr) -> MaybeExpr { |
| using Result = ResultType<decltype(ckExpr)>; |
| auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; |
| CHECK(DEREF(cp).size() == 1); |
| StaticDataObject::Pointer staticData{StaticDataObject::Create()}; |
| staticData->set_alignment(Result::kind) |
| .set_itemBytes(Result::kind) |
| .Push(cp->GetScalarValue().value()); |
| Substring substring{std::move(staticData), std::move(lower.value()), |
| std::move(upper.value())}; |
| return AsGenericExpr( |
| Expr<Result>{Designator<Result>{std::move(substring)}}); |
| }, |
| std::move(charExpr->u)); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| // Subscripted array references |
| std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( |
| MaybeExpr &&expr) { |
| if (expr) { |
| if (expr->Rank() > 1) { |
| Say("Subscript expression has rank %d greater than 1"_err_en_US, |
| expr->Rank()); |
| } |
| if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { |
| if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { |
| return std::move(*ssIntExpr); |
| } else { |
| return Expr<SubscriptInteger>{ |
| Convert<SubscriptInteger, TypeCategory::Integer>{ |
| std::move(*intExpr)}}; |
| } |
| } else { |
| Say("Subscript expression is not INTEGER"_err_en_US); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( |
| const std::optional<parser::Subscript> &s) { |
| if (s) { |
| return AsSubscript(Analyze(*s)); |
| } else { |
| return std::nullopt; |
| } |
| } |
| |
| std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( |
| const parser::SectionSubscript &ss) { |
| return std::visit( |
| common::visitors{ |
| [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { |
| const auto &lower{std::get<0>(t.t)}; |
| const auto &upper{std::get<1>(t.t)}; |
| const auto &stride{std::get<2>(t.t)}; |
| auto result{Triplet{ |
| TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; |
| if ((lower && !result.lower()) || (upper && !result.upper())) { |
| return std::nullopt; |
| } else { |
| return std::make_optional<Subscript>(result); |
| } |
| }, |
| [&](const auto &s) -> std::optional<Subscript> { |
| if (auto subscriptExpr{AsSubscript(Analyze(s))}) { |
| return Subscript{std::move(*subscriptExpr)}; |
| } else { |
| return std::nullopt; |
| } |
| }, |
| }, |
| ss.u); |
| } |
| |
| // Empty result means an error occurred |
| std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( |
| const std::list<parser::SectionSubscript> &sss) { |
| bool error{false}; |
| std::vector<Subscript> subscripts; |
| for (const auto &s : sss) { |
| if (auto subscript{AnalyzeSectionSubscript(s)}) { |
| subscripts.emplace_back(std::move(*subscript)); |
| } else { |
| error = true; |
| } |
| } |
| return !error ? subscripts : std::vector<Subscript>{}; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { |
| MaybeExpr baseExpr; |
| { |
| auto restorer{AllowWholeAssumedSizeArray()}; |
| baseExpr = Analyze(ae.base); |
| } |
| if (baseExpr) { |
| if (ae.subscripts.empty()) { |
| // will be converted to function call later or error reported |
| } else if (baseExpr->Rank() == 0) { |
| if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { |
| if (!context_.HasError(symbol)) { |
| if (inDataStmtConstant_) { |
| // Better error for NULL(X) with a MOLD= argument |
| Say("'%s' must be an array or structure constructor if used with non-empty parentheses as a DATA statement constant"_err_en_US, |
| symbol->name()); |
| } else { |
| Say("'%s' is not an array"_err_en_US, symbol->name()); |
| } |
| context_.SetError(*symbol); |
| } |
| } |
| } else if (std::optional<DataRef> dataRef{ |
| ExtractDataRef(std::move(*baseExpr))}) { |
| return ApplySubscripts( |
| std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); |
| } else { |
| Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); |
| } |
| } |
| // error was reported: analyze subscripts without reporting more errors |
| auto restorer{GetContextualMessages().DiscardMessages()}; |
| AnalyzeSectionSubscripts(ae.subscripts); |
| return std::nullopt; |
| } |
| |
| // Type parameter inquiries apply to data references, but don't depend |
| // on any trailing (co)subscripts. |
| static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { |
| return std::visit( |
| common::visitors{ |
| [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, |
| [](Component &&component) { |
| return NamedEntity{std::move(component)}; |
| }, |
| [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, |
| [](CoarrayRef &&coarrayRef) { |
| return NamedEntity{coarrayRef.GetLastSymbol()}; |
| }, |
| }, |
| std::move(designator.u)); |
| } |
| |
| // Components of parent derived types are explicitly represented as such. |
| std::optional<Component> ExpressionAnalyzer::CreateComponent( |
| DataRef &&base, const Symbol &component, const semantics::Scope &scope) { |
| if (IsAllocatableOrPointer(component) && base.Rank() > 0) { // C919b |
| Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US); |
| } |
| if (&component.owner() == &scope) { |
| return Component{std::move(base), component}; |
| } |
| if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { |
| if (const Symbol * parentComponent{parentScope->GetSymbol()}) { |
| return CreateComponent( |
| DataRef{Component{std::move(base), *parentComponent}}, component, |
| *parentScope); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| // Derived type component references and type parameter inquiries |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { |
| MaybeExpr base{Analyze(sc.base)}; |
| Symbol *sym{sc.component.symbol}; |
| if (!base || !sym || context_.HasError(sym)) { |
| return std::nullopt; |
| } |
| const auto &name{sc.component.source}; |
| if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { |
| const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; |
| if (sym->detailsIf<semantics::TypeParamDetails>()) { |
| if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { |
| if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { |
| if (dyType->category() == TypeCategory::Integer) { |
| auto restorer{GetContextualMessages().SetLocation(name)}; |
| return Fold(ConvertToType(*dyType, |
| AsGenericExpr(TypeParamInquiry{ |
| IgnoreAnySubscripts(std::move(*designator)), *sym}))); |
| } |
| } |
| Say(name, "Type parameter is not INTEGER"_err_en_US); |
| } else { |
| Say(name, |
| "A type parameter inquiry must be applied to " |
| "a designator"_err_en_US); |
| } |
| } else if (!dtSpec || !dtSpec->scope()) { |
| CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); |
| return std::nullopt; |
| } else if (std::optional<DataRef> dataRef{ |
| ExtractDataRef(std::move(*dtExpr))}) { |
| if (auto component{ |
| CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { |
| return Designate(DataRef{std::move(*component)}); |
| } else { |
| Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, |
| dtSpec->typeSymbol().name()); |
| } |
| } else { |
| Say(name, |
| "Base of component reference must be a data reference"_err_en_US); |
| } |
| } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { |
| // special part-ref: %re, %im, %kind, %len |
| // Type errors are detected and reported in semantics. |
| using MiscKind = semantics::MiscDetails::Kind; |
| MiscKind kind{details->kind()}; |
| if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { |
| if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { |
| if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { |
| Expr<SomeReal> realExpr{std::visit( |
| [&](const auto &z) { |
| using PartType = typename ResultType<decltype(z)>::Part; |
| auto part{kind == MiscKind::ComplexPartRe |
| ? ComplexPart::Part::RE |
| : ComplexPart::Part::IM}; |
| return AsCategoryExpr(Designator<PartType>{ |
| ComplexPart{std::move(*dataRef), part}}); |
| }, |
| zExpr->u)}; |
| return AsGenericExpr(std::move(realExpr)); |
| } |
| } |
| } else if (kind == MiscKind::KindParamInquiry || |
| kind == MiscKind::LenParamInquiry) { |
| // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) |
| return MakeFunctionRef( |
| name, ActualArguments{ActualArgument{std::move(*base)}}); |
| } else { |
| DIE("unexpected MiscDetails::Kind"); |
| } |
| } else { |
| Say(name, "derived type required before component reference"_err_en_US); |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { |
| if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { |
| DataRef *dataRef{&*maybeDataRef}; |
| std::vector<Subscript> subscripts; |
| SymbolVector reversed; |
| if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { |
| subscripts = std::move(aRef->subscript()); |
| reversed.push_back(aRef->GetLastSymbol()); |
| if (Component * component{aRef->base().UnwrapComponent()}) { |
| dataRef = &component->base(); |
| } else { |
| dataRef = nullptr; |
| } |
| } |
| if (dataRef) { |
| while (auto *component{std::get_if<Component>(&dataRef->u)}) { |
| reversed.push_back(component->GetLastSymbol()); |
| dataRef = &component->base(); |
| } |
| if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { |
| reversed.push_back(*baseSym); |
| } else { |
| Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); |
| } |
| } |
| std::vector<Expr<SubscriptInteger>> cosubscripts; |
| bool cosubsOk{true}; |
| for (const auto &cosub : |
| std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { |
| MaybeExpr coex{Analyze(cosub)}; |
| if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { |
| cosubscripts.push_back( |
| ConvertToType<SubscriptInteger>(std::move(*intExpr))); |
| } else { |
| cosubsOk = false; |
| } |
| } |
| if (cosubsOk && !reversed.empty()) { |
| int numCosubscripts{static_cast<int>(cosubscripts.size())}; |
| const Symbol &symbol{reversed.front()}; |
| if (numCosubscripts != symbol.Corank()) { |
| Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, |
| symbol.name(), symbol.Corank(), numCosubscripts); |
| } |
| } |
| for (const auto &imageSelSpec : |
| std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { |
| std::visit( |
| common::visitors{ |
| [&](const auto &x) { Analyze(x.v); }, |
| }, |
| imageSelSpec.u); |
| } |
| // Reverse the chain of symbols so that the base is first and coarray |
| // ultimate component is last. |
| if (cosubsOk) { |
| return Designate( |
| DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, |
| std::move(subscripts), std::move(cosubscripts)}}); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| int ExpressionAnalyzer::IntegerTypeSpecKind( |
| const parser::IntegerTypeSpec &spec) { |
| Expr<SubscriptInteger> value{ |
| AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; |
| if (auto kind{ToInt64(value)}) { |
| return static_cast<int>(*kind); |
| } |
| SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); |
| return GetDefaultKind(TypeCategory::Integer); |
| } |
| |
| // Array constructors |
| |
| // Inverts a collection of generic ArrayConstructorValues<SomeType> that |
| // all happen to have the same actual type T into one ArrayConstructor<T>. |
| template <typename T> |
| ArrayConstructorValues<T> MakeSpecific( |
| ArrayConstructorValues<SomeType> &&from) { |
| ArrayConstructorValues<T> to; |
| for (ArrayConstructorValue<SomeType> &x : from) { |
| std::visit( |
| common::visitors{ |
| [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { |
| auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; |
| to.Push(std::move(DEREF(typed))); |
| }, |
| [&](ImpliedDo<SomeType> &&impliedDo) { |
| to.Push(ImpliedDo<T>{impliedDo.name(), |
| std::move(impliedDo.lower()), std::move(impliedDo.upper()), |
| std::move(impliedDo.stride()), |
| MakeSpecific<T>(std::move(impliedDo.values()))}); |
| }, |
| }, |
| std::move(x.u)); |
| } |
| return to; |
| } |
| |
| class ArrayConstructorContext { |
| public: |
| ArrayConstructorContext( |
| ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) |
| : exprAnalyzer_{c}, type_{std::move(t)} {} |
| |
| void Add(const parser::AcValue &); |
| MaybeExpr ToExpr(); |
| |
| // These interfaces allow *this to be used as a type visitor argument to |
| // common::SearchTypes() to convert the array constructor to a typed |
| // expression in ToExpr(). |
| using Result = MaybeExpr; |
| using Types = AllTypes; |
| template <typename T> Result Test() { |
| if (type_ && type_->category() == T::category) { |
| if constexpr (T::category == TypeCategory::Derived) { |
| if (!type_->IsUnlimitedPolymorphic()) { |
| return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), |
| MakeSpecific<T>(std::move(values_))}); |
| } |
| } else if (type_->kind() == T::kind) { |
| if constexpr (T::category == TypeCategory::Character) { |
| if (auto len{type_->LEN()}) { |
| return AsMaybeExpr(ArrayConstructor<T>{ |
| *std::move(len), MakeSpecific<T>(std::move(values_))}); |
| } |
| } else { |
| return AsMaybeExpr( |
| ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| |
| private: |
| using ImpliedDoIntType = ResultType<ImpliedDoIndex>; |
| |
| void Push(MaybeExpr &&); |
| void Add(const parser::AcValue::Triplet &); |
| void Add(const parser::Expr &); |
| void Add(const parser::AcImpliedDo &); |
| void UnrollConstantImpliedDo(const parser::AcImpliedDo &, |
| parser::CharBlock name, std::int64_t lower, std::int64_t upper, |
| std::int64_t stride); |
| |
| template <int KIND, typename A> |
| std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( |
| const A &x) { |
| if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { |
| Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; |
| return Fold(exprAnalyzer_.GetFoldingContext(), |
| ConvertToType<Type<TypeCategory::Integer, KIND>>( |
| std::move(DEREF(intExpr)))); |
| } |
| return std::nullopt; |
| } |
| |
| // Nested array constructors all reference the same ExpressionAnalyzer, |
| // which represents the nest of active implied DO loop indices. |
| ExpressionAnalyzer &exprAnalyzer_; |
| std::optional<DynamicTypeWithLength> type_; |
| bool explicitType_{type_.has_value()}; |
| std::optional<std::int64_t> constantLength_; |
| ArrayConstructorValues<SomeType> values_; |
| std::uint64_t messageDisplayedSet_{0}; |
| }; |
| |
| void ArrayConstructorContext::Push(MaybeExpr &&x) { |
| if (!x) { |
| return; |
| } |
| if (!type_) { |
| if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { |
| // Treat an array constructor of BOZ as if default integer. |
| if (exprAnalyzer_.context().ShouldWarn( |
| common::LanguageFeature::BOZAsDefaultInteger)) { |
| exprAnalyzer_.Say( |
| "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); |
| } |
| x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( |
| exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), |
| std::move(*boz))); |
| } |
| } |
| std::optional<DynamicType> dyType{x->GetType()}; |
| if (!dyType) { |
| if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { |
| if (!type_) { |
| // Treat an array constructor of BOZ as if default integer. |
| if (exprAnalyzer_.context().ShouldWarn( |
| common::LanguageFeature::BOZAsDefaultInteger)) { |
| exprAnalyzer_.Say( |
| "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); |
| } |
| x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( |
| exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), |
| std::move(*boz))); |
| dyType = x.value().GetType(); |
| } else if (auto cast{ConvertToType(*type_, std::move(*x))}) { |
| x = std::move(cast); |
| dyType = *type_; |
| } else { |
| if (!(messageDisplayedSet_ & 0x80)) { |
| exprAnalyzer_.Say( |
| "BOZ literal is not suitable for use in this array constructor"_err_en_US); |
| messageDisplayedSet_ |= 0x80; |
| } |
| return; |
| } |
| } else { // procedure name, &c. |
| if (!(messageDisplayedSet_ & 0x40)) { |
| exprAnalyzer_.Say( |
| "Item is not suitable for use in an array constructor"_err_en_US); |
| messageDisplayedSet_ |= 0x40; |
| } |
| return; |
| } |
| } else if (dyType->IsUnlimitedPolymorphic()) { |
| if (!(messageDisplayedSet_ & 8)) { |
| exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " |
| "array constructor"_err_en_US); // C7113 |
| messageDisplayedSet_ |= 8; |
| } |
| return; |
| } |
| DynamicTypeWithLength xType{dyType.value()}; |
| if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { |
| CHECK(xType.category() == TypeCategory::Character); |
| xType.length = |
| std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); |
| } |
| if (!type_) { |
| // If there is no explicit type-spec in an array constructor, the type |
| // of the array is the declared type of all of the elements, which must |
| // be well-defined and all match. |
| // TODO: Possible language extension: use the most general type of |
| // the values as the type of a numeric constructed array, convert all |
| // of the other values to that type. Alternative: let the first value |
| // determine the type, and convert the others to that type. |
| CHECK(!explicitType_); |
| type_ = std::move(xType); |
| constantLength_ = ToInt64(type_->length); |
| values_.Push(std::move(*x)); |
| } else if (!explicitType_) { |
| if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) { |
| values_.Push(std::move(*x)); |
| if (auto thisLen{ToInt64(xType.LEN())}) { |
| if (constantLength_) { |
| if (exprAnalyzer_.context().warnOnNonstandardUsage() && |
| *thisLen != *constantLength_) { |
| if (!(messageDisplayedSet_ & 1)) { |
| exprAnalyzer_.Say( |
| "Character literal in array constructor without explicit " |
| "type has different length than earlier elements"_en_US); |
| messageDisplayedSet_ |= 1; |
| } |
| } |
| if (*thisLen > *constantLength_) { |
| // Language extension: use the longest literal to determine the |
| // length of the array constructor's character elements, not the |
| // first, when there is no explicit type. |
| *constantLength_ = *thisLen; |
| type_->length = xType.LEN(); |
| } |
| } else { |
| constantLength_ = *thisLen; |
| type_->length = xType.LEN(); |
| } |
| } |
| } else { |
| if (!(messageDisplayedSet_ & 2)) { |
| exprAnalyzer_.Say( |
| "Values in array constructor must have the same declared type " |
| "when no explicit type appears"_err_en_US); // C7110 |
| messageDisplayedSet_ |= 2; |
| } |
| } |
| } else { |
| if (auto cast{ConvertToType(*type_, std::move(*x))}) { |
| values_.Push(std::move(*cast)); |
| } else if (!(messageDisplayedSet_ & 4)) { |
| exprAnalyzer_.Say("Value in array constructor of type '%s' could not " |
| "be converted to the type of the array '%s'"_err_en_US, |
| x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 |
| messageDisplayedSet_ |= 4; |
| } |
| } |
| } |
| |
| void ArrayConstructorContext::Add(const parser::AcValue &x) { |
| std::visit( |
| common::visitors{ |
| [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, |
| [&](const common::Indirection<parser::Expr> &expr) { |
| Add(expr.value()); |
| }, |
| [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { |
| Add(impliedDo.value()); |
| }, |
| }, |
| x.u); |
| } |
| |
| // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' |
| void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { |
| std::optional<Expr<ImpliedDoIntType>> lower{ |
| GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; |
| std::optional<Expr<ImpliedDoIntType>> upper{ |
| GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; |
| std::optional<Expr<ImpliedDoIntType>> stride{ |
| GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; |
| if (lower && upper) { |
| if (!stride) { |
| stride = Expr<ImpliedDoIntType>{1}; |
| } |
| if (!type_) { |
| type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; |
| } |
| auto v{std::move(values_)}; |
| parser::CharBlock anonymous; |
| Push(Expr<SomeType>{ |
| Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); |
| std::swap(v, values_); |
| values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), |
| std::move(*upper), std::move(*stride), std::move(v)}); |
| } |
| } |
| |
| void ArrayConstructorContext::Add(const parser::Expr &expr) { |
| auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; |
| Push(exprAnalyzer_.Analyze(expr)); |
| } |
| |
| void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { |
| const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; |
| const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; |
| exprAnalyzer_.Analyze(bounds.name); |
| parser::CharBlock name{bounds.name.thing.thing.source}; |
| const Symbol *symbol{bounds.name.thing.thing.symbol}; |
| int kind{ImpliedDoIntType::kind}; |
| if (const auto dynamicType{DynamicType::From(symbol)}) { |
| kind = dynamicType->kind(); |
| } |
| std::optional<Expr<ImpliedDoIntType>> lower{ |
| GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; |
| std::optional<Expr<ImpliedDoIntType>> upper{ |
| GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; |
| if (lower && upper) { |
| std::optional<Expr<ImpliedDoIntType>> stride{ |
| GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; |
| if (!stride) { |
| stride = Expr<ImpliedDoIntType>{1}; |
| } |
| if (exprAnalyzer_.AddImpliedDo(name, kind)) { |
| // Check for constant bounds; the loop may require complete unrolling |
| // of the parse tree if all bounds are constant in order to allow the |
| // implied DO loop index to qualify as a constant expression. |
| auto cLower{ToInt64(lower)}; |
| auto cUpper{ToInt64(upper)}; |
| auto cStride{ToInt64(stride)}; |
| if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { |
| exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, |
| "The stride of an implied DO loop must not be zero"_err_en_US); |
| messageDisplayedSet_ |= 0x10; |
| } |
| bool isConstant{cLower && cUpper && cStride && *cStride != 0}; |
| bool isNonemptyConstant{isConstant && |
| ((*cStride > 0 && *cLower <= *cUpper) || |
| (*cStride < 0 && *cLower >= *cUpper))}; |
| bool unrollConstantLoop{false}; |
| parser::Messages buffer; |
| auto saveMessagesDisplayed{messageDisplayedSet_}; |
| { |
| auto messageRestorer{ |
| exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; |
| auto v{std::move(values_)}; |
| for (const auto &value : |
| std::get<std::list<parser::AcValue>>(impliedDo.t)) { |
| Add(value); |
| } |
| std::swap(v, values_); |
| if (isNonemptyConstant && buffer.AnyFatalError()) { |
| unrollConstantLoop = true; |
| } else { |
| values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), |
| std::move(*upper), std::move(*stride), std::move(v)}); |
| } |
| } |
| if (unrollConstantLoop) { |
| messageDisplayedSet_ = saveMessagesDisplayed; |
| UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); |
| } else if (auto *messages{ |
| exprAnalyzer_.GetContextualMessages().messages()}) { |
| messages->Annex(std::move(buffer)); |
| } |
| exprAnalyzer_.RemoveImpliedDo(name); |
| } else if (!(messageDisplayedSet_ & 0x20)) { |
| exprAnalyzer_.SayAt(name, |
| "Implied DO index '%s' is active in a surrounding implied DO loop " |
| "and may not have the same name"_err_en_US, |
| name); // C7115 |
| messageDisplayedSet_ |= 0x20; |
| } |
| } |
| } |
| |
| // Fortran considers an implied DO index of an array constructor to be |
| // a constant expression if the bounds of the implied DO loop are constant. |
| // Usually this doesn't matter, but if we emitted spurious messages as a |
| // result of not using constant values for the index while analyzing the |
| // items, we need to do it again the "hard" way with multiple iterations over |
| // the parse tree. |
| void ArrayConstructorContext::UnrollConstantImpliedDo( |
| const parser::AcImpliedDo &impliedDo, parser::CharBlock name, |
| std::int64_t lower, std::int64_t upper, std::int64_t stride) { |
| auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; |
| auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; |
| for (auto &at{foldingContext.StartImpliedDo(name, lower)}; |
| (stride > 0 && at <= upper) || (stride < 0 && at >= upper); |
| at += stride) { |
| for (const auto &value : |
| std::get<std::list<parser::AcValue>>(impliedDo.t)) { |
| Add(value); |
| } |
| } |
| foldingContext.EndImpliedDo(name); |
| } |
| |
| MaybeExpr ArrayConstructorContext::ToExpr() { |
| return common::SearchTypes(std::move(*this)); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { |
| const parser::AcSpec &acSpec{array.v}; |
| ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; |
| for (const parser::AcValue &value : acSpec.values) { |
| acContext.Add(value); |
| } |
| return acContext.ToExpr(); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::StructureConstructor &structure) { |
| auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; |
| parser::Name structureType{std::get<parser::Name>(parsedType.t)}; |
| parser::CharBlock &typeName{structureType.source}; |
| if (semantics::Symbol * typeSymbol{structureType.symbol}) { |
| if (typeSymbol->has<semantics::DerivedTypeDetails>()) { |
| semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()}; |
| if (!CheckIsValidForwardReference(dtSpec)) { |
| return std::nullopt; |
| } |
| } |
| } |
| if (!parsedType.derivedTypeSpec) { |
| return std::nullopt; |
| } |
| const auto &spec{*parsedType.derivedTypeSpec}; |
| const Symbol &typeSymbol{spec.typeSymbol()}; |
| if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { |
| return std::nullopt; // error recovery |
| } |
| const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; |
| const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; |
| |
| if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 |
| AttachDeclaration(Say(typeName, |
| "ABSTRACT derived type '%s' may not be used in a " |
| "structure constructor"_err_en_US, |
| typeName), |
| typeSymbol); // C7114 |
| } |
| |
| // This iterator traverses all of the components in the derived type and its |
| // parents. The symbols for whole parent components appear after their |
| // own components and before the components of the types that extend them. |
| // E.g., TYPE :: A; REAL X; END TYPE |
| // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE |
| // produces the component list X, A, Y. |
| // The order is important below because a structure constructor can |
| // initialize X or A by name, but not both. |
| auto components{semantics::OrderedComponentIterator{spec}}; |
| auto nextAnonymous{components.begin()}; |
| |
| std::set<parser::CharBlock> unavailable; |
| bool anyKeyword{false}; |
| StructureConstructor result{spec}; |
| bool checkConflicts{true}; // until we hit one |
| auto &messages{GetContextualMessages()}; |
| |
| for (const auto &component : |
| std::get<std::list<parser::ComponentSpec>>(structure.t)) { |
| const parser::Expr &expr{ |
| std::get<parser::ComponentDataSource>(component.t).v.value()}; |
| parser::CharBlock source{expr.source}; |
| auto restorer{messages.SetLocation(source)}; |
| const Symbol *symbol{nullptr}; |
| MaybeExpr value{Analyze(expr)}; |
| std::optional<DynamicType> valueType{DynamicType::From(value)}; |
| if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { |
| anyKeyword = true; |
| source = kw->v.source; |
| symbol = kw->v.symbol; |
| if (!symbol) { |
| auto componentIter{std::find_if(components.begin(), components.end(), |
| [=](const Symbol &symbol) { return symbol.name() == source; })}; |
| if (componentIter != components.end()) { |
| symbol = &*componentIter; |
| } |
| } |
| if (!symbol) { // C7101 |
| Say(source, |
| "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, |
| source, typeName); |
| } |
| } else { |
| if (anyKeyword) { // C7100 |
| Say(source, |
| "Value in structure constructor lacks a component name"_err_en_US); |
| checkConflicts = false; // stem cascade |
| } |
| // Here's a regrettably common extension of the standard: anonymous |
| // initialization of parent components, e.g., T(PT(1)) rather than |
| // T(1) or T(PT=PT(1)). |
| if (nextAnonymous == components.begin() && parentComponent && |
| valueType == DynamicType::From(*parentComponent) && |
| context().IsEnabled(LanguageFeature::AnonymousParents)) { |
| auto iter{ |
| std::find(components.begin(), components.end(), *parentComponent)}; |
| if (iter != components.end()) { |
| symbol = parentComponent; |
| nextAnonymous = ++iter; |
| if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { |
| Say(source, |
| "Whole parent component '%s' in structure " |
| "constructor should not be anonymous"_en_US, |
| symbol->name()); |
| } |
| } |
| } |
| while (!symbol && nextAnonymous != components.end()) { |
| const Symbol &next{*nextAnonymous}; |
| ++nextAnonymous; |
| if (!next.test(Symbol::Flag::ParentComp)) { |
| symbol = &next; |
| } |
| } |
| if (!symbol) { |
| Say(source, "Unexpected value in structure constructor"_err_en_US); |
| } |
| } |
| if (symbol) { |
| if (const auto *currScope{context_.globalScope().FindScope(source)}) { |
| if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { |
| Say(source, *msg); |
| } |
| } |
| if (checkConflicts) { |
| auto componentIter{ |
| std::find(components.begin(), components.end(), *symbol)}; |
| if (unavailable.find(symbol->name()) != unavailable.cend()) { |
| // C797, C798 |
| Say(source, |
| "Component '%s' conflicts with another component earlier in " |
| "this structure constructor"_err_en_US, |
| symbol->name()); |
| } else if (symbol->test(Symbol::Flag::ParentComp)) { |
| // Make earlier components unavailable once a whole parent appears. |
| for (auto it{components.begin()}; it != componentIter; ++it) { |
| unavailable.insert(it->name()); |
| } |
| } else { |
| // Make whole parent components unavailable after any of their |
| // constituents appear. |
| for (auto it{componentIter}; it != components.end(); ++it) { |
| if (it->test(Symbol::Flag::ParentComp)) { |
| unavailable.insert(it->name()); |
| } |
| } |
| } |
| } |
| unavailable.insert(symbol->name()); |
| if (value) { |
| if (symbol->has<semantics::ProcEntityDetails>()) { |
| CHECK(IsPointer(*symbol)); |
| } else if (symbol->has<semantics::ObjectEntityDetails>()) { |
| // C1594(4) |
| const auto &innermost{context_.FindScope(expr.source)}; |
| if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { |
| if (const Symbol * pointer{FindPointerComponent(*symbol)}) { |
| if (const Symbol * |
| object{FindExternallyVisibleObject(*value, *pureProc)}) { |
| if (auto *msg{Say(expr.source, |
| "Externally visible object '%s' may not be " |
| "associated with pointer component '%s' in a " |
| "pure procedure"_err_en_US, |
| object->name(), pointer->name())}) { |
| msg->Attach(object->name(), "Object declaration"_en_US) |
| .Attach(pointer->name(), "Pointer declaration"_en_US); |
| } |
| } |
| } |
| } |
| } else if (symbol->has<semantics::TypeParamDetails>()) { |
| Say(expr.source, |
| "Type parameter '%s' may not appear as a component " |
| "of a structure constructor"_err_en_US, |
| symbol->name()); |
| continue; |
| } else { |
| Say(expr.source, |
| "Component '%s' is neither a procedure pointer " |
| "nor a data object"_err_en_US, |
| symbol->name()); |
| continue; |
| } |
| if (IsPointer(*symbol)) { |
| semantics::CheckPointerAssignment( |
| GetFoldingContext(), *symbol, *value); // C7104, C7105 |
| result.Add(*symbol, Fold(std::move(*value))); |
| } else if (MaybeExpr converted{ |
| ConvertToType(*symbol, std::move(*value))}) { |
| if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { |
| if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { |
| if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { |
| AttachDeclaration( |
| Say(expr.source, |
| "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, |
| GetRank(*valueShape), symbol->name()), |
| *symbol); |
| } else { |
| auto checked{ |
| CheckConformance(messages, *componentShape, *valueShape, |
| CheckConformanceFlags::RightIsExpandableDeferred, |
| "component", "value")}; |
| if (checked && *checked && GetRank(*componentShape) > 0 && |
| GetRank(*valueShape) == 0 && |
| !IsExpandableScalar(*converted)) { |
| AttachDeclaration( |
| Say(expr.source, |
| "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, |
| symbol->name()), |
| *symbol); |
| } |
| if (checked.value_or(true)) { |
| result.Add(*symbol, std::move(*converted)); |
| } |
| } |
| } else { |
| Say(expr.source, "Shape of value cannot be determined"_err_en_US); |
| } |
| } else { |
| AttachDeclaration( |
| Say(expr.source, |
| "Shape of component '%s' cannot be determined"_err_en_US, |
| symbol->name()), |
| *symbol); |
| } |
| } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) { |
| // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE |
| } else if (auto symType{DynamicType::From(symbol)}) { |
| if (valueType) { |
| AttachDeclaration( |
| Say(expr.source, |
| "Value in structure constructor of type %s is " |
| "incompatible with component '%s' of type %s"_err_en_US, |
| valueType->AsFortran(), symbol->name(), |
| symType->AsFortran()), |
| *symbol); |
| } else { |
| AttachDeclaration( |
| Say(expr.source, |
| "Value in structure constructor is incompatible with " |
| " component '%s' of type %s"_err_en_US, |
| symbol->name(), symType->AsFortran()), |
| *symbol); |
| } |
| } |
| } |
| } |
| } |
| |
| // Ensure that unmentioned component objects have default initializers. |
| for (const Symbol &symbol : components) { |
| if (!symbol.test(Symbol::Flag::ParentComp) && |
| unavailable.find(symbol.name()) == unavailable.cend() && |
| !IsAllocatable(symbol)) { |
| if (const auto *details{ |
| symbol.detailsIf<semantics::ObjectEntityDetails>()}) { |
| if (details->init()) { |
| result.Add(symbol, common::Clone(*details->init())); |
| } else { // C799 |
| AttachDeclaration(Say(typeName, |
| "Structure constructor lacks a value for " |
| "component '%s'"_err_en_US, |
| symbol.name()), |
| symbol); |
| } |
| } |
| } |
| } |
| |
| return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); |
| } |
| |
| static std::optional<parser::CharBlock> GetPassName( |
| const semantics::Symbol &proc) { |
| return std::visit( |
| [](const auto &details) { |
| if constexpr (std::is_base_of_v<semantics::WithPassArg, |
| std::decay_t<decltype(details)>>) { |
| return details.passName(); |
| } else { |
| return std::optional<parser::CharBlock>{}; |
| } |
| }, |
| proc.details()); |
| } |
| |
| static int GetPassIndex(const Symbol &proc) { |
| CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); |
| std::optional<parser::CharBlock> passName{GetPassName(proc)}; |
| const auto *interface{semantics::FindInterface(proc)}; |
| if (!passName || !interface) { |
| return 0; // first argument is passed-object |
| } |
| const auto &subp{interface->get<semantics::SubprogramDetails>()}; |
| int index{0}; |
| for (const auto *arg : subp.dummyArgs()) { |
| if (arg && arg->name() == passName) { |
| return index; |
| } |
| ++index; |
| } |
| DIE("PASS argument name not in dummy argument list"); |
| } |
| |
| // Injects an expression into an actual argument list as the "passed object" |
| // for a type-bound procedure reference that is not NOPASS. Adds an |
| // argument keyword if possible, but not when the passed object goes |
| // before a positional argument. |
| // e.g., obj%tbp(x) -> tbp(obj,x). |
| static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, |
| const Symbol &component, bool isPassedObject = true) { |
| if (component.attrs().test(semantics::Attr::NOPASS)) { |
| return; |
| } |
| int passIndex{GetPassIndex(component)}; |
| auto iter{actuals.begin()}; |
| int at{0}; |
| while (iter < actuals.end() && at < passIndex) { |
| if (*iter && (*iter)->keyword()) { |
| iter = actuals.end(); |
| break; |
| } |
| ++iter; |
| ++at; |
| } |
| ActualArgument passed{AsGenericExpr(common::Clone(expr))}; |
| passed.set_isPassedObject(isPassedObject); |
| if (iter == actuals.end()) { |
| if (auto passName{GetPassName(component)}) { |
| passed.set_keyword(*passName); |
| } |
| } |
| actuals.emplace(iter, std::move(passed)); |
| } |
| |
| // Return the compile-time resolution of a procedure binding, if possible. |
| static const Symbol *GetBindingResolution( |
| const std::optional<DynamicType> &baseType, const Symbol &component) { |
| const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; |
| if (!binding) { |
| return nullptr; |
| } |
| if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && |
| (!baseType || baseType->IsPolymorphic())) { |
| return nullptr; |
| } |
| return &binding->symbol(); |
| } |
| |
| auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( |
| const parser::ProcComponentRef &pcr, ActualArguments &&arguments) |
| -> std::optional<CalleeAndArguments> { |
| const parser::StructureComponent &sc{pcr.v.thing}; |
| if (MaybeExpr base{Analyze(sc.base)}) { |
| if (const Symbol * sym{sc.component.symbol}) { |
| if (context_.HasError(sym)) { |
| return std::nullopt; |
| } |
| if (!IsProcedure(*sym)) { |
| AttachDeclaration( |
| Say(sc.component.source, "'%s' is not a procedure"_err_en_US, |
| sc.component.source), |
| *sym); |
| return std::nullopt; |
| } |
| if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { |
| if (sym->has<semantics::GenericDetails>()) { |
| AdjustActuals adjustment{ |
| [&](const Symbol &proc, ActualArguments &actuals) { |
| if (!proc.attrs().test(semantics::Attr::NOPASS)) { |
| AddPassArg(actuals, std::move(*dtExpr), proc); |
| } |
| return true; |
| }}; |
| auto pair{ResolveGeneric(*sym, arguments, adjustment)}; |
| sym = pair.first; |
| if (!sym) { |
| EmitGenericResolutionError(*sc.component.symbol, pair.second); |
| return std::nullopt; |
| } |
| } |
| if (const Symbol * |
| resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { |
| AddPassArg(arguments, std::move(*dtExpr), *sym, false); |
| return CalleeAndArguments{ |
| ProcedureDesignator{*resolution}, std::move(arguments)}; |
| } else if (std::optional<DataRef> dataRef{ |
| ExtractDataRef(std::move(*dtExpr))}) { |
| if (sym->attrs().test(semantics::Attr::NOPASS)) { |
| return CalleeAndArguments{ |
| ProcedureDesignator{Component{std::move(*dataRef), *sym}}, |
| std::move(arguments)}; |
| } else { |
| AddPassArg(arguments, |
| Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, |
| *sym); |
| return CalleeAndArguments{ |
| ProcedureDesignator{*sym}, std::move(arguments)}; |
| } |
| } |
| } |
| Say(sc.component.source, |
| "Base of procedure component reference is not a derived-type object"_err_en_US); |
| } |
| } |
| CHECK(context_.AnyFatalError()); |
| return std::nullopt; |
| } |
| |
| // Can actual be argument associated with dummy? |
| static bool CheckCompatibleArgument(bool isElemental, |
| const ActualArgument &actual, const characteristics::DummyArgument &dummy) { |
| const auto *expr{actual.UnwrapExpr()}; |
| return std::visit( |
| common::visitors{ |
| [&](const characteristics::DummyDataObject &x) { |
| if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) && |
| IsBareNullPointer(expr)) { |
| // NULL() without MOLD= is compatible with any dummy data pointer |
| // but cannot be allowed to lead to ambiguity. |
| return true; |
| } else if (!isElemental && actual.Rank() != x.type.Rank() && |
| !x.type.attrs().test( |
| characteristics::TypeAndShape::Attr::AssumedRank)) { |
| return false; |
| } else if (auto actualType{actual.GetType()}) { |
| return x.type.type().IsTkCompatibleWith(*actualType); |
| } |
| return false; |
| }, |
| [&](const characteristics::DummyProcedure &) { |
| return expr && IsProcedurePointerTarget(*expr); |
| }, |
| [&](const characteristics::AlternateReturn &) { |
| return actual.isAlternateReturn(); |
| }, |
| }, |
| dummy.u); |
| } |
| |
| // Are the actual arguments compatible with the dummy arguments of procedure? |
| static bool CheckCompatibleArguments( |
| const characteristics::Procedure &procedure, |
| const ActualArguments &actuals) { |
| bool isElemental{procedure.IsElemental()}; |
| const auto &dummies{procedure.dummyArguments}; |
| CHECK(dummies.size() == actuals.size()); |
| for (std::size_t i{0}; i < dummies.size(); ++i) { |
| const characteristics::DummyArgument &dummy{dummies[i]}; |
| const std::optional<ActualArgument> &actual{actuals[i]}; |
| if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // Handles a forward reference to a module function from what must |
| // be a specification expression. Return false if the symbol is |
| // an invalid forward reference. |
| bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { |
| if (context_.HasError(symbol)) { |
| return false; |
| } |
| if (const auto *details{ |
| symbol.detailsIf<semantics::SubprogramNameDetails>()}) { |
| if (details->kind() == semantics::SubprogramKind::Module) { |
| // If this symbol is still a SubprogramNameDetails, we must be |
| // checking a specification expression in a sibling module |
| // procedure. Resolve its names now so that its interface |
| // is known. |
| semantics::ResolveSpecificationParts(context_, symbol); |
| if (symbol.has<semantics::SubprogramNameDetails>()) { |
| // When the symbol hasn't had its details updated, we must have |
| // already been in the process of resolving the function's |
| // specification part; but recursive function calls are not |
| // allowed in specification parts (10.1.11 para 5). |
| Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, |
| symbol.name()); |
| context_.SetError(symbol); |
| return false; |
| } |
| } else { // 10.1.11 para 4 |
| Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, |
| symbol.name()); |
| context_.SetError(symbol); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // Resolve a call to a generic procedure with given actual arguments. |
| // adjustActuals is called on procedure bindings to handle pass arg. |
| std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric( |
| const Symbol &symbol, const ActualArguments &actuals, |
| const AdjustActuals &adjustActuals, bool mightBeStructureConstructor) { |
| const Symbol *elemental{nullptr}; // matching elemental specific proc |
| const Symbol *nonElemental{nullptr}; // matching non-elemental specific |
| const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; |
| bool anyBareNullActual{ |
| std::find_if(actuals.begin(), actuals.end(), [](auto iter) { |
| return IsBareNullPointer(iter->UnwrapExpr()); |
| }) != actuals.end()}; |
| for (const Symbol &specific : details.specificProcs()) { |
| if (!ResolveForward(specific)) { |
| continue; |
| } |
| if (std::optional<characteristics::Procedure> procedure{ |
| characteristics::Procedure::Characterize( |
| ProcedureDesignator{specific}, context_.foldingContext())}) { |
| ActualArguments localActuals{actuals}; |
| if (specific.has<semantics::ProcBindingDetails>()) { |
| if (!adjustActuals.value()(specific, localActuals)) { |
| continue; |
| } |
| } |
| if (semantics::CheckInterfaceForGeneric(*procedure, localActuals, |
| GetFoldingContext(), false /* no integer conversions */) && |
| CheckCompatibleArguments(*procedure, localActuals)) { |
| if ((procedure->IsElemental() && elemental) || |
| (!procedure->IsElemental() && nonElemental)) { |
| // 16.9.144(6): a bare NULL() is not allowed as an actual |
| // argument to a generic procedure if the specific procedure |
| // cannot be unambiguously distinguished |
| return {nullptr, true /* due to NULL actuals */}; |
| } |
| if (!procedure->IsElemental()) { |
| // takes priority over elemental match |
| nonElemental = &specific; |
| if (!anyBareNullActual) { |
| break; // unambiguous case |
| } |
| } else { |
| elemental = &specific; |
| } |
| } |
| } |
| } |
| if (nonElemental) { |
| return {&AccessSpecific(symbol, *nonElemental), false}; |
| } else if (elemental) { |
| return {&AccessSpecific(symbol, *elemental), false}; |
| } |
| // Check parent derived type |
| if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { |
| if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { |
| if (extended->GetUltimate().has<semantics::GenericDetails>()) { |
| auto pair{ResolveGeneric(*extended, actuals, adjustActuals, false)}; |
| if (pair.first) { |
| return pair; |
| } |
| } |
| } |
| } |
| if (mightBeStructureConstructor && details.derivedType()) { |
| return {details.derivedType(), false}; |
| } |
| return {nullptr, false}; |
| } |
| |
| const Symbol &ExpressionAnalyzer::AccessSpecific( |
| const Symbol &originalGeneric, const Symbol &specific) { |
| if (const auto *hosted{ |
| originalGeneric.detailsIf<semantics::HostAssocDetails>()}) { |
| return AccessSpecific(hosted->symbol(), specific); |
| } else if (const auto *used{ |
| originalGeneric.detailsIf<semantics::UseDetails>()}) { |
| const auto &scope{originalGeneric.owner()}; |
| if (auto iter{scope.find(specific.name())}; iter != scope.end()) { |
| if (const auto *useDetails{ |
| iter->second->detailsIf<semantics::UseDetails>()}) { |
| const Symbol &usedSymbol{useDetails->symbol()}; |
| const auto *usedGeneric{ |
| usedSymbol.detailsIf<semantics::GenericDetails>()}; |
| if (&usedSymbol == &specific || |
| (usedGeneric && usedGeneric->specific() == &specific)) { |
| return specific; |
| } |
| } |
| } |
| // Create a renaming USE of the specific procedure. |
| auto rename{context_.SaveTempName( |
| used->symbol().owner().GetName().value().ToString() + "$" + |
| specific.name().ToString())}; |
| return *const_cast<semantics::Scope &>(scope) |
| .try_emplace(rename, specific.attrs(), |
| semantics::UseDetails{rename, specific}) |
| .first->second; |
| } else { |
| return specific; |
| } |
| } |
| |
| void ExpressionAnalyzer::EmitGenericResolutionError( |
| const Symbol &symbol, bool dueToNullActuals) { |
| Say(dueToNullActuals |
| ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US |
| : semantics::IsGenericDefinedOp(symbol) |
| ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US |
| : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US, |
| symbol.name()); |
| } |
| |
| auto ExpressionAnalyzer::GetCalleeAndArguments( |
| const parser::ProcedureDesignator &pd, ActualArguments &&arguments, |
| bool isSubroutine, bool mightBeStructureConstructor) |
| -> std::optional<CalleeAndArguments> { |
| return std::visit( |
| common::visitors{ |
| [&](const parser::Name &name) { |
| return GetCalleeAndArguments(name, std::move(arguments), |
| isSubroutine, mightBeStructureConstructor); |
| }, |
| [&](const parser::ProcComponentRef &pcr) { |
| return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); |
| }, |
| }, |
| pd.u); |
| } |
| |
| auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, |
| ActualArguments &&arguments, bool isSubroutine, |
| bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { |
| const Symbol *symbol{name.symbol}; |
| if (context_.HasError(symbol)) { |
| return std::nullopt; // also handles null symbol |
| } |
| const Symbol &ultimate{DEREF(symbol).GetUltimate()}; |
| if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { |
| if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( |
| CallCharacteristics{ultimate.name().ToString(), isSubroutine}, |
| arguments, GetFoldingContext())}) { |
| CheckBadExplicitType(*specificCall, *symbol); |
| return CalleeAndArguments{ |
| ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, |
| std::move(specificCall->arguments)}; |
| } |
| } else { |
| CheckForBadRecursion(name.source, ultimate); |
| bool dueToNullActual{false}; |
| if (ultimate.has<semantics::GenericDetails>()) { |
| ExpressionAnalyzer::AdjustActuals noAdjustment; |
| auto pair{ResolveGeneric( |
| *symbol, arguments, noAdjustment, mightBeStructureConstructor)}; |
| symbol = pair.first; |
| dueToNullActual = pair.second; |
| } |
| if (symbol) { |
| if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { |
| if (mightBeStructureConstructor) { |
| return CalleeAndArguments{ |
| semantics::SymbolRef{*symbol}, std::move(arguments)}; |
| } |
| } else if (IsProcedure(*symbol)) { |
| return CalleeAndArguments{ |
| ProcedureDesignator{*symbol}, std::move(arguments)}; |
| } |
| if (!context_.HasError(*symbol)) { |
| AttachDeclaration( |
| Say(name.source, "'%s' is not a callable procedure"_err_en_US, |
| name.source), |
| *symbol); |
| } |
| } else if (std::optional<SpecificCall> specificCall{ |
| context_.intrinsics().Probe( |
| CallCharacteristics{ |
| ultimate.name().ToString(), isSubroutine}, |
| arguments, GetFoldingContext())}) { |
| // Generics can extend intrinsics |
| return CalleeAndArguments{ |
| ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, |
| std::move(specificCall->arguments)}; |
| } else { |
| EmitGenericResolutionError(*name.symbol, dueToNullActual); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| // Fortran 2018 expressly states (8.2 p3) that any declared type for a |
| // generic intrinsic function "has no effect" on the result type of a |
| // call to that intrinsic. So one can declare "character*8 cos" and |
| // still get a real result from "cos(1.)". This is a dangerous feature, |
| // especially since implementations are free to extend their sets of |
| // intrinsics, and in doing so might clash with a name in a program. |
| // So we emit a warning in this situation, and perhaps it should be an |
| // error -- any correctly working program can silence the message by |
| // simply deleting the pointless type declaration. |
| void ExpressionAnalyzer::CheckBadExplicitType( |
| const SpecificCall &call, const Symbol &intrinsic) { |
| if (intrinsic.GetUltimate().GetType()) { |
| const auto &procedure{call.specificIntrinsic.characteristics.value()}; |
| if (const auto &result{procedure.functionResult}) { |
| if (const auto *typeAndShape{result->GetTypeAndShape()}) { |
| if (auto declared{ |
| typeAndShape->Characterize(intrinsic, GetFoldingContext())}) { |
| if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) { |
| if (auto *msg{Say( |
| "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_en_US, |
| typeAndShape->AsFortran(), intrinsic.name(), |
| declared->AsFortran())}) { |
| msg->Attach(intrinsic.name(), |
| "Ignored declaration of intrinsic function '%s'"_en_US, |
| intrinsic.name()); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void ExpressionAnalyzer::CheckForBadRecursion( |
| parser::CharBlock callSite, const semantics::Symbol &proc) { |
| if (const auto *scope{proc.scope()}) { |
| if (scope->sourceRange().Contains(callSite)) { |
| parser::Message *msg{nullptr}; |
| if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) |
| msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, |
| callSite); |
| } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { |
| msg = Say( // 15.6.2.1(3) |
| "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, |
| callSite); |
| } |
| AttachDeclaration(msg, proc); |
| } |
| } |
| } |
| |
| template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { |
| if (const auto *designator{ |
| std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { |
| if (const auto *dataRef{ |
| std::get_if<parser::DataRef>(&designator->value().u)}) { |
| if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { |
| return AssumedTypeDummy(*name); |
| } |
| } |
| } |
| return nullptr; |
| } |
| template <> |
| const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) { |
| if (const Symbol * symbol{name.symbol}) { |
| if (const auto *type{symbol->GetType()}) { |
| if (type->category() == semantics::DeclTypeSpec::TypeStar) { |
| return symbol; |
| } |
| } |
| } |
| return nullptr; |
| } |
| template <typename A> |
| static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) { |
| // It is illegal for allocatable of pointer objects to be TYPE(*), but at that |
| // point it is is not guaranteed that it has been checked the object has |
| // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly |
| // returned. |
| return std::visit( |
| common::visitors{ |
| [&](const parser::StructureComponent &x) { |
| return AssumedTypeDummy(x.component); |
| }, |
| [&](const parser::Name &x) { return AssumedTypeDummy(x); }, |
| }, |
| object.u); |
| } |
| template <> |
| const Symbol *AssumedTypeDummy<parser::AllocateObject>( |
| const parser::AllocateObject &x) { |
| return AssumedTypePointerOrAllocatableDummy(x); |
| } |
| template <> |
| const Symbol *AssumedTypeDummy<parser::PointerObject>( |
| const parser::PointerObject &x) { |
| return AssumedTypePointerOrAllocatableDummy(x); |
| } |
| |
| bool ExpressionAnalyzer::CheckIsValidForwardReference( |
| const semantics::DerivedTypeSpec &dtSpec) { |
| if (dtSpec.IsForwardReferenced()) { |
| Say("Cannot construct value for derived type '%s' " |
| "before it is defined"_err_en_US, |
| dtSpec.name()); |
| return false; |
| } |
| return true; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, |
| std::optional<parser::StructureConstructor> *structureConstructor) { |
| const parser::Call &call{funcRef.v}; |
| auto restorer{GetContextualMessages().SetLocation(call.source)}; |
| ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; |
| for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { |
| analyzer.Analyze(arg, false /* not subroutine call */); |
| } |
| if (analyzer.fatalErrors()) { |
| return std::nullopt; |
| } |
| if (std::optional<CalleeAndArguments> callee{ |
| GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), |
| analyzer.GetActuals(), false /* not subroutine */, |
| true /* might be structure constructor */)}) { |
| if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { |
| return MakeFunctionRef( |
| call.source, std::move(*proc), std::move(callee->arguments)); |
| } |
| CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); |
| const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)}; |
| if (structureConstructor) { |
| // Structure constructor misparsed as function reference? |
| const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; |
| if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { |
| semantics::Scope &scope{context_.FindScope(name->source)}; |
| semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()}; |
| if (!CheckIsValidForwardReference(dtSpec)) { |
| return std::nullopt; |
| } |
| const semantics::DeclTypeSpec &type{ |
| semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))}; |
| auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; |
| *structureConstructor = |
| mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); |
| return Analyze(structureConstructor->value()); |
| } |
| } |
| if (!context_.HasError(symbol)) { |
| AttachDeclaration( |
| Say("'%s' is called like a function but is not a procedure"_err_en_US, |
| symbol.name()), |
| symbol); |
| context_.SetError(symbol); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| static bool HasAlternateReturns(const evaluate::ActualArguments &args) { |
| for (const auto &arg : args) { |
| if (arg && arg->isAlternateReturn()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { |
| const parser::Call &call{callStmt.v}; |
| auto restorer{GetContextualMessages().SetLocation(call.source)}; |
| ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; |
| const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; |
| for (const auto &arg : actualArgList) { |
| analyzer.Analyze(arg, true /* is subroutine call */); |
| } |
| if (!analyzer.fatalErrors()) { |
| if (std::optional<CalleeAndArguments> callee{ |
| GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), |
| analyzer.GetActuals(), true /* subroutine */)}) { |
| ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; |
| CHECK(proc); |
| if (CheckCall(call.source, *proc, callee->arguments)) { |
| bool hasAlternateReturns{HasAlternateReturns(callee->arguments)}; |
| callStmt.typedCall.Reset( |
| new ProcedureRef{std::move(*proc), std::move(callee->arguments), |
| hasAlternateReturns}, |
| ProcedureRef::Deleter); |
| } |
| } |
| } |
| } |
| |
| const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { |
| if (!x.typedAssignment) { |
| ArgumentAnalyzer analyzer{*this}; |
| analyzer.Analyze(std::get<parser::Variable>(x.t)); |
| analyzer.Analyze(std::get<parser::Expr>(x.t)); |
| std::optional<Assignment> assignment; |
| if (!analyzer.fatalErrors()) { |
| std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; |
| if (!procRef) { |
| analyzer.CheckForNullPointer( |
| "in a non-pointer intrinsic assignment statement"); |
| } |
| assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1)); |
| if (procRef) { |
| assignment->u = std::move(*procRef); |
| } |
| } |
| x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)}, |
| GenericAssignmentWrapper::Deleter); |
| } |
| return common::GetPtrFromOptional(x.typedAssignment->v); |
| } |
| |
| const Assignment *ExpressionAnalyzer::Analyze( |
| const parser::PointerAssignmentStmt &x) { |
| if (!x.typedAssignment) { |
| MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; |
| MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; |
| if (!lhs || !rhs) { |
| x.typedAssignment.Reset( |
| new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); |
| } else { |
| Assignment assignment{std::move(*lhs), std::move(*rhs)}; |
| std::visit(common::visitors{ |
| [&](const std::list<parser::BoundsRemapping> &list) { |
| Assignment::BoundsRemapping bounds; |
| for (const auto &elem : list) { |
| auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; |
| auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; |
| if (lower && upper) { |
| bounds.emplace_back(Fold(std::move(*lower)), |
| Fold(std::move(*upper))); |
| } |
| } |
| assignment.u = std::move(bounds); |
| }, |
| [&](const std::list<parser::BoundsSpec> &list) { |
| Assignment::BoundsSpec bounds; |
| for (const auto &bound : list) { |
| if (auto lower{AsSubscript(Analyze(bound.v))}) { |
| bounds.emplace_back(Fold(std::move(*lower))); |
| } |
| } |
| assignment.u = std::move(bounds); |
| }, |
| }, |
| std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); |
| x.typedAssignment.Reset( |
| new GenericAssignmentWrapper{std::move(assignment)}, |
| GenericAssignmentWrapper::Deleter); |
| } |
| } |
| return common::GetPtrFromOptional(x.typedAssignment->v); |
| } |
| |
| static bool IsExternalCalledImplicitly( |
| parser::CharBlock callSite, const ProcedureDesignator &proc) { |
| if (const auto *symbol{proc.GetSymbol()}) { |
| return symbol->has<semantics::SubprogramDetails>() && |
| symbol->owner().IsGlobal() && |
| (!symbol->scope() /*ENTRY*/ || |
| !symbol->scope()->sourceRange().Contains(callSite)); |
| } else { |
| return false; |
| } |
| } |
| |
| std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( |
| parser::CharBlock callSite, const ProcedureDesignator &proc, |
| ActualArguments &arguments) { |
| auto chars{characteristics::Procedure::Characterize( |
| proc, context_.foldingContext())}; |
| if (chars) { |
| bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; |
| if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { |
| Say(callSite, |
| "References to the procedure '%s' require an explicit interface"_en_US, |
| DEREF(proc.GetSymbol()).name()); |
| } |
| // Checks for ASSOCIATED() are done in intrinsic table processing |
| bool procIsAssociated{false}; |
| if (const SpecificIntrinsic * |
| specificIntrinsic{proc.GetSpecificIntrinsic()}) { |
| if (specificIntrinsic->name == "associated") { |
| procIsAssociated = true; |
| } |
| } |
| if (!procIsAssociated) { |
| semantics::CheckArguments(*chars, arguments, GetFoldingContext(), |
| context_.FindScope(callSite), treatExternalAsImplicit, |
| proc.GetSpecificIntrinsic()); |
| const Symbol *procSymbol{proc.GetSymbol()}; |
| if (procSymbol && !IsPureProcedure(*procSymbol)) { |
| if (const semantics::Scope * |
| pure{semantics::FindPureProcedureContaining( |
| context_.FindScope(callSite))}) { |
| Say(callSite, |
| "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, |
| procSymbol->name(), DEREF(pure->symbol()).name()); |