|  | //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// | 
|  | /// \file | 
|  | /// This file implements some simple delegations needed for call lowering. | 
|  | /// | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/GlobalISel/CallLowering.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" | 
|  | #include "llvm/CodeGen/GlobalISel/Utils.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  |  | 
|  | #define DEBUG_TYPE "call-lowering" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | void CallLowering::anchor() {} | 
|  |  | 
|  | /// Helper function which updates \p Flags when \p AttrFn returns true. | 
|  | static void | 
|  | addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, | 
|  | const std::function<bool(Attribute::AttrKind)> &AttrFn) { | 
|  | // TODO: There are missing flags. Add them here. | 
|  | if (AttrFn(Attribute::SExt)) | 
|  | Flags.setSExt(); | 
|  | if (AttrFn(Attribute::ZExt)) | 
|  | Flags.setZExt(); | 
|  | if (AttrFn(Attribute::InReg)) | 
|  | Flags.setInReg(); | 
|  | if (AttrFn(Attribute::StructRet)) | 
|  | Flags.setSRet(); | 
|  | if (AttrFn(Attribute::Nest)) | 
|  | Flags.setNest(); | 
|  | if (AttrFn(Attribute::ByVal)) | 
|  | Flags.setByVal(); | 
|  | if (AttrFn(Attribute::ByRef)) | 
|  | Flags.setByRef(); | 
|  | if (AttrFn(Attribute::Preallocated)) | 
|  | Flags.setPreallocated(); | 
|  | if (AttrFn(Attribute::InAlloca)) | 
|  | Flags.setInAlloca(); | 
|  | if (AttrFn(Attribute::Returned)) | 
|  | Flags.setReturned(); | 
|  | if (AttrFn(Attribute::SwiftSelf)) | 
|  | Flags.setSwiftSelf(); | 
|  | if (AttrFn(Attribute::SwiftAsync)) | 
|  | Flags.setSwiftAsync(); | 
|  | if (AttrFn(Attribute::SwiftError)) | 
|  | Flags.setSwiftError(); | 
|  | } | 
|  |  | 
|  | ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, | 
|  | unsigned ArgIdx) const { | 
|  | ISD::ArgFlagsTy Flags; | 
|  | addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { | 
|  | return Call.paramHasAttr(ArgIdx, Attr); | 
|  | }); | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | ISD::ArgFlagsTy | 
|  | CallLowering::getAttributesForReturn(const CallBase &Call) const { | 
|  | ISD::ArgFlagsTy Flags; | 
|  | addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) { | 
|  | return Call.hasRetAttr(Attr); | 
|  | }); | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, | 
|  | const AttributeList &Attrs, | 
|  | unsigned OpIdx) const { | 
|  | addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { | 
|  | return Attrs.hasAttributeAtIndex(OpIdx, Attr); | 
|  | }); | 
|  | } | 
|  |  | 
|  | bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, | 
|  | ArrayRef<Register> ResRegs, | 
|  | ArrayRef<ArrayRef<Register>> ArgRegs, | 
|  | Register SwiftErrorVReg, | 
|  | std::optional<PtrAuthInfo> PAI, | 
|  | Register ConvergenceCtrlToken, | 
|  | std::function<Register()> GetCalleeReg) const { | 
|  | CallLoweringInfo Info; | 
|  | const DataLayout &DL = MIRBuilder.getDataLayout(); | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | bool CanBeTailCalled = CB.isTailCall() && | 
|  | isInTailCallPosition(CB, MF.getTarget()) && | 
|  | (MF.getFunction() | 
|  | .getFnAttribute("disable-tail-calls") | 
|  | .getValueAsString() != "true"); | 
|  |  | 
|  | CallingConv::ID CallConv = CB.getCallingConv(); | 
|  | Type *RetTy = CB.getType(); | 
|  | bool IsVarArg = CB.getFunctionType()->isVarArg(); | 
|  |  | 
|  | SmallVector<BaseArgInfo, 4> SplitArgs; | 
|  | getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); | 
|  | Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); | 
|  |  | 
|  | Info.IsConvergent = CB.isConvergent(); | 
|  |  | 
|  | if (!Info.CanLowerReturn) { | 
|  | // Callee requires sret demotion. | 
|  | insertSRetOutgoingArgument(MIRBuilder, CB, Info); | 
|  |  | 
|  | // The sret demotion isn't compatible with tail-calls, since the sret | 
|  | // argument points into the caller's stack frame. | 
|  | CanBeTailCalled = false; | 
|  | } | 
|  |  | 
|  | // First step is to marshall all the function's parameters into the correct | 
|  | // physregs and memory locations. Gather the sequence of argument types that | 
|  | // we'll pass to the assigner function. | 
|  | unsigned i = 0; | 
|  | unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); | 
|  | for (const auto &Arg : CB.args()) { | 
|  | ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), | 
|  | i < NumFixedArgs}; | 
|  | setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); | 
|  |  | 
|  | // If we have an explicit sret argument that is an Instruction, (i.e., it | 
|  | // might point to function-local memory), we can't meaningfully tail-call. | 
|  | if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) | 
|  | CanBeTailCalled = false; | 
|  |  | 
|  | Info.OrigArgs.push_back(OrigArg); | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | // Try looking through a bitcast from one function type to another. | 
|  | // Commonly happens with calls to objc_msgSend(). | 
|  | const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); | 
|  |  | 
|  | // If IRTranslator chose to drop the ptrauth info, we can turn this into | 
|  | // a direct call. | 
|  | if (!PAI && CB.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { | 
|  | CalleeV = cast<ConstantPtrAuth>(CalleeV)->getPointer(); | 
|  | assert(isa<Function>(CalleeV)); | 
|  | } | 
|  |  | 
|  | if (const Function *F = dyn_cast<Function>(CalleeV)) { | 
|  | if (F->hasFnAttribute(Attribute::NonLazyBind)) { | 
|  | LLT Ty = getLLTForType(*F->getType(), DL); | 
|  | Register Reg = MIRBuilder.buildGlobalValue(Ty, F).getReg(0); | 
|  | Info.Callee = MachineOperand::CreateReg(Reg, false); | 
|  | } else { | 
|  | Info.Callee = MachineOperand::CreateGA(F, 0); | 
|  | } | 
|  | } else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) { | 
|  | // IR IFuncs and Aliases can't be forward declared (only defined), so the | 
|  | // callee must be in the same TU and therefore we can direct-call it without | 
|  | // worrying about it being out of range. | 
|  | Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0); | 
|  | } else | 
|  | Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); | 
|  |  | 
|  | Register ReturnHintAlignReg; | 
|  | Align ReturnHintAlign; | 
|  |  | 
|  | Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)}; | 
|  |  | 
|  | if (!Info.OrigRet.Ty->isVoidTy()) { | 
|  | setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); | 
|  |  | 
|  | if (MaybeAlign Alignment = CB.getRetAlign()) { | 
|  | if (*Alignment > Align(1)) { | 
|  | ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]); | 
|  | Info.OrigRet.Regs[0] = ReturnHintAlignReg; | 
|  | ReturnHintAlign = *Alignment; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi); | 
|  | if (Bundle && CB.isIndirectCall()) { | 
|  | Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]); | 
|  | assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); | 
|  | } | 
|  |  | 
|  | Info.CB = &CB; | 
|  | Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); | 
|  | Info.CallConv = CallConv; | 
|  | Info.SwiftErrorVReg = SwiftErrorVReg; | 
|  | Info.PAI = PAI; | 
|  | Info.ConvergenceCtrlToken = ConvergenceCtrlToken; | 
|  | Info.IsMustTailCall = CB.isMustTailCall(); | 
|  | Info.IsTailCall = CanBeTailCalled; | 
|  | Info.IsVarArg = IsVarArg; | 
|  | if (!lowerCall(MIRBuilder, Info)) | 
|  | return false; | 
|  |  | 
|  | if (ReturnHintAlignReg && !Info.LoweredTailCall) { | 
|  | MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg, | 
|  | ReturnHintAlign); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename FuncInfoTy> | 
|  | void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, | 
|  | const DataLayout &DL, | 
|  | const FuncInfoTy &FuncInfo) const { | 
|  | auto &Flags = Arg.Flags[0]; | 
|  | const AttributeList &Attrs = FuncInfo.getAttributes(); | 
|  | addArgFlagsFromAttributes(Flags, Attrs, OpIdx); | 
|  |  | 
|  | PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); | 
|  | if (PtrTy) { | 
|  | Flags.setPointer(); | 
|  | Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); | 
|  | } | 
|  |  | 
|  | Align MemAlign = DL.getABITypeAlign(Arg.Ty); | 
|  | if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || | 
|  | Flags.isByRef()) { | 
|  | assert(OpIdx >= AttributeList::FirstArgIndex); | 
|  | unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; | 
|  |  | 
|  | Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); | 
|  | if (!ElementTy) | 
|  | ElementTy = FuncInfo.getParamByRefType(ParamIdx); | 
|  | if (!ElementTy) | 
|  | ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); | 
|  | if (!ElementTy) | 
|  | ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); | 
|  |  | 
|  | assert(ElementTy && "Must have byval, inalloca or preallocated type"); | 
|  |  | 
|  | uint64_t MemSize = DL.getTypeAllocSize(ElementTy); | 
|  | if (Flags.isByRef()) | 
|  | Flags.setByRefSize(MemSize); | 
|  | else | 
|  | Flags.setByValSize(MemSize); | 
|  |  | 
|  | // For ByVal, alignment should be passed from FE.  BE will guess if | 
|  | // this info is not there but there are cases it cannot get right. | 
|  | if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) | 
|  | MemAlign = *ParamAlign; | 
|  | else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) | 
|  | MemAlign = *ParamAlign; | 
|  | else | 
|  | MemAlign = getTLI()->getByValTypeAlignment(ElementTy, DL); | 
|  | } else if (OpIdx >= AttributeList::FirstArgIndex) { | 
|  | if (auto ParamAlign = | 
|  | FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) | 
|  | MemAlign = *ParamAlign; | 
|  | } | 
|  | Flags.setMemAlign(MemAlign); | 
|  | Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); | 
|  |  | 
|  | // Don't try to use the returned attribute if the argument is marked as | 
|  | // swiftself, since it won't be passed in x0. | 
|  | if (Flags.isSwiftSelf()) | 
|  | Flags.setReturned(false); | 
|  | } | 
|  |  | 
|  | template void | 
|  | CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, | 
|  | const DataLayout &DL, | 
|  | const Function &FuncInfo) const; | 
|  |  | 
|  | template void | 
|  | CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, | 
|  | const DataLayout &DL, | 
|  | const CallBase &FuncInfo) const; | 
|  |  | 
|  | void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, | 
|  | SmallVectorImpl<ArgInfo> &SplitArgs, | 
|  | const DataLayout &DL, | 
|  | CallingConv::ID CallConv, | 
|  | SmallVectorImpl<uint64_t> *Offsets) const { | 
|  | LLVMContext &Ctx = OrigArg.Ty->getContext(); | 
|  |  | 
|  | SmallVector<EVT, 4> SplitVTs; | 
|  | ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); | 
|  |  | 
|  | if (SplitVTs.size() == 0) | 
|  | return; | 
|  |  | 
|  | if (SplitVTs.size() == 1) { | 
|  | // No splitting to do, but we want to replace the original type (e.g. [1 x | 
|  | // double] -> double). | 
|  | SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), | 
|  | OrigArg.OrigArgIndex, OrigArg.Flags[0], | 
|  | OrigArg.IsFixed, OrigArg.OrigValue); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Create one ArgInfo for each virtual register in the original ArgInfo. | 
|  | assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); | 
|  |  | 
|  | bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( | 
|  | OrigArg.Ty, CallConv, false, DL); | 
|  | for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { | 
|  | Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); | 
|  | SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, | 
|  | OrigArg.Flags[0], OrigArg.IsFixed); | 
|  | if (NeedsRegBlock) | 
|  | SplitArgs.back().Flags[0].setInConsecutiveRegs(); | 
|  | } | 
|  |  | 
|  | SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); | 
|  | } | 
|  |  | 
|  | /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. | 
|  | static MachineInstrBuilder | 
|  | mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, | 
|  | ArrayRef<Register> SrcRegs) { | 
|  | MachineRegisterInfo &MRI = *B.getMRI(); | 
|  | LLT LLTy = MRI.getType(DstRegs[0]); | 
|  | LLT PartLLT = MRI.getType(SrcRegs[0]); | 
|  |  | 
|  | // Deal with v3s16 split into v2s16 | 
|  | LLT LCMTy = getCoverTy(LLTy, PartLLT); | 
|  | if (LCMTy == LLTy) { | 
|  | // Common case where no padding is needed. | 
|  | assert(DstRegs.size() == 1); | 
|  | return B.buildConcatVectors(DstRegs[0], SrcRegs); | 
|  | } | 
|  |  | 
|  | // We need to create an unmerge to the result registers, which may require | 
|  | // widening the original value. | 
|  | Register UnmergeSrcReg; | 
|  | if (LCMTy != PartLLT) { | 
|  | assert(DstRegs.size() == 1); | 
|  | return B.buildDeleteTrailingVectorElements( | 
|  | DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs)); | 
|  | } else { | 
|  | // We don't need to widen anything if we're extracting a scalar which was | 
|  | // promoted to a vector e.g. s8 -> v4s8 -> s8 | 
|  | assert(SrcRegs.size() == 1); | 
|  | UnmergeSrcReg = SrcRegs[0]; | 
|  | } | 
|  |  | 
|  | int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); | 
|  |  | 
|  | SmallVector<Register, 8> PadDstRegs(NumDst); | 
|  | llvm::copy(DstRegs, PadDstRegs.begin()); | 
|  |  | 
|  | // Create the excess dead defs for the unmerge. | 
|  | for (int I = DstRegs.size(); I != NumDst; ++I) | 
|  | PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); | 
|  |  | 
|  | if (PadDstRegs.size() == 1) | 
|  | return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg); | 
|  | return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); | 
|  | } | 
|  |  | 
|  | /// Create a sequence of instructions to combine pieces split into register | 
|  | /// typed values to the original IR value. \p OrigRegs contains the destination | 
|  | /// value registers of type \p LLTy, and \p Regs contains the legalized pieces | 
|  | /// with type \p PartLLT. This is used for incoming values (physregs to vregs). | 
|  | static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, | 
|  | ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, | 
|  | const ISD::ArgFlagsTy Flags) { | 
|  | MachineRegisterInfo &MRI = *B.getMRI(); | 
|  |  | 
|  | if (PartLLT == LLTy) { | 
|  | // We should have avoided introducing a new virtual register, and just | 
|  | // directly assigned here. | 
|  | assert(OrigRegs[0] == Regs[0]); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && | 
|  | Regs.size() == 1) { | 
|  | B.buildBitcast(OrigRegs[0], Regs[0]); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // A vector PartLLT needs extending to LLTy's element size. | 
|  | // E.g. <2 x s64> = G_SEXT <2 x s32>. | 
|  | if (PartLLT.isVector() == LLTy.isVector() && | 
|  | PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && | 
|  | (!PartLLT.isVector() || | 
|  | PartLLT.getElementCount() == LLTy.getElementCount()) && | 
|  | OrigRegs.size() == 1 && Regs.size() == 1) { | 
|  | Register SrcReg = Regs[0]; | 
|  |  | 
|  | LLT LocTy = MRI.getType(SrcReg); | 
|  |  | 
|  | if (Flags.isSExt()) { | 
|  | SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) | 
|  | .getReg(0); | 
|  | } else if (Flags.isZExt()) { | 
|  | SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) | 
|  | .getReg(0); | 
|  | } | 
|  |  | 
|  | // Sometimes pointers are passed zero extended. | 
|  | LLT OrigTy = MRI.getType(OrigRegs[0]); | 
|  | if (OrigTy.isPointer()) { | 
|  | LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); | 
|  | B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | B.buildTrunc(OrigRegs[0], SrcReg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!LLTy.isVector() && !PartLLT.isVector()) { | 
|  | assert(OrigRegs.size() == 1); | 
|  | LLT OrigTy = MRI.getType(OrigRegs[0]); | 
|  |  | 
|  | unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size(); | 
|  | if (SrcSize == OrigTy.getSizeInBits()) | 
|  | B.buildMergeValues(OrigRegs[0], Regs); | 
|  | else { | 
|  | auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs); | 
|  | B.buildTrunc(OrigRegs[0], Widened); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (PartLLT.isVector()) { | 
|  | assert(OrigRegs.size() == 1); | 
|  | SmallVector<Register> CastRegs(Regs); | 
|  |  | 
|  | // If PartLLT is a mismatched vector in both number of elements and element | 
|  | // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to | 
|  | // have the same elt type, i.e. v4s32. | 
|  | // TODO: Extend this coersion to element multiples other than just 2. | 
|  | if (TypeSize::isKnownGT(PartLLT.getSizeInBits(), LLTy.getSizeInBits()) && | 
|  | PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && | 
|  | Regs.size() == 1) { | 
|  | LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) | 
|  | .changeElementCount(PartLLT.getElementCount() * 2); | 
|  | CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); | 
|  | PartLLT = NewTy; | 
|  | } | 
|  |  | 
|  | if (LLTy.getScalarType() == PartLLT.getElementType()) { | 
|  | mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); | 
|  | } else { | 
|  | unsigned I = 0; | 
|  | LLT GCDTy = getGCDType(LLTy, PartLLT); | 
|  |  | 
|  | // We are both splitting a vector, and bitcasting its element types. Cast | 
|  | // the source pieces into the appropriate number of pieces with the result | 
|  | // element type. | 
|  | for (Register SrcReg : CastRegs) | 
|  | CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); | 
|  | mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(LLTy.isVector() && !PartLLT.isVector()); | 
|  |  | 
|  | LLT DstEltTy = LLTy.getElementType(); | 
|  |  | 
|  | // Pointer information was discarded. We'll need to coerce some register types | 
|  | // to avoid violating type constraints. | 
|  | LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); | 
|  |  | 
|  | assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); | 
|  |  | 
|  | if (DstEltTy == PartLLT) { | 
|  | // Vector was trivially scalarized. | 
|  |  | 
|  | if (RealDstEltTy.isPointer()) { | 
|  | for (Register Reg : Regs) | 
|  | MRI.setType(Reg, RealDstEltTy); | 
|  | } | 
|  |  | 
|  | B.buildBuildVector(OrigRegs[0], Regs); | 
|  | } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { | 
|  | // Deal with vector with 64-bit elements decomposed to 32-bit | 
|  | // registers. Need to create intermediate 64-bit elements. | 
|  | SmallVector<Register, 8> EltMerges; | 
|  | int PartsPerElt = | 
|  | divideCeil(DstEltTy.getSizeInBits(), PartLLT.getSizeInBits()); | 
|  | LLT ExtendedPartTy = LLT::scalar(PartLLT.getSizeInBits() * PartsPerElt); | 
|  |  | 
|  | for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { | 
|  | auto Merge = | 
|  | B.buildMergeLikeInstr(ExtendedPartTy, Regs.take_front(PartsPerElt)); | 
|  | if (ExtendedPartTy.getSizeInBits() > RealDstEltTy.getSizeInBits()) | 
|  | Merge = B.buildTrunc(RealDstEltTy, Merge); | 
|  | // Fix the type in case this is really a vector of pointers. | 
|  | MRI.setType(Merge.getReg(0), RealDstEltTy); | 
|  | EltMerges.push_back(Merge.getReg(0)); | 
|  | Regs = Regs.drop_front(PartsPerElt); | 
|  | } | 
|  |  | 
|  | B.buildBuildVector(OrigRegs[0], EltMerges); | 
|  | } else { | 
|  | // Vector was split, and elements promoted to a wider type. | 
|  | // FIXME: Should handle floating point promotions. | 
|  | unsigned NumElts = LLTy.getNumElements(); | 
|  | LLT BVType = LLT::fixed_vector(NumElts, PartLLT); | 
|  |  | 
|  | Register BuildVec; | 
|  | if (NumElts == Regs.size()) | 
|  | BuildVec = B.buildBuildVector(BVType, Regs).getReg(0); | 
|  | else { | 
|  | // Vector elements are packed in the inputs. | 
|  | // e.g. we have a <4 x s16> but 2 x s32 in regs. | 
|  | assert(NumElts > Regs.size()); | 
|  | LLT SrcEltTy = MRI.getType(Regs[0]); | 
|  |  | 
|  | LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType(); | 
|  |  | 
|  | // Input registers contain packed elements. | 
|  | // Determine how many elements per reg. | 
|  | assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0); | 
|  | unsigned EltPerReg = | 
|  | (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits()); | 
|  |  | 
|  | SmallVector<Register, 0> BVRegs; | 
|  | BVRegs.reserve(Regs.size() * EltPerReg); | 
|  | for (Register R : Regs) { | 
|  | auto Unmerge = B.buildUnmerge(OriginalEltTy, R); | 
|  | for (unsigned K = 0; K < EltPerReg; ++K) | 
|  | BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0)); | 
|  | } | 
|  |  | 
|  | // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces | 
|  | // for a <3 x s16> vector. We should have less than EltPerReg extra items. | 
|  | if (BVRegs.size() > NumElts) { | 
|  | assert((BVRegs.size() - NumElts) < EltPerReg); | 
|  | BVRegs.truncate(NumElts); | 
|  | } | 
|  | BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0); | 
|  | } | 
|  | B.buildTrunc(OrigRegs[0], BuildVec); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Create a sequence of instructions to expand the value in \p SrcReg (of type | 
|  | /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should | 
|  | /// contain the type of scalar value extension if necessary. | 
|  | /// | 
|  | /// This is used for outgoing values (vregs to physregs) | 
|  | static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, | 
|  | Register SrcReg, LLT SrcTy, LLT PartTy, | 
|  | unsigned ExtendOp = TargetOpcode::G_ANYEXT) { | 
|  | // We could just insert a regular copy, but this is unreachable at the moment. | 
|  | assert(SrcTy != PartTy && "identical part types shouldn't reach here"); | 
|  |  | 
|  | const TypeSize PartSize = PartTy.getSizeInBits(); | 
|  |  | 
|  | if (PartTy.isVector() == SrcTy.isVector() && | 
|  | PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { | 
|  | assert(DstRegs.size() == 1); | 
|  | B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (SrcTy.isVector() && !PartTy.isVector() && | 
|  | TypeSize::isKnownGT(PartSize, SrcTy.getElementType().getSizeInBits())) { | 
|  | // Vector was scalarized, and the elements extended. | 
|  | auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); | 
|  | for (int i = 0, e = DstRegs.size(); i != e; ++i) | 
|  | B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (SrcTy.isVector() && PartTy.isVector() && | 
|  | PartTy.getSizeInBits() == SrcTy.getSizeInBits() && | 
|  | ElementCount::isKnownLT(SrcTy.getElementCount(), | 
|  | PartTy.getElementCount())) { | 
|  | // A coercion like: v2f32 -> v4f32 or nxv2f32 -> nxv4f32 | 
|  | Register DstReg = DstRegs.front(); | 
|  | B.buildPadVectorWithUndefElements(DstReg, SrcReg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | LLT GCDTy = getGCDType(SrcTy, PartTy); | 
|  | if (GCDTy == PartTy) { | 
|  | // If this already evenly divisible, we can create a simple unmerge. | 
|  | B.buildUnmerge(DstRegs, SrcReg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (SrcTy.isVector() && !PartTy.isVector() && | 
|  | SrcTy.getScalarSizeInBits() > PartTy.getSizeInBits()) { | 
|  | LLT ExtTy = | 
|  | LLT::vector(SrcTy.getElementCount(), | 
|  | LLT::scalar(PartTy.getScalarSizeInBits() * DstRegs.size() / | 
|  | SrcTy.getNumElements())); | 
|  | auto Ext = B.buildAnyExt(ExtTy, SrcReg); | 
|  | B.buildUnmerge(DstRegs, Ext); | 
|  | return; | 
|  | } | 
|  |  | 
|  | MachineRegisterInfo &MRI = *B.getMRI(); | 
|  | LLT DstTy = MRI.getType(DstRegs[0]); | 
|  | LLT LCMTy = getCoverTy(SrcTy, PartTy); | 
|  |  | 
|  | if (PartTy.isVector() && LCMTy == PartTy) { | 
|  | assert(DstRegs.size() == 1); | 
|  | B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const unsigned DstSize = DstTy.getSizeInBits(); | 
|  | const unsigned SrcSize = SrcTy.getSizeInBits(); | 
|  | unsigned CoveringSize = LCMTy.getSizeInBits(); | 
|  |  | 
|  | Register UnmergeSrc = SrcReg; | 
|  |  | 
|  | if (!LCMTy.isVector() && CoveringSize != SrcSize) { | 
|  | // For scalars, it's common to be able to use a simple extension. | 
|  | if (SrcTy.isScalar() && DstTy.isScalar()) { | 
|  | CoveringSize = alignTo(SrcSize, DstSize); | 
|  | LLT CoverTy = LLT::scalar(CoveringSize); | 
|  | UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); | 
|  | } else { | 
|  | // Widen to the common type. | 
|  | // FIXME: This should respect the extend type | 
|  | Register Undef = B.buildUndef(SrcTy).getReg(0); | 
|  | SmallVector<Register, 8> MergeParts(1, SrcReg); | 
|  | for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) | 
|  | MergeParts.push_back(Undef); | 
|  | UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LCMTy.isVector() && CoveringSize != SrcSize) | 
|  | UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0); | 
|  |  | 
|  | B.buildUnmerge(DstRegs, UnmergeSrc); | 
|  | } | 
|  |  | 
|  | bool CallLowering::determineAndHandleAssignments( | 
|  | ValueHandler &Handler, ValueAssigner &Assigner, | 
|  | SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, | 
|  | CallingConv::ID CallConv, bool IsVarArg, | 
|  | ArrayRef<Register> ThisReturnRegs) const { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | const Function &F = MF.getFunction(); | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  |  | 
|  | CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); | 
|  | if (!determineAssignments(Assigner, Args, CCInfo)) | 
|  | return false; | 
|  |  | 
|  | return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, | 
|  | ThisReturnRegs); | 
|  | } | 
|  |  | 
|  | static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { | 
|  | if (Flags.isSExt()) | 
|  | return TargetOpcode::G_SEXT; | 
|  | if (Flags.isZExt()) | 
|  | return TargetOpcode::G_ZEXT; | 
|  | return TargetOpcode::G_ANYEXT; | 
|  | } | 
|  |  | 
|  | bool CallLowering::determineAssignments(ValueAssigner &Assigner, | 
|  | SmallVectorImpl<ArgInfo> &Args, | 
|  | CCState &CCInfo) const { | 
|  | LLVMContext &Ctx = CCInfo.getContext(); | 
|  | const CallingConv::ID CallConv = CCInfo.getCallingConv(); | 
|  |  | 
|  | unsigned NumArgs = Args.size(); | 
|  | for (unsigned i = 0; i != NumArgs; ++i) { | 
|  | EVT CurVT = EVT::getEVT(Args[i].Ty); | 
|  |  | 
|  | MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); | 
|  |  | 
|  | // If we need to split the type over multiple regs, check it's a scenario | 
|  | // we currently support. | 
|  | unsigned NumParts = | 
|  | TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); | 
|  |  | 
|  | if (NumParts == 1) { | 
|  | // Try to use the register type if we couldn't assign the VT. | 
|  | if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], | 
|  | Args[i].Flags[0], CCInfo)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // For incoming arguments (physregs to vregs), we could have values in | 
|  | // physregs (or memlocs) which we want to extract and copy to vregs. | 
|  | // During this, we might have to deal with the LLT being split across | 
|  | // multiple regs, so we have to record this information for later. | 
|  | // | 
|  | // If we have outgoing args, then we have the opposite case. We have a | 
|  | // vreg with an LLT which we want to assign to a physical location, and | 
|  | // we might have to record that the value has to be split later. | 
|  |  | 
|  | // We're handling an incoming arg which is split over multiple regs. | 
|  | // E.g. passing an s128 on AArch64. | 
|  | ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; | 
|  | Args[i].Flags.clear(); | 
|  |  | 
|  | for (unsigned Part = 0; Part < NumParts; ++Part) { | 
|  | ISD::ArgFlagsTy Flags = OrigFlags; | 
|  | if (Part == 0) { | 
|  | Flags.setSplit(); | 
|  | } else { | 
|  | Flags.setOrigAlign(Align(1)); | 
|  | if (Part == NumParts - 1) | 
|  | Flags.setSplitEnd(); | 
|  | } | 
|  |  | 
|  | Args[i].Flags.push_back(Flags); | 
|  | if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], | 
|  | Args[i].Flags[Part], CCInfo)) { | 
|  | // Still couldn't assign this smaller part type for some reason. | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CallLowering::handleAssignments(ValueHandler &Handler, | 
|  | SmallVectorImpl<ArgInfo> &Args, | 
|  | CCState &CCInfo, | 
|  | SmallVectorImpl<CCValAssign> &ArgLocs, | 
|  | MachineIRBuilder &MIRBuilder, | 
|  | ArrayRef<Register> ThisReturnRegs) const { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | const Function &F = MF.getFunction(); | 
|  | const DataLayout &DL = F.getDataLayout(); | 
|  |  | 
|  | const unsigned NumArgs = Args.size(); | 
|  |  | 
|  | // Stores thunks for outgoing register assignments. This is used so we delay | 
|  | // generating register copies until mem loc assignments are done. We do this | 
|  | // so that if the target is using the delayed stack protector feature, we can | 
|  | // find the split point of the block accurately. E.g. if we have: | 
|  | // G_STORE %val, %memloc | 
|  | // $x0 = COPY %foo | 
|  | // $x1 = COPY %bar | 
|  | // CALL func | 
|  | // ... then the split point for the block will correctly be at, and including, | 
|  | // the copy to $x0. If instead the G_STORE instruction immediately precedes | 
|  | // the CALL, then we'd prematurely choose the CALL as the split point, thus | 
|  | // generating a split block with a CALL that uses undefined physregs. | 
|  | SmallVector<std::function<void()>> DelayedOutgoingRegAssignments; | 
|  |  | 
|  | for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { | 
|  | assert(j < ArgLocs.size() && "Skipped too many arg locs"); | 
|  | CCValAssign &VA = ArgLocs[j]; | 
|  | assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); | 
|  |  | 
|  | if (VA.needsCustom()) { | 
|  | std::function<void()> Thunk; | 
|  | unsigned NumArgRegs = Handler.assignCustomValue( | 
|  | Args[i], ArrayRef(ArgLocs).slice(j), &Thunk); | 
|  | if (Thunk) | 
|  | DelayedOutgoingRegAssignments.emplace_back(Thunk); | 
|  | if (!NumArgRegs) | 
|  | return false; | 
|  | j += (NumArgRegs - 1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | auto AllocaAddressSpace = MF.getDataLayout().getAllocaAddrSpace(); | 
|  |  | 
|  | const MVT ValVT = VA.getValVT(); | 
|  | const MVT LocVT = VA.getLocVT(); | 
|  |  | 
|  | const LLT LocTy(LocVT); | 
|  | const LLT ValTy(ValVT); | 
|  | const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; | 
|  | const EVT OrigVT = EVT::getEVT(Args[i].Ty); | 
|  | const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); | 
|  | const LLT PointerTy = LLT::pointer( | 
|  | AllocaAddressSpace, DL.getPointerSizeInBits(AllocaAddressSpace)); | 
|  |  | 
|  | // Expected to be multiple regs for a single incoming arg. | 
|  | // There should be Regs.size() ArgLocs per argument. | 
|  | // This should be the same as getNumRegistersForCallingConv | 
|  | const unsigned NumParts = Args[i].Flags.size(); | 
|  |  | 
|  | // Now split the registers into the assigned types. | 
|  | Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); | 
|  |  | 
|  | if (NumParts != 1 || NewLLT != OrigTy) { | 
|  | // If we can't directly assign the register, we need one or more | 
|  | // intermediate values. | 
|  | Args[i].Regs.resize(NumParts); | 
|  |  | 
|  | // When we have indirect parameter passing we are receiving a pointer, | 
|  | // that points to the actual value, so we need one "temporary" pointer. | 
|  | if (VA.getLocInfo() == CCValAssign::Indirect) { | 
|  | if (Handler.isIncomingArgumentHandler()) | 
|  | Args[i].Regs[0] = MRI.createGenericVirtualRegister(PointerTy); | 
|  | } else { | 
|  | // For each split register, create and assign a vreg that will store | 
|  | // the incoming component of the larger value. These will later be | 
|  | // merged to form the final vreg. | 
|  | for (unsigned Part = 0; Part < NumParts; ++Part) | 
|  | Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert((j + (NumParts - 1)) < ArgLocs.size() && | 
|  | "Too many regs for number of args"); | 
|  |  | 
|  | // Coerce into outgoing value types before register assignment. | 
|  | if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy && | 
|  | VA.getLocInfo() != CCValAssign::Indirect) { | 
|  | assert(Args[i].OrigRegs.size() == 1); | 
|  | buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, | 
|  | ValTy, extendOpFromFlags(Args[i].Flags[0])); | 
|  | } | 
|  |  | 
|  | bool IndirectParameterPassingHandled = false; | 
|  | bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL); | 
|  | for (unsigned Part = 0; Part < NumParts; ++Part) { | 
|  | assert((VA.getLocInfo() != CCValAssign::Indirect || Part == 0) && | 
|  | "Only the first parameter should be processed when " | 
|  | "handling indirect passing!"); | 
|  | Register ArgReg = Args[i].Regs[Part]; | 
|  | // There should be Regs.size() ArgLocs per argument. | 
|  | unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part; | 
|  | CCValAssign &VA = ArgLocs[j + Idx]; | 
|  | const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; | 
|  |  | 
|  | // We found an indirect parameter passing, and we have an | 
|  | // OutgoingValueHandler as our handler (so we are at the call site or the | 
|  | // return value). In this case, start the construction of the following | 
|  | // GMIR, that is responsible for the preparation of indirect parameter | 
|  | // passing: | 
|  | // | 
|  | // %1(indirectly passed type) = The value to pass | 
|  | // %3(pointer) = G_FRAME_INDEX %stack.0 | 
|  | // G_STORE %1, %3 :: (store (s128), align 8) | 
|  | // | 
|  | // After this GMIR, the remaining part of the loop body will decide how | 
|  | // to get the value to the caller and we break out of the loop. | 
|  | if (VA.getLocInfo() == CCValAssign::Indirect && | 
|  | !Handler.isIncomingArgumentHandler()) { | 
|  | Align AlignmentForStored = DL.getPrefTypeAlign(Args[i].Ty); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | // Get some space on the stack for the value, so later we can pass it | 
|  | // as a reference. | 
|  | int FrameIdx = MFI.CreateStackObject(OrigTy.getScalarSizeInBits(), | 
|  | AlignmentForStored, false); | 
|  | Register PointerToStackReg = | 
|  | MIRBuilder.buildFrameIndex(PointerTy, FrameIdx).getReg(0); | 
|  | MachinePointerInfo StackPointerMPO = | 
|  | MachinePointerInfo::getFixedStack(MF, FrameIdx); | 
|  | // Store the value in the previously created stack space. | 
|  | MIRBuilder.buildStore(Args[i].OrigRegs[Part], PointerToStackReg, | 
|  | StackPointerMPO, | 
|  | inferAlignFromPtrInfo(MF, StackPointerMPO)); | 
|  |  | 
|  | ArgReg = PointerToStackReg; | 
|  | IndirectParameterPassingHandled = true; | 
|  | } | 
|  |  | 
|  | if (VA.isMemLoc() && !Flags.isByVal()) { | 
|  | // Individual pieces may have been spilled to the stack and others | 
|  | // passed in registers. | 
|  |  | 
|  | // TODO: The memory size may be larger than the value we need to | 
|  | // store. We may need to adjust the offset for big endian targets. | 
|  | LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); | 
|  |  | 
|  | MachinePointerInfo MPO; | 
|  | Register StackAddr = | 
|  | Handler.getStackAddress(VA.getLocInfo() == CCValAssign::Indirect | 
|  | ? PointerTy.getSizeInBytes() | 
|  | : MemTy.getSizeInBytes(), | 
|  | VA.getLocMemOffset(), MPO, Flags); | 
|  |  | 
|  | // Finish the handling of indirect passing from the passers | 
|  | // (OutgoingParameterHandler) side. | 
|  | // This branch is needed, so the pointer to the value is loaded onto the | 
|  | // stack. | 
|  | if (VA.getLocInfo() == CCValAssign::Indirect) | 
|  | Handler.assignValueToAddress(ArgReg, StackAddr, PointerTy, MPO, VA); | 
|  | else | 
|  | Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, | 
|  | VA); | 
|  | } else if (VA.isMemLoc() && Flags.isByVal()) { | 
|  | assert(Args[i].Regs.size() == 1 && "didn't expect split byval pointer"); | 
|  |  | 
|  | if (Handler.isIncomingArgumentHandler()) { | 
|  | // We just need to copy the frame index value to the pointer. | 
|  | MachinePointerInfo MPO; | 
|  | Register StackAddr = Handler.getStackAddress( | 
|  | Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); | 
|  | MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); | 
|  | } else { | 
|  | // For outgoing byval arguments, insert the implicit copy byval | 
|  | // implies, such that writes in the callee do not modify the caller's | 
|  | // value. | 
|  | uint64_t MemSize = Flags.getByValSize(); | 
|  | int64_t Offset = VA.getLocMemOffset(); | 
|  |  | 
|  | MachinePointerInfo DstMPO; | 
|  | Register StackAddr = | 
|  | Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); | 
|  |  | 
|  | MachinePointerInfo SrcMPO(Args[i].OrigValue); | 
|  | if (!Args[i].OrigValue) { | 
|  | // We still need to accurately track the stack address space if we | 
|  | // don't know the underlying value. | 
|  | const LLT PtrTy = MRI.getType(StackAddr); | 
|  | SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); | 
|  | } | 
|  |  | 
|  | Align DstAlign = std::max(Flags.getNonZeroByValAlign(), | 
|  | inferAlignFromPtrInfo(MF, DstMPO)); | 
|  |  | 
|  | Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), | 
|  | inferAlignFromPtrInfo(MF, SrcMPO)); | 
|  |  | 
|  | Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], | 
|  | DstMPO, DstAlign, SrcMPO, SrcAlign, | 
|  | MemSize, VA); | 
|  | } | 
|  | } else if (i == 0 && !ThisReturnRegs.empty() && | 
|  | Handler.isIncomingArgumentHandler() && | 
|  | isTypeIsValidForThisReturn(ValVT)) { | 
|  | Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA); | 
|  | } else if (Handler.isIncomingArgumentHandler()) { | 
|  | Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); | 
|  | } else { | 
|  | DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { | 
|  | Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Finish the handling of indirect parameter passing when receiving | 
|  | // the value (we are in the called function or the caller when receiving | 
|  | // the return value). | 
|  | if (VA.getLocInfo() == CCValAssign::Indirect && | 
|  | Handler.isIncomingArgumentHandler()) { | 
|  | Align Alignment = DL.getABITypeAlign(Args[i].Ty); | 
|  | MachinePointerInfo MPO = MachinePointerInfo::getUnknownStack(MF); | 
|  |  | 
|  | // Since we are doing indirect parameter passing, we know that the value | 
|  | // in the temporary register is not the value passed to the function, | 
|  | // but rather a pointer to that value. Let's load that value into the | 
|  | // virtual register where the parameter should go. | 
|  | MIRBuilder.buildLoad(Args[i].OrigRegs[0], Args[i].Regs[0], MPO, | 
|  | Alignment); | 
|  |  | 
|  | IndirectParameterPassingHandled = true; | 
|  | } | 
|  |  | 
|  | if (IndirectParameterPassingHandled) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Now that all pieces have been assigned, re-pack the register typed values | 
|  | // into the original value typed registers. This is only necessary, when | 
|  | // the value was passed in multiple registers, not indirectly. | 
|  | if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT && | 
|  | !IndirectParameterPassingHandled) { | 
|  | // Merge the split registers into the expected larger result vregs of | 
|  | // the original call. | 
|  | buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, | 
|  | LocTy, Args[i].Flags[0]); | 
|  | } | 
|  |  | 
|  | j += NumParts - 1; | 
|  | } | 
|  | for (auto &Fn : DelayedOutgoingRegAssignments) | 
|  | Fn(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, | 
|  | ArrayRef<Register> VRegs, Register DemoteReg, | 
|  | int FI) const { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | const DataLayout &DL = MF.getDataLayout(); | 
|  |  | 
|  | SmallVector<EVT, 4> SplitVTs; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); | 
|  |  | 
|  | assert(VRegs.size() == SplitVTs.size()); | 
|  |  | 
|  | unsigned NumValues = SplitVTs.size(); | 
|  | Align BaseAlign = DL.getPrefTypeAlign(RetTy); | 
|  | Type *RetPtrTy = | 
|  | PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace()); | 
|  | LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL); | 
|  |  | 
|  | MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); | 
|  |  | 
|  | for (unsigned I = 0; I < NumValues; ++I) { | 
|  | Register Addr; | 
|  | MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); | 
|  | auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, | 
|  | MRI.getType(VRegs[I]), | 
|  | commonAlignment(BaseAlign, Offsets[I])); | 
|  | MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, | 
|  | ArrayRef<Register> VRegs, | 
|  | Register DemoteReg) const { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | const DataLayout &DL = MF.getDataLayout(); | 
|  |  | 
|  | SmallVector<EVT, 4> SplitVTs; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); | 
|  |  | 
|  | assert(VRegs.size() == SplitVTs.size()); | 
|  |  | 
|  | unsigned NumValues = SplitVTs.size(); | 
|  | Align BaseAlign = DL.getPrefTypeAlign(RetTy); | 
|  | unsigned AS = DL.getAllocaAddrSpace(); | 
|  | LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getContext(), AS), DL); | 
|  |  | 
|  | MachinePointerInfo PtrInfo(AS); | 
|  |  | 
|  | for (unsigned I = 0; I < NumValues; ++I) { | 
|  | Register Addr; | 
|  | MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); | 
|  | auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, | 
|  | MRI.getType(VRegs[I]), | 
|  | commonAlignment(BaseAlign, Offsets[I])); | 
|  | MIRBuilder.buildStore(VRegs[I], Addr, *MMO); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CallLowering::insertSRetIncomingArgument( | 
|  | const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, | 
|  | MachineRegisterInfo &MRI, const DataLayout &DL) const { | 
|  | unsigned AS = DL.getAllocaAddrSpace(); | 
|  | DemoteReg = MRI.createGenericVirtualRegister( | 
|  | LLT::pointer(AS, DL.getPointerSizeInBits(AS))); | 
|  |  | 
|  | Type *PtrTy = PointerType::get(F.getContext(), AS); | 
|  |  | 
|  | SmallVector<EVT, 1> ValueVTs; | 
|  | ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); | 
|  |  | 
|  | // NOTE: Assume that a pointer won't get split into more than one VT. | 
|  | assert(ValueVTs.size() == 1); | 
|  |  | 
|  | ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), | 
|  | ArgInfo::NoArgIndex); | 
|  | setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); | 
|  | DemoteArg.Flags[0].setSRet(); | 
|  | SplitArgs.insert(SplitArgs.begin(), DemoteArg); | 
|  | } | 
|  |  | 
|  | void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, | 
|  | const CallBase &CB, | 
|  | CallLoweringInfo &Info) const { | 
|  | const DataLayout &DL = MIRBuilder.getDataLayout(); | 
|  | Type *RetTy = CB.getType(); | 
|  | unsigned AS = DL.getAllocaAddrSpace(); | 
|  | LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); | 
|  |  | 
|  | int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( | 
|  | DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); | 
|  |  | 
|  | Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); | 
|  | ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy->getContext(), AS), | 
|  | ArgInfo::NoArgIndex); | 
|  | setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); | 
|  | DemoteArg.Flags[0].setSRet(); | 
|  |  | 
|  | Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); | 
|  | Info.DemoteStackIndex = FI; | 
|  | Info.DemoteRegister = DemoteReg; | 
|  | } | 
|  |  | 
|  | bool CallLowering::checkReturn(CCState &CCInfo, | 
|  | SmallVectorImpl<BaseArgInfo> &Outs, | 
|  | CCAssignFn *Fn) const { | 
|  | for (unsigned I = 0, E = Outs.size(); I < E; ++I) { | 
|  | MVT VT = MVT::getVT(Outs[I].Ty); | 
|  | if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, | 
|  | AttributeList Attrs, | 
|  | SmallVectorImpl<BaseArgInfo> &Outs, | 
|  | const DataLayout &DL) const { | 
|  | LLVMContext &Context = RetTy->getContext(); | 
|  | ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); | 
|  |  | 
|  | SmallVector<EVT, 4> SplitVTs; | 
|  | ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); | 
|  | addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); | 
|  |  | 
|  | for (EVT VT : SplitVTs) { | 
|  | unsigned NumParts = | 
|  | TLI->getNumRegistersForCallingConv(Context, CallConv, VT); | 
|  | MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); | 
|  | Type *PartTy = EVT(RegVT).getTypeForEVT(Context); | 
|  |  | 
|  | for (unsigned I = 0; I < NumParts; ++I) { | 
|  | Outs.emplace_back(PartTy, Flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { | 
|  | const auto &F = MF.getFunction(); | 
|  | Type *ReturnType = F.getReturnType(); | 
|  | CallingConv::ID CallConv = F.getCallingConv(); | 
|  |  | 
|  | SmallVector<BaseArgInfo, 4> SplitArgs; | 
|  | getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, | 
|  | MF.getDataLayout()); | 
|  | return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); | 
|  | } | 
|  |  | 
|  | bool CallLowering::parametersInCSRMatch( | 
|  | const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, | 
|  | const SmallVectorImpl<CCValAssign> &OutLocs, | 
|  | const SmallVectorImpl<ArgInfo> &OutArgs) const { | 
|  | for (unsigned i = 0; i < OutLocs.size(); ++i) { | 
|  | const auto &ArgLoc = OutLocs[i]; | 
|  | // If it's not a register, it's fine. | 
|  | if (!ArgLoc.isRegLoc()) | 
|  | continue; | 
|  |  | 
|  | MCRegister PhysReg = ArgLoc.getLocReg(); | 
|  |  | 
|  | // Only look at callee-saved registers. | 
|  | if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "... Call has an argument passed in a callee-saved register.\n"); | 
|  |  | 
|  | // Check if it was copied from. | 
|  | const ArgInfo &OutInfo = OutArgs[i]; | 
|  |  | 
|  | if (OutInfo.Regs.size() > 1) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "... Cannot handle arguments in multiple registers.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if we copy the register, walking through copies from virtual | 
|  | // registers. Note that getDefIgnoringCopies does not ignore copies from | 
|  | // physical registers. | 
|  | MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); | 
|  | if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "... Parameter was not copied into a VReg, cannot tail call.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Got a copy. Verify that it's the same as the register we want. | 
|  | Register CopyRHS = RegDef->getOperand(1).getReg(); | 
|  | if (CopyRHS != PhysReg) { | 
|  | LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " | 
|  | "VReg, cannot tail call.\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CallLowering::resultsCompatible(CallLoweringInfo &Info, | 
|  | MachineFunction &MF, | 
|  | SmallVectorImpl<ArgInfo> &InArgs, | 
|  | ValueAssigner &CalleeAssigner, | 
|  | ValueAssigner &CallerAssigner) const { | 
|  | const Function &F = MF.getFunction(); | 
|  | CallingConv::ID CalleeCC = Info.CallConv; | 
|  | CallingConv::ID CallerCC = F.getCallingConv(); | 
|  |  | 
|  | if (CallerCC == CalleeCC) | 
|  | return true; | 
|  |  | 
|  | SmallVector<CCValAssign, 16> ArgLocs1; | 
|  | CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); | 
|  | if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) | 
|  | return false; | 
|  |  | 
|  | SmallVector<CCValAssign, 16> ArgLocs2; | 
|  | CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); | 
|  | if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) | 
|  | return false; | 
|  |  | 
|  | // We need the argument locations to match up exactly. If there's more in | 
|  | // one than the other, then we are done. | 
|  | if (ArgLocs1.size() != ArgLocs2.size()) | 
|  | return false; | 
|  |  | 
|  | // Make sure that each location is passed in exactly the same way. | 
|  | for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { | 
|  | const CCValAssign &Loc1 = ArgLocs1[i]; | 
|  | const CCValAssign &Loc2 = ArgLocs2[i]; | 
|  |  | 
|  | // We need both of them to be the same. So if one is a register and one | 
|  | // isn't, we're done. | 
|  | if (Loc1.isRegLoc() != Loc2.isRegLoc()) | 
|  | return false; | 
|  |  | 
|  | if (Loc1.isRegLoc()) { | 
|  | // If they don't have the same register location, we're done. | 
|  | if (Loc1.getLocReg() != Loc2.getLocReg()) | 
|  | return false; | 
|  |  | 
|  | // They matched, so we can move to the next ArgLoc. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. | 
|  | if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | LLT CallLowering::ValueHandler::getStackValueStoreType( | 
|  | const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { | 
|  | const MVT ValVT = VA.getValVT(); | 
|  | if (ValVT != MVT::iPTR) { | 
|  | LLT ValTy(ValVT); | 
|  |  | 
|  | // We lost the pointeriness going through CCValAssign, so try to restore it | 
|  | // based on the flags. | 
|  | if (Flags.isPointer()) { | 
|  | LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), | 
|  | ValTy.getScalarSizeInBits()); | 
|  | if (ValVT.isVector()) | 
|  | return LLT::vector(ValTy.getElementCount(), PtrTy); | 
|  | return PtrTy; | 
|  | } | 
|  |  | 
|  | return ValTy; | 
|  | } | 
|  |  | 
|  | unsigned AddrSpace = Flags.getPointerAddrSpace(); | 
|  | return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); | 
|  | } | 
|  |  | 
|  | void CallLowering::ValueHandler::copyArgumentMemory( | 
|  | const ArgInfo &Arg, Register DstPtr, Register SrcPtr, | 
|  | const MachinePointerInfo &DstPtrInfo, Align DstAlign, | 
|  | const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, | 
|  | CCValAssign &VA) const { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | MachineMemOperand *SrcMMO = MF.getMachineMemOperand( | 
|  | SrcPtrInfo, | 
|  | MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, | 
|  | SrcAlign); | 
|  |  | 
|  | MachineMemOperand *DstMMO = MF.getMachineMemOperand( | 
|  | DstPtrInfo, | 
|  | MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, | 
|  | MemSize, DstAlign); | 
|  |  | 
|  | const LLT PtrTy = MRI.getType(DstPtr); | 
|  | const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); | 
|  |  | 
|  | auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); | 
|  | MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); | 
|  | } | 
|  |  | 
|  | Register CallLowering::ValueHandler::extendRegister(Register ValReg, | 
|  | const CCValAssign &VA, | 
|  | unsigned MaxSizeBits) { | 
|  | LLT LocTy{VA.getLocVT()}; | 
|  | LLT ValTy{VA.getValVT()}; | 
|  |  | 
|  | if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) | 
|  | return ValReg; | 
|  |  | 
|  | if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { | 
|  | if (MaxSizeBits <= ValTy.getSizeInBits()) | 
|  | return ValReg; | 
|  | LocTy = LLT::scalar(MaxSizeBits); | 
|  | } | 
|  |  | 
|  | const LLT ValRegTy = MRI.getType(ValReg); | 
|  | if (ValRegTy.isPointer()) { | 
|  | // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so | 
|  | // we have to cast to do the extension. | 
|  | LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); | 
|  | ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); | 
|  | } | 
|  |  | 
|  | switch (VA.getLocInfo()) { | 
|  | default: | 
|  | break; | 
|  | case CCValAssign::Full: | 
|  | case CCValAssign::BCvt: | 
|  | // FIXME: bitconverting between vector types may or may not be a | 
|  | // nop in big-endian situations. | 
|  | return ValReg; | 
|  | case CCValAssign::AExt: { | 
|  | auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); | 
|  | return MIB.getReg(0); | 
|  | } | 
|  | case CCValAssign::SExt: { | 
|  | Register NewReg = MRI.createGenericVirtualRegister(LocTy); | 
|  | MIRBuilder.buildSExt(NewReg, ValReg); | 
|  | return NewReg; | 
|  | } | 
|  | case CCValAssign::ZExt: { | 
|  | Register NewReg = MRI.createGenericVirtualRegister(LocTy); | 
|  | MIRBuilder.buildZExt(NewReg, ValReg); | 
|  | return NewReg; | 
|  | } | 
|  | } | 
|  | llvm_unreachable("unable to extend register"); | 
|  | } | 
|  |  | 
|  | void CallLowering::ValueAssigner::anchor() {} | 
|  |  | 
|  | Register CallLowering::IncomingValueHandler::buildExtensionHint( | 
|  | const CCValAssign &VA, Register SrcReg, LLT NarrowTy) { | 
|  | switch (VA.getLocInfo()) { | 
|  | case CCValAssign::LocInfo::ZExt: { | 
|  | return MIRBuilder | 
|  | .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, | 
|  | NarrowTy.getScalarSizeInBits()) | 
|  | .getReg(0); | 
|  | } | 
|  | case CCValAssign::LocInfo::SExt: { | 
|  | return MIRBuilder | 
|  | .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, | 
|  | NarrowTy.getScalarSizeInBits()) | 
|  | .getReg(0); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | return SrcReg; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check if we can use a basic COPY instruction between the two types. | 
|  | /// | 
|  | /// We're currently building on top of the infrastructure using MVT, which loses | 
|  | /// pointer information in the CCValAssign. We accept copies from physical | 
|  | /// registers that have been reported as integers if it's to an equivalent sized | 
|  | /// pointer LLT. | 
|  | static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { | 
|  | if (SrcTy == DstTy) | 
|  | return true; | 
|  |  | 
|  | if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) | 
|  | return false; | 
|  |  | 
|  | SrcTy = SrcTy.getScalarType(); | 
|  | DstTy = DstTy.getScalarType(); | 
|  |  | 
|  | return (SrcTy.isPointer() && DstTy.isScalar()) || | 
|  | (DstTy.isPointer() && SrcTy.isScalar()); | 
|  | } | 
|  |  | 
|  | void CallLowering::IncomingValueHandler::assignValueToReg( | 
|  | Register ValVReg, Register PhysReg, const CCValAssign &VA) { | 
|  | const MVT LocVT = VA.getLocVT(); | 
|  | const LLT LocTy(LocVT); | 
|  | const LLT RegTy = MRI.getType(ValVReg); | 
|  |  | 
|  | if (isCopyCompatibleType(RegTy, LocTy)) { | 
|  | MIRBuilder.buildCopy(ValVReg, PhysReg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); | 
|  | auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); | 
|  | MIRBuilder.buildTrunc(ValVReg, Hint); | 
|  | } |