blob: 9ce2b3b275c8560e845b73ab18d849407df0d73a [file] [log] [blame]
//===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits subtarget enumerations.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTarget.h"
#include "CodeGenSchedule.h"
#include "PredicateExpander.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <string>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "subtarget-emitter"
namespace {
class SubtargetEmitter {
// Each processor has a SchedClassDesc table with an entry for each SchedClass.
// The SchedClassDesc table indexes into a global write resource table, write
// latency table, and read advance table.
struct SchedClassTables {
std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses;
std::vector<MCWriteProcResEntry> WriteProcResources;
std::vector<MCWriteLatencyEntry> WriteLatencies;
std::vector<std::string> WriterNames;
std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
// Reserve an invalid entry at index 0
SchedClassTables() {
ProcSchedClasses.resize(1);
WriteProcResources.resize(1);
WriteLatencies.resize(1);
WriterNames.push_back("InvalidWrite");
ReadAdvanceEntries.resize(1);
}
};
struct LessWriteProcResources {
bool operator()(const MCWriteProcResEntry &LHS,
const MCWriteProcResEntry &RHS) {
return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
}
};
const CodeGenTarget &TGT;
RecordKeeper &Records;
CodeGenSchedModels &SchedModels;
std::string Target;
void Enumeration(raw_ostream &OS, DenseMap<Record *, unsigned> &FeatureMap);
unsigned FeatureKeyValues(raw_ostream &OS,
const DenseMap<Record *, unsigned> &FeatureMap);
unsigned CPUKeyValues(raw_ostream &OS,
const DenseMap<Record *, unsigned> &FeatureMap);
void FormItineraryStageString(const std::string &Names,
Record *ItinData, std::string &ItinString,
unsigned &NStages);
void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
unsigned &NOperandCycles);
void FormItineraryBypassString(const std::string &Names,
Record *ItinData,
std::string &ItinString, unsigned NOperandCycles);
void EmitStageAndOperandCycleData(raw_ostream &OS,
std::vector<std::vector<InstrItinerary>>
&ProcItinLists);
void EmitItineraries(raw_ostream &OS,
std::vector<std::vector<InstrItinerary>>
&ProcItinLists);
unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
raw_ostream &OS);
void EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
raw_ostream &OS);
void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
raw_ostream &OS);
void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name,
char Separator);
void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel,
raw_ostream &OS);
void EmitProcessorResources(const CodeGenProcModel &ProcModel,
raw_ostream &OS);
Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
const CodeGenProcModel &ProcModel);
Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
const CodeGenProcModel &ProcModel);
void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles,
const CodeGenProcModel &ProcModel);
void GenSchedClassTables(const CodeGenProcModel &ProcModel,
SchedClassTables &SchedTables);
void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
void EmitProcessorModels(raw_ostream &OS);
void EmitProcessorLookup(raw_ostream &OS);
void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS);
void emitSchedModelHelpersImpl(raw_ostream &OS,
bool OnlyExpandMCInstPredicates = false);
void emitGenMCSubtargetInfo(raw_ostream &OS);
void EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS);
void EmitSchedModel(raw_ostream &OS);
void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS);
void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures,
unsigned NumProcs);
public:
SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT)
: TGT(TGT), Records(R), SchedModels(TGT.getSchedModels()),
Target(TGT.getName()) {}
void run(raw_ostream &o);
};
} // end anonymous namespace
//
// Enumeration - Emit the specified class as an enumeration.
//
void SubtargetEmitter::Enumeration(raw_ostream &OS,
DenseMap<Record *, unsigned> &FeatureMap) {
// Get all records of class and sort
std::vector<Record*> DefList =
Records.getAllDerivedDefinitions("SubtargetFeature");
llvm::sort(DefList, LessRecord());
unsigned N = DefList.size();
if (N == 0)
return;
if (N + 1 > MAX_SUBTARGET_FEATURES)
PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
OS << "namespace " << Target << " {\n";
// Open enumeration.
OS << "enum {\n";
// For each record
for (unsigned i = 0; i < N; ++i) {
// Next record
Record *Def = DefList[i];
// Get and emit name
OS << " " << Def->getName() << " = " << i << ",\n";
// Save the index for this feature.
FeatureMap[Def] = i;
}
OS << " "
<< "NumSubtargetFeatures = " << N << "\n";
// Close enumeration and namespace
OS << "};\n";
OS << "} // end namespace " << Target << "\n";
}
static void printFeatureMask(raw_ostream &OS, RecVec &FeatureList,
const DenseMap<Record *, unsigned> &FeatureMap) {
std::array<uint64_t, MAX_SUBTARGET_WORDS> Mask = {};
for (unsigned j = 0, M = FeatureList.size(); j < M; ++j) {
unsigned Bit = FeatureMap.lookup(FeatureList[j]);
Mask[Bit / 64] |= 1ULL << (Bit % 64);
}
OS << "{ { { ";
for (unsigned i = 0; i != Mask.size(); ++i) {
OS << "0x";
OS.write_hex(Mask[i]);
OS << "ULL, ";
}
OS << "} } }";
}
//
// FeatureKeyValues - Emit data of all the subtarget features. Used by the
// command line.
//
unsigned SubtargetEmitter::FeatureKeyValues(
raw_ostream &OS, const DenseMap<Record *, unsigned> &FeatureMap) {
// Gather and sort all the features
std::vector<Record*> FeatureList =
Records.getAllDerivedDefinitions("SubtargetFeature");
if (FeatureList.empty())
return 0;
llvm::sort(FeatureList, LessRecordFieldName());
// Begin feature table
OS << "// Sorted (by key) array of values for CPU features.\n"
<< "extern const llvm::SubtargetFeatureKV " << Target
<< "FeatureKV[] = {\n";
// For each feature
unsigned NumFeatures = 0;
for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) {
// Next feature
Record *Feature = FeatureList[i];
StringRef Name = Feature->getName();
StringRef CommandLineName = Feature->getValueAsString("Name");
StringRef Desc = Feature->getValueAsString("Desc");
if (CommandLineName.empty()) continue;
// Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } }
OS << " { "
<< "\"" << CommandLineName << "\", "
<< "\"" << Desc << "\", "
<< Target << "::" << Name << ", ";
RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies");
printFeatureMask(OS, ImpliesList, FeatureMap);
OS << " },\n";
++NumFeatures;
}
// End feature table
OS << "};\n";
return NumFeatures;
}
//
// CPUKeyValues - Emit data of all the subtarget processors. Used by command
// line.
//
unsigned
SubtargetEmitter::CPUKeyValues(raw_ostream &OS,
const DenseMap<Record *, unsigned> &FeatureMap) {
// Gather and sort processor information
std::vector<Record*> ProcessorList =
Records.getAllDerivedDefinitions("Processor");
llvm::sort(ProcessorList, LessRecordFieldName());
// Begin processor table
OS << "// Sorted (by key) array of values for CPU subtype.\n"
<< "extern const llvm::SubtargetSubTypeKV " << Target
<< "SubTypeKV[] = {\n";
// For each processor
for (Record *Processor : ProcessorList) {
StringRef Name = Processor->getValueAsString("Name");
RecVec FeatureList = Processor->getValueAsListOfDefs("Features");
// Emit as { "cpu", "description", 0, { f1 , f2 , ... fn } },
OS << " { "
<< "\"" << Name << "\", ";
printFeatureMask(OS, FeatureList, FeatureMap);
// Emit the scheduler model pointer.
const std::string &ProcModelName =
SchedModels.getModelForProc(Processor).ModelName;
OS << ", &" << ProcModelName << " },\n";
}
// End processor table
OS << "};\n";
return ProcessorList.size();
}
//
// FormItineraryStageString - Compose a string containing the stage
// data initialization for the specified itinerary. N is the number
// of stages.
//
void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
Record *ItinData,
std::string &ItinString,
unsigned &NStages) {
// Get states list
RecVec StageList = ItinData->getValueAsListOfDefs("Stages");
// For each stage
unsigned N = NStages = StageList.size();
for (unsigned i = 0; i < N;) {
// Next stage
const Record *Stage = StageList[i];
// Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
int Cycles = Stage->getValueAsInt("Cycles");
ItinString += " { " + itostr(Cycles) + ", ";
// Get unit list
RecVec UnitList = Stage->getValueAsListOfDefs("Units");
// For each unit
for (unsigned j = 0, M = UnitList.size(); j < M;) {
// Add name and bitwise or
ItinString += Name + "FU::" + UnitList[j]->getName().str();
if (++j < M) ItinString += " | ";
}
int TimeInc = Stage->getValueAsInt("TimeInc");
ItinString += ", " + itostr(TimeInc);
int Kind = Stage->getValueAsInt("Kind");
ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
// Close off stage
ItinString += " }";
if (++i < N) ItinString += ", ";
}
}
//
// FormItineraryOperandCycleString - Compose a string containing the
// operand cycle initialization for the specified itinerary. N is the
// number of operands that has cycles specified.
//
void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
std::string &ItinString, unsigned &NOperandCycles) {
// Get operand cycle list
std::vector<int64_t> OperandCycleList =
ItinData->getValueAsListOfInts("OperandCycles");
// For each operand cycle
unsigned N = NOperandCycles = OperandCycleList.size();
for (unsigned i = 0; i < N;) {
// Next operand cycle
const int OCycle = OperandCycleList[i];
ItinString += " " + itostr(OCycle);
if (++i < N) ItinString += ", ";
}
}
void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
Record *ItinData,
std::string &ItinString,
unsigned NOperandCycles) {
RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses");
unsigned N = BypassList.size();
unsigned i = 0;
for (; i < N;) {
ItinString += Name + "Bypass::" + BypassList[i]->getName().str();
if (++i < NOperandCycles) ItinString += ", ";
}
for (; i < NOperandCycles;) {
ItinString += " 0";
if (++i < NOperandCycles) ItinString += ", ";
}
}
//
// EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
// cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
// by CodeGenSchedClass::Index.
//
void SubtargetEmitter::
EmitStageAndOperandCycleData(raw_ostream &OS,
std::vector<std::vector<InstrItinerary>>
&ProcItinLists) {
// Multiple processor models may share an itinerary record. Emit it once.
SmallPtrSet<Record*, 8> ItinsDefSet;
// Emit functional units for all the itineraries.
for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
if (!ItinsDefSet.insert(ProcModel.ItinsDef).second)
continue;
RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU");
if (FUs.empty())
continue;
StringRef Name = ProcModel.ItinsDef->getName();
OS << "\n// Functional units for \"" << Name << "\"\n"
<< "namespace " << Name << "FU {\n";
for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
OS << " const unsigned " << FUs[j]->getName()
<< " = 1 << " << j << ";\n";
OS << "} // end namespace " << Name << "FU\n";
RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP");
if (!BPs.empty()) {
OS << "\n// Pipeline forwarding paths for itineraries \"" << Name
<< "\"\n" << "namespace " << Name << "Bypass {\n";
OS << " const unsigned NoBypass = 0;\n";
for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
OS << " const unsigned " << BPs[j]->getName()
<< " = 1 << " << j << ";\n";
OS << "} // end namespace " << Name << "Bypass\n";
}
}
// Begin stages table
std::string StageTable = "\nextern const llvm::InstrStage " + Target +
"Stages[] = {\n";
StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
// Begin operand cycle table
std::string OperandCycleTable = "extern const unsigned " + Target +
"OperandCycles[] = {\n";
OperandCycleTable += " 0, // No itinerary\n";
// Begin pipeline bypass table
std::string BypassTable = "extern const unsigned " + Target +
"ForwardingPaths[] = {\n";
BypassTable += " 0, // No itinerary\n";
// For each Itinerary across all processors, add a unique entry to the stages,
// operand cycles, and pipeline bypass tables. Then add the new Itinerary
// object with computed offsets to the ProcItinLists result.
unsigned StageCount = 1, OperandCycleCount = 1;
std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
// Add process itinerary to the list.
ProcItinLists.resize(ProcItinLists.size()+1);
// If this processor defines no itineraries, then leave the itinerary list
// empty.
std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
if (!ProcModel.hasItineraries())
continue;
StringRef Name = ProcModel.ItinsDef->getName();
ItinList.resize(SchedModels.numInstrSchedClasses());
assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
// Next itinerary data
Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
// Get string and stage count
std::string ItinStageString;
unsigned NStages = 0;
if (ItinData)
FormItineraryStageString(Name, ItinData, ItinStageString, NStages);
// Get string and operand cycle count
std::string ItinOperandCycleString;
unsigned NOperandCycles = 0;
std::string ItinBypassString;
if (ItinData) {
FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
NOperandCycles);
FormItineraryBypassString(Name, ItinData, ItinBypassString,
NOperandCycles);
}
// Check to see if stage already exists and create if it doesn't
uint16_t FindStage = 0;
if (NStages > 0) {
FindStage = ItinStageMap[ItinStageString];
if (FindStage == 0) {
// Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
StageTable += ItinStageString + ", // " + itostr(StageCount);
if (NStages > 1)
StageTable += "-" + itostr(StageCount + NStages - 1);
StageTable += "\n";
// Record Itin class number.
ItinStageMap[ItinStageString] = FindStage = StageCount;
StageCount += NStages;
}
}
// Check to see if operand cycle already exists and create if it doesn't
uint16_t FindOperandCycle = 0;
if (NOperandCycles > 0) {
std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
FindOperandCycle = ItinOperandMap[ItinOperandString];
if (FindOperandCycle == 0) {
// Emit as cycle, // index
OperandCycleTable += ItinOperandCycleString + ", // ";
std::string OperandIdxComment = itostr(OperandCycleCount);
if (NOperandCycles > 1)
OperandIdxComment += "-"
+ itostr(OperandCycleCount + NOperandCycles - 1);
OperandCycleTable += OperandIdxComment + "\n";
// Record Itin class number.
ItinOperandMap[ItinOperandCycleString] =
FindOperandCycle = OperandCycleCount;
// Emit as bypass, // index
BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
OperandCycleCount += NOperandCycles;
}
}
// Set up itinerary as location and location + stage count
int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
InstrItinerary Intinerary = {
NumUOps,
FindStage,
uint16_t(FindStage + NStages),
FindOperandCycle,
uint16_t(FindOperandCycle + NOperandCycles),
};
// Inject - empty slots will be 0, 0
ItinList[SchedClassIdx] = Intinerary;
}
}
// Closing stage
StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
StageTable += "};\n";
// Closing operand cycles
OperandCycleTable += " 0 // End operand cycles\n";
OperandCycleTable += "};\n";
BypassTable += " 0 // End bypass tables\n";
BypassTable += "};\n";
// Emit tables.
OS << StageTable;
OS << OperandCycleTable;
OS << BypassTable;
}
//
// EmitProcessorData - Generate data for processor itineraries that were
// computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
// Itineraries for each processor. The Itinerary lists are indexed on
// CodeGenSchedClass::Index.
//
void SubtargetEmitter::
EmitItineraries(raw_ostream &OS,
std::vector<std::vector<InstrItinerary>> &ProcItinLists) {
// Multiple processor models may share an itinerary record. Emit it once.
SmallPtrSet<Record*, 8> ItinsDefSet;
// For each processor's machine model
std::vector<std::vector<InstrItinerary>>::iterator
ProcItinListsIter = ProcItinLists.begin();
for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
Record *ItinsDef = PI->ItinsDef;
if (!ItinsDefSet.insert(ItinsDef).second)
continue;
// Get the itinerary list for the processor.
assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
// Empty itineraries aren't referenced anywhere in the tablegen output
// so don't emit them.
if (ItinList.empty())
continue;
OS << "\n";
OS << "static const llvm::InstrItinerary ";
// Begin processor itinerary table
OS << ItinsDef->getName() << "[] = {\n";
// For each itinerary class in CodeGenSchedClass::Index order.
for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
InstrItinerary &Intinerary = ItinList[j];
// Emit Itinerary in the form of
// { firstStage, lastStage, firstCycle, lastCycle } // index
OS << " { " <<
Intinerary.NumMicroOps << ", " <<
Intinerary.FirstStage << ", " <<
Intinerary.LastStage << ", " <<
Intinerary.FirstOperandCycle << ", " <<
Intinerary.LastOperandCycle << " }" <<
", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
}
// End processor itinerary table
OS << " { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }"
"// end marker\n";
OS << "};\n";
}
}
// Emit either the value defined in the TableGen Record, or the default
// value defined in the C++ header. The Record is null if the processor does not
// define a model.
void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
StringRef Name, char Separator) {
OS << " ";
int V = R ? R->getValueAsInt(Name) : -1;
if (V >= 0)
OS << V << Separator << " // " << Name;
else
OS << "MCSchedModel::Default" << Name << Separator;
OS << '\n';
}
void SubtargetEmitter::EmitProcessorResourceSubUnits(
const CodeGenProcModel &ProcModel, raw_ostream &OS) {
OS << "\nstatic const unsigned " << ProcModel.ModelName
<< "ProcResourceSubUnits[] = {\n"
<< " 0, // Invalid\n";
for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
Record *PRDef = ProcModel.ProcResourceDefs[i];
if (!PRDef->isSubClassOf("ProcResGroup"))
continue;
RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
for (Record *RUDef : ResUnits) {
Record *const RU =
SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc());
for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) {
OS << " " << ProcModel.getProcResourceIdx(RU) << ", ";
}
}
OS << " // " << PRDef->getName() << "\n";
}
OS << "};\n";
}
static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel,
raw_ostream &OS) {
int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0;
if (Record *RCU = ProcModel.RetireControlUnit) {
ReorderBufferSize =
std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize"));
MaxRetirePerCycle =
std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle"));
}
OS << ReorderBufferSize << ", // ReorderBufferSize\n ";
OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n ";
}
static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel,
unsigned NumRegisterFiles,
unsigned NumCostEntries, raw_ostream &OS) {
if (NumRegisterFiles)
OS << ProcModel.ModelName << "RegisterFiles,\n " << (1 + NumRegisterFiles);
else
OS << "nullptr,\n 0";
OS << ", // Number of register files.\n ";
if (NumCostEntries)
OS << ProcModel.ModelName << "RegisterCosts,\n ";
else
OS << "nullptr,\n ";
OS << NumCostEntries << ", // Number of register cost entries.\n";
}
unsigned
SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
raw_ostream &OS) {
if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) {
return RF.hasDefaultCosts();
}))
return 0;
// Print the RegisterCost table first.
OS << "\n// {RegisterClassID, Register Cost, AllowMoveElimination }\n";
OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName
<< "RegisterCosts"
<< "[] = {\n";
for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) {
// Skip register files with a default cost table.
if (RF.hasDefaultCosts())
continue;
// Add entries to the cost table.
for (const CodeGenRegisterCost &RC : RF.Costs) {
OS << " { ";
Record *Rec = RC.RCDef;
if (Rec->getValue("Namespace"))
OS << Rec->getValueAsString("Namespace") << "::";
OS << Rec->getName() << "RegClassID, " << RC.Cost << ", "
<< RC.AllowMoveElimination << "},\n";
}
}
OS << "};\n";
// Now generate a table with register file info.
OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl, "
<< "MaxMovesEliminatedPerCycle, AllowZeroMoveEliminationOnly }\n";
OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName
<< "RegisterFiles"
<< "[] = {\n"
<< " { \"InvalidRegisterFile\", 0, 0, 0, 0, 0 },\n";
unsigned CostTblIndex = 0;
for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) {
OS << " { ";
OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", ";
unsigned NumCostEntries = RD.Costs.size();
OS << NumCostEntries << ", " << CostTblIndex << ", "
<< RD.MaxMovesEliminatedPerCycle << ", "
<< RD.AllowZeroMoveEliminationOnly << "},\n";
CostTblIndex += NumCostEntries;
}
OS << "};\n";
return CostTblIndex;
}
void SubtargetEmitter::EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
raw_ostream &OS) {
unsigned QueueID = 0;
if (ProcModel.LoadQueue) {
const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor");
QueueID =
1 + std::distance(ProcModel.ProcResourceDefs.begin(),
std::find(ProcModel.ProcResourceDefs.begin(),
ProcModel.ProcResourceDefs.end(), Queue));
}
OS << " " << QueueID << ", // Resource Descriptor for the Load Queue\n";
QueueID = 0;
if (ProcModel.StoreQueue) {
const Record *Queue =
ProcModel.StoreQueue->getValueAsDef("QueueDescriptor");
QueueID =
1 + std::distance(ProcModel.ProcResourceDefs.begin(),
std::find(ProcModel.ProcResourceDefs.begin(),
ProcModel.ProcResourceDefs.end(), Queue));
}
OS << " " << QueueID << ", // Resource Descriptor for the Store Queue\n";
}
void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
raw_ostream &OS) {
// Generate a table of register file descriptors (one entry per each user
// defined register file), and a table of register costs.
unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS);
// Now generate a table for the extra processor info.
OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName
<< "ExtraInfo = {\n ";
// Add information related to the retire control unit.
EmitRetireControlUnitInfo(ProcModel, OS);
// Add information related to the register files (i.e. where to find register
// file descriptors and register costs).
EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(),
NumCostEntries, OS);
// Add information about load/store queues.
EmitLoadStoreQueueInfo(ProcModel, OS);
OS << "};\n";
}
void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
raw_ostream &OS) {
EmitProcessorResourceSubUnits(ProcModel, OS);
OS << "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n";
OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName
<< "ProcResources"
<< "[] = {\n"
<< " {\"InvalidUnit\", 0, 0, 0, 0},\n";
unsigned SubUnitsOffset = 1;
for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
Record *PRDef = ProcModel.ProcResourceDefs[i];
Record *SuperDef = nullptr;
unsigned SuperIdx = 0;
unsigned NumUnits = 0;
const unsigned SubUnitsBeginOffset = SubUnitsOffset;
int BufferSize = PRDef->getValueAsInt("BufferSize");
if (PRDef->isSubClassOf("ProcResGroup")) {
RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
for (Record *RU : ResUnits) {
NumUnits += RU->getValueAsInt("NumUnits");
SubUnitsOffset += RU->getValueAsInt("NumUnits");
}
}
else {
// Find the SuperIdx
if (PRDef->getValueInit("Super")->isComplete()) {
SuperDef =
SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"),
ProcModel, PRDef->getLoc());
SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
}
NumUnits = PRDef->getValueAsInt("NumUnits");
}
// Emit the ProcResourceDesc
OS << " {\"" << PRDef->getName() << "\", ";
if (PRDef->getName().size() < 15)
OS.indent(15 - PRDef->getName().size());
OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", ";
if (SubUnitsBeginOffset != SubUnitsOffset) {
OS << ProcModel.ModelName << "ProcResourceSubUnits + "
<< SubUnitsBeginOffset;
} else {
OS << "nullptr";
}
OS << "}, // #" << i+1;
if (SuperDef)
OS << ", Super=" << SuperDef->getName();
OS << "\n";
}
OS << "};\n";
}
// Find the WriteRes Record that defines processor resources for this
// SchedWrite.
Record *SubtargetEmitter::FindWriteResources(
const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
// Check if the SchedWrite is already subtarget-specific and directly
// specifies a set of processor resources.
if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
return SchedWrite.TheDef;
Record *AliasDef = nullptr;
for (Record *A : SchedWrite.Aliases) {
const CodeGenSchedRW &AliasRW =
SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
continue;
}
if (AliasDef)
PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
"defined for processor " + ProcModel.ModelName +
" Ensure only one SchedAlias exists per RW.");
AliasDef = AliasRW.TheDef;
}
if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
return AliasDef;
// Check this processor's list of write resources.
Record *ResDef = nullptr;
for (Record *WR : ProcModel.WriteResDefs) {
if (!WR->isSubClassOf("WriteRes"))
continue;
if (AliasDef == WR->getValueAsDef("WriteType")
|| SchedWrite.TheDef == WR->getValueAsDef("WriteType")) {
if (ResDef) {
PrintFatalError(WR->getLoc(), "Resources are defined for both "
"SchedWrite and its alias on processor " +
ProcModel.ModelName);
}
ResDef = WR;
}
}
// TODO: If ProcModel has a base model (previous generation processor),
// then call FindWriteResources recursively with that model here.
if (!ResDef) {
PrintFatalError(ProcModel.ModelDef->getLoc(),
Twine("Processor does not define resources for ") +
SchedWrite.TheDef->getName());
}
return ResDef;
}
/// Find the ReadAdvance record for the given SchedRead on this processor or
/// return NULL.
Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
const CodeGenProcModel &ProcModel) {
// Check for SchedReads that directly specify a ReadAdvance.
if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
return SchedRead.TheDef;
// Check this processor's list of aliases for SchedRead.
Record *AliasDef = nullptr;
for (Record *A : SchedRead.Aliases) {
const CodeGenSchedRW &AliasRW =
SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
continue;
}
if (AliasDef)
PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
"defined for processor " + ProcModel.ModelName +
" Ensure only one SchedAlias exists per RW.");
AliasDef = AliasRW.TheDef;
}
if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
return AliasDef;
// Check this processor's ReadAdvanceList.
Record *ResDef = nullptr;
for (Record *RA : ProcModel.ReadAdvanceDefs) {
if (!RA->isSubClassOf("ReadAdvance"))
continue;
if (AliasDef == RA->getValueAsDef("ReadType")
|| SchedRead.TheDef == RA->getValueAsDef("ReadType")) {
if (ResDef) {
PrintFatalError(RA->getLoc(), "Resources are defined for both "
"SchedRead and its alias on processor " +
ProcModel.ModelName);
}
ResDef = RA;
}
}
// TODO: If ProcModel has a base model (previous generation processor),
// then call FindReadAdvance recursively with that model here.
if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
PrintFatalError(ProcModel.ModelDef->getLoc(),
Twine("Processor does not define resources for ") +
SchedRead.TheDef->getName());
}
return ResDef;
}
// Expand an explicit list of processor resources into a full list of implied
// resource groups and super resources that cover them.
void SubtargetEmitter::ExpandProcResources(RecVec &PRVec,
std::vector<int64_t> &Cycles,
const CodeGenProcModel &PM) {
assert(PRVec.size() == Cycles.size() && "failed precondition");
for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
Record *PRDef = PRVec[i];
RecVec SubResources;
if (PRDef->isSubClassOf("ProcResGroup"))
SubResources = PRDef->getValueAsListOfDefs("Resources");
else {
SubResources.push_back(PRDef);
PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc());
for (Record *SubDef = PRDef;
SubDef->getValueInit("Super")->isComplete();) {
if (SubDef->isSubClassOf("ProcResGroup")) {
// Disallow this for simplicitly.
PrintFatalError(SubDef->getLoc(), "Processor resource group "
" cannot be a super resources.");
}
Record *SuperDef =
SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM,
SubDef->getLoc());
PRVec.push_back(SuperDef);
Cycles.push_back(Cycles[i]);
SubDef = SuperDef;
}
}
for (Record *PR : PM.ProcResourceDefs) {
if (PR == PRDef || !PR->isSubClassOf("ProcResGroup"))
continue;
RecVec SuperResources = PR->getValueAsListOfDefs("Resources");
RecIter SubI = SubResources.begin(), SubE = SubResources.end();
for( ; SubI != SubE; ++SubI) {
if (!is_contained(SuperResources, *SubI)) {
break;
}
}
if (SubI == SubE) {
PRVec.push_back(PR);
Cycles.push_back(Cycles[i]);
}
}
}
}
// Generate the SchedClass table for this processor and update global
// tables. Must be called for each processor in order.
void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
SchedClassTables &SchedTables) {
SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
if (!ProcModel.hasInstrSchedModel())
return;
std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n");
for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
LLVM_DEBUG(SC.dump(&SchedModels));
SCTab.resize(SCTab.size() + 1);
MCSchedClassDesc &SCDesc = SCTab.back();
// SCDesc.Name is guarded by NDEBUG
SCDesc.NumMicroOps = 0;
SCDesc.BeginGroup = false;
SCDesc.EndGroup = false;
SCDesc.WriteProcResIdx = 0;
SCDesc.WriteLatencyIdx = 0;
SCDesc.ReadAdvanceIdx = 0;
// A Variant SchedClass has no resources of its own.
bool HasVariants = false;
for (const CodeGenSchedTransition &CGT :
make_range(SC.Transitions.begin(), SC.Transitions.end())) {
if (CGT.ProcIndices[0] == 0 ||
is_contained(CGT.ProcIndices, ProcModel.Index)) {
HasVariants = true;
break;
}
}
if (HasVariants) {
SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
continue;
}
// Determine if the SchedClass is actually reachable on this processor. If
// not don't try to locate the processor resources, it will fail.
// If ProcIndices contains 0, this class applies to all processors.
assert(!SC.ProcIndices.empty() && "expect at least one procidx");
if (SC.ProcIndices[0] != 0) {
if (!is_contained(SC.ProcIndices, ProcModel.Index))
continue;
}
IdxVec Writes = SC.Writes;
IdxVec Reads = SC.Reads;
if (!SC.InstRWs.empty()) {
// This class has a default ReadWrite list which can be overridden by
// InstRW definitions.
Record *RWDef = nullptr;
for (Record *RW : SC.InstRWs) {
Record *RWModelDef = RW->getValueAsDef("SchedModel");
if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
RWDef = RW;
break;
}
}
if (RWDef) {
Writes.clear();
Reads.clear();
SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
Writes, Reads);
}
}
if (Writes.empty()) {
// Check this processor's itinerary class resources.
for (Record *I : ProcModel.ItinRWDefs) {
RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses");
if (is_contained(Matched, SC.ItinClassDef)) {
SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"),
Writes, Reads);
break;
}
}
if (Writes.empty()) {
LLVM_DEBUG(dbgs() << ProcModel.ModelName
<< " does not have resources for class " << SC.Name
<< '\n');
}
}
// Sum resources across all operand writes.
std::vector<MCWriteProcResEntry> WriteProcResources;
std::vector<MCWriteLatencyEntry> WriteLatencies;
std::vector<std::string> WriterNames;
std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
for (unsigned W : Writes) {
IdxVec WriteSeq;
SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false,
ProcModel);
// For each operand, create a latency entry.
MCWriteLatencyEntry WLEntry;
WLEntry.Cycles = 0;
unsigned WriteID = WriteSeq.back();
WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
// If this Write is not referenced by a ReadAdvance, don't distinguish it
// from other WriteLatency entries.
if (!SchedModels.hasReadOfWrite(
SchedModels.getSchedWrite(WriteID).TheDef)) {
WriteID = 0;
}
WLEntry.WriteResourceID = WriteID;
for (unsigned WS : WriteSeq) {
Record *WriteRes =
FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel);
// Mark the parent class as invalid for unsupported write types.
if (WriteRes->getValueAsBit("Unsupported")) {
SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
break;
}
WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue");
SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue");
// Create an entry for each ProcResource listed in WriteRes.
RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
std::vector<int64_t> Cycles =
WriteRes->getValueAsListOfInts("ResourceCycles");
if (Cycles.empty()) {
// If ResourceCycles is not provided, default to one cycle per
// resource.
Cycles.resize(PRVec.size(), 1);
} else if (Cycles.size() != PRVec.size()) {
// If ResourceCycles is provided, check consistency.
PrintFatalError(
WriteRes->getLoc(),
Twine("Inconsistent resource cycles: !size(ResourceCycles) != "
"!size(ProcResources): ")
.concat(Twine(PRVec.size()))
.concat(" vs ")
.concat(Twine(Cycles.size())));
}
ExpandProcResources(PRVec, Cycles, ProcModel);
for (unsigned PRIdx = 0, PREnd = PRVec.size();
PRIdx != PREnd; ++PRIdx) {
MCWriteProcResEntry WPREntry;
WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
WPREntry.Cycles = Cycles[PRIdx];
// If this resource is already used in this sequence, add the current
// entry's cycles so that the same resource appears to be used
// serially, rather than multiple parallel uses. This is important for
// in-order machine where the resource consumption is a hazard.
unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
for( ; WPRIdx != WPREnd; ++WPRIdx) {
if (WriteProcResources[WPRIdx].ProcResourceIdx
== WPREntry.ProcResourceIdx) {
WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles;
break;
}
}
if (WPRIdx == WPREnd)
WriteProcResources.push_back(WPREntry);
}
}
WriteLatencies.push_back(WLEntry);
}
// Create an entry for each operand Read in this SchedClass.
// Entries must be sorted first by UseIdx then by WriteResourceID.
for (unsigned UseIdx = 0, EndIdx = Reads.size();
UseIdx != EndIdx; ++UseIdx) {
Record *ReadAdvance =
FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
if (!ReadAdvance)
continue;
// Mark the parent class as invalid for unsupported write types.
if (ReadAdvance->getValueAsBit("Unsupported")) {
SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
break;
}
RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
IdxVec WriteIDs;
if (ValidWrites.empty())
WriteIDs.push_back(0);
else {
for (Record *VW : ValidWrites) {
WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false));
}
}
llvm::sort(WriteIDs);
for(unsigned W : WriteIDs) {
MCReadAdvanceEntry RAEntry;
RAEntry.UseIdx = UseIdx;
RAEntry.WriteResourceID = W;
RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
ReadAdvanceEntries.push_back(RAEntry);
}
}
if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
WriteProcResources.clear();
WriteLatencies.clear();
ReadAdvanceEntries.clear();
}
// Add the information for this SchedClass to the global tables using basic
// compression.
//
// WritePrecRes entries are sorted by ProcResIdx.
llvm::sort(WriteProcResources, LessWriteProcResources());
SCDesc.NumWriteProcResEntries = WriteProcResources.size();
std::vector<MCWriteProcResEntry>::iterator WPRPos =
std::search(SchedTables.WriteProcResources.begin(),
SchedTables.WriteProcResources.end(),
WriteProcResources.begin(), WriteProcResources.end());
if (WPRPos != SchedTables.WriteProcResources.end())
SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
else {
SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
WriteProcResources.end());
}
// Latency entries must remain in operand order.
SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
std::vector<MCWriteLatencyEntry>::iterator WLPos =
std::search(SchedTables.WriteLatencies.begin(),
SchedTables.WriteLatencies.end(),
WriteLatencies.begin(), WriteLatencies.end());
if (WLPos != SchedTables.WriteLatencies.end()) {
unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
SCDesc.WriteLatencyIdx = idx;
for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
std::string::npos) {
SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
}
}
else {
SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(),
WriteLatencies.begin(),
WriteLatencies.end());
SchedTables.WriterNames.insert(SchedTables.WriterNames.end(),
WriterNames.begin(), WriterNames.end());
}
// ReadAdvanceEntries must remain in operand order.
SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
std::vector<MCReadAdvanceEntry>::iterator RAPos =
std::search(SchedTables.ReadAdvanceEntries.begin(),
SchedTables.ReadAdvanceEntries.end(),
ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
if (RAPos != SchedTables.ReadAdvanceEntries.end())
SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
else {
SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(),
ReadAdvanceEntries.end());
}
}
}
// Emit SchedClass tables for all processors and associated global tables.
void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
raw_ostream &OS) {
// Emit global WriteProcResTable.
OS << "\n// {ProcResourceIdx, Cycles}\n"
<< "extern const llvm::MCWriteProcResEntry "
<< Target << "WriteProcResTable[] = {\n"
<< " { 0, 0}, // Invalid\n";
for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
WPRIdx != WPREnd; ++WPRIdx) {
MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
<< format("%2d", WPREntry.Cycles) << "}";
if (WPRIdx + 1 < WPREnd)
OS << ',';
OS << " // #" << WPRIdx << '\n';
}
OS << "}; // " << Target << "WriteProcResTable\n";
// Emit global WriteLatencyTable.
OS << "\n// {Cycles, WriteResourceID}\n"
<< "extern const llvm::MCWriteLatencyEntry "
<< Target << "WriteLatencyTable[] = {\n"
<< " { 0, 0}, // Invalid\n";
for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
WLIdx != WLEnd; ++WLIdx) {
MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
OS << " {" << format("%2d", WLEntry.Cycles) << ", "
<< format("%2d", WLEntry.WriteResourceID) << "}";
if (WLIdx + 1 < WLEnd)
OS << ',';
OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
}
OS << "}; // " << Target << "WriteLatencyTable\n";
// Emit global ReadAdvanceTable.
OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
<< "extern const llvm::MCReadAdvanceEntry "
<< Target << "ReadAdvanceTable[] = {\n"
<< " {0, 0, 0}, // Invalid\n";
for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
RAIdx != RAEnd; ++RAIdx) {
MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
OS << " {" << RAEntry.UseIdx << ", "
<< format("%2d", RAEntry.WriteResourceID) << ", "
<< format("%2d", RAEntry.Cycles) << "}";
if (RAIdx + 1 < RAEnd)
OS << ',';
OS << " // #" << RAIdx << '\n';
}
OS << "}; // " << Target << "ReadAdvanceTable\n";
// Emit a SchedClass table for each processor.
for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
if (!PI->hasInstrSchedModel())
continue;
std::vector<MCSchedClassDesc> &SCTab =
SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup,"
<< " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
OS << "static const llvm::MCSchedClassDesc "
<< PI->ModelName << "SchedClasses[] = {\n";
// The first class is always invalid. We no way to distinguish it except by
// name and position.
assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
&& "invalid class not first");
OS << " {DBGFIELD(\"InvalidSchedClass\") "
<< MCSchedClassDesc::InvalidNumMicroOps
<< ", false, false, 0, 0, 0, 0, 0, 0},\n";
for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
MCSchedClassDesc &MCDesc = SCTab[SCIdx];
const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
OS << " {DBGFIELD(\"" << SchedClass.Name << "\") ";
if (SchedClass.Name.size() < 18)
OS.indent(18 - SchedClass.Name.size());
OS << MCDesc.NumMicroOps
<< ", " << ( MCDesc.BeginGroup ? "true" : "false" )
<< ", " << ( MCDesc.EndGroup ? "true" : "false" )
<< ", " << format("%2d", MCDesc.WriteProcResIdx)
<< ", " << MCDesc.NumWriteProcResEntries
<< ", " << format("%2d", MCDesc.WriteLatencyIdx)
<< ", " << MCDesc.NumWriteLatencyEntries
<< ", " << format("%2d", MCDesc.ReadAdvanceIdx)
<< ", " << MCDesc.NumReadAdvanceEntries
<< "}, // #" << SCIdx << '\n';
}
OS << "}; // " << PI->ModelName << "SchedClasses\n";
}
}
void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
// For each processor model.
for (const CodeGenProcModel &PM : SchedModels.procModels()) {
// Emit extra processor info if available.
if (PM.hasExtraProcessorInfo())
EmitExtraProcessorInfo(PM, OS);
// Emit processor resource table.
if (PM.hasInstrSchedModel())
EmitProcessorResources(PM, OS);
else if(!PM.ProcResourceDefs.empty())
PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines "
"ProcResources without defining WriteRes SchedWriteRes");
// Begin processor itinerary properties
OS << "\n";
OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n";
EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ',');
EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ',');
EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ',');
EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ',');
EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ',');
EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ',');
bool PostRAScheduler =
(PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false);
OS << " " << (PostRAScheduler ? "true" : "false") << ", // "
<< "PostRAScheduler\n";
bool CompleteModel =
(PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false);
OS << " " << (CompleteModel ? "true" : "false") << ", // "
<< "CompleteModel\n";
OS << " " << PM.Index << ", // Processor ID\n";
if (PM.hasInstrSchedModel())
OS << " " << PM.ModelName << "ProcResources" << ",\n"
<< " " << PM.ModelName << "SchedClasses" << ",\n"
<< " " << PM.ProcResourceDefs.size()+1 << ",\n"
<< " " << (SchedModels.schedClassEnd()
- SchedModels.schedClassBegin()) << ",\n";
else
OS << " nullptr, nullptr, 0, 0,"
<< " // No instruction-level machine model.\n";
if (PM.hasItineraries())
OS << " " << PM.ItinsDef->getName() << ",\n";
else
OS << " nullptr, // No Itinerary\n";
if (PM.hasExtraProcessorInfo())
OS << " &" << PM.ModelName << "ExtraInfo,\n";
else
OS << " nullptr // No extra processor descriptor\n";
OS << "};\n";
}
}
//
// EmitSchedModel - Emits all scheduling model tables, folding common patterns.
//
void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
OS << "#ifdef DBGFIELD\n"
<< "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
<< "#endif\n"
<< "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n"
<< "#define DBGFIELD(x) x,\n"
<< "#else\n"
<< "#define DBGFIELD(x)\n"
<< "#endif\n";
if (SchedModels.hasItineraries()) {
std::vector<std::vector<InstrItinerary>> ProcItinLists;
// Emit the stage data
EmitStageAndOperandCycleData(OS, ProcItinLists);
EmitItineraries(OS, ProcItinLists);
}
OS << "\n// ===============================================================\n"
<< "// Data tables for the new per-operand machine model.\n";
SchedClassTables SchedTables;
for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
GenSchedClassTables(ProcModel, SchedTables);
}
EmitSchedClassTables(SchedTables, OS);
OS << "\n#undef DBGFIELD\n";
// Emit the processor machine model
EmitProcessorModels(OS);
}
static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) {
std::string Buffer;
raw_string_ostream Stream(Buffer);
// Collect all the PredicateProlog records and print them to the output
// stream.
std::vector<Record *> Prologs =
Records.getAllDerivedDefinitions("PredicateProlog");
llvm::sort(Prologs, LessRecord());
for (Record *P : Prologs)
Stream << P->getValueAsString("Code") << '\n';
Stream.flush();
OS << Buffer;
}
static void emitPredicates(const CodeGenSchedTransition &T,
const CodeGenSchedClass &SC, PredicateExpander &PE,
raw_ostream &OS) {
std::string Buffer;
raw_string_ostream SS(Buffer);
auto IsTruePredicate = [](const Record *Rec) {
return Rec->isSubClassOf("MCSchedPredicate") &&
Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue");
};
// If not all predicates are MCTrue, then we need an if-stmt.
unsigned NumNonTruePreds =
T.PredTerm.size() - count_if(T.PredTerm, IsTruePredicate);
SS.indent(PE.getIndentLevel() * 2);
if (NumNonTruePreds) {
bool FirstNonTruePredicate = true;
SS << "if (";
PE.setIndentLevel(PE.getIndentLevel() + 2);
for (const Record *Rec : T.PredTerm) {
// Skip predicates that evaluate to "true".
if (IsTruePredicate(Rec))
continue;
if (FirstNonTruePredicate) {
FirstNonTruePredicate = false;
} else {
SS << "\n";
SS.indent(PE.getIndentLevel() * 2);
SS << "&& ";
}
if (Rec->isSubClassOf("MCSchedPredicate")) {
PE.expandPredicate(SS, Rec->getValueAsDef("Pred"));
continue;
}
// Expand this legacy predicate and wrap it around braces if there is more
// than one predicate to expand.
SS << ((NumNonTruePreds > 1) ? "(" : "")
<< Rec->getValueAsString("Predicate")
<< ((NumNonTruePreds > 1) ? ")" : "");
}
SS << ")\n"; // end of if-stmt
PE.decreaseIndentLevel();
SS.indent(PE.getIndentLevel() * 2);
PE.decreaseIndentLevel();
}
SS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n';
SS.flush();
OS << Buffer;
}
// Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate
// epilogue code for the auto-generated helper.
void emitSchedModelHelperEpilogue(raw_ostream &OS, bool ShouldReturnZero) {
if (ShouldReturnZero) {
OS << " // Don't know how to resolve this scheduling class.\n"
<< " return 0;\n";
return;
}
OS << " report_fatal_error(\"Expected a variant SchedClass\");\n";
}
bool hasMCSchedPredicates(const CodeGenSchedTransition &T) {
return all_of(T.PredTerm, [](const Record *Rec) {
return Rec->isSubClassOf("MCSchedPredicate");
});
}
void collectVariantClasses(const CodeGenSchedModels &SchedModels,
IdxVec &VariantClasses,
bool OnlyExpandMCInstPredicates) {
for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
// Ignore non-variant scheduling classes.
if (SC.Transitions.empty())
continue;
if (OnlyExpandMCInstPredicates) {
// Ignore this variant scheduling class no transitions use any meaningful
// MCSchedPredicate definitions.
if (!any_of(SC.Transitions, [](const CodeGenSchedTransition &T) {
return hasMCSchedPredicates(T);
}))
continue;
}
VariantClasses.push_back(SC.Index);
}
}
void collectProcessorIndices(const CodeGenSchedClass &SC, IdxVec &ProcIndices) {
// A variant scheduling class may define transitions for multiple
// processors. This function identifies wich processors are associated with
// transition rules specified by variant class `SC`.
for (const CodeGenSchedTransition &T : SC.Transitions) {
IdxVec PI;
std::set_union(T.ProcIndices.begin(), T.ProcIndices.end(),
ProcIndices.begin(), ProcIndices.end(),
std::back_inserter(PI));
ProcIndices.swap(PI);
}
}
void SubtargetEmitter::emitSchedModelHelpersImpl(
raw_ostream &OS, bool OnlyExpandMCInstPredicates) {
IdxVec VariantClasses;
collectVariantClasses(SchedModels, VariantClasses,
OnlyExpandMCInstPredicates);
if (VariantClasses.empty()) {
emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
return;
}
// Construct a switch statement where the condition is a check on the
// scheduling class identifier. There is a `case` for every variant class
// defined by the processor models of this target.
// Each `case` implements a number of rules to resolve (i.e. to transition from)
// a variant scheduling class to another scheduling class. Rules are
// described by instances of CodeGenSchedTransition. Note that transitions may
// not be valid for all processors.
OS << " switch (SchedClass) {\n";
for (unsigned VC : VariantClasses) {
IdxVec ProcIndices;
const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC);
collectProcessorIndices(SC, ProcIndices);
OS << " case " << VC << ": // " << SC.Name << '\n';
PredicateExpander PE(Target);
PE.setByRef(false);
PE.setExpandForMC(OnlyExpandMCInstPredicates);
for (unsigned PI : ProcIndices) {
OS << " ";
// Emit a guard on the processor ID.
if (PI != 0) {
OS << (OnlyExpandMCInstPredicates
? "if (CPUID == "
: "if (SchedModel->getProcessorID() == ");
OS << PI << ") ";
OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName << '\n';
}
// Now emit transitions associated with processor PI.
for (const CodeGenSchedTransition &T : SC.Transitions) {
if (PI != 0 && !count(T.ProcIndices, PI))
continue;
// Emit only transitions based on MCSchedPredicate, if it's the case.
// At least the transition specified by NoSchedPred is emitted,
// which becomes the default transition for those variants otherwise
// not based on MCSchedPredicate.
// FIXME: preferably, llvm-mca should instead assume a reasonable
// default when a variant transition is not based on MCSchedPredicate
// for a given processor.
if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T))
continue;
PE.setIndentLevel(3);
emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS);
}
OS << " }\n";
if (PI == 0)
break;
}
if (SC.isInferred())
OS << " return " << SC.Index << ";\n";
OS << " break;\n";
}
OS << " };\n";
emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
}
void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName,
raw_ostream &OS) {
OS << "unsigned " << ClassName
<< "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
<< " const TargetSchedModel *SchedModel) const {\n";
// Emit the predicate prolog code.
emitPredicateProlog(Records, OS);
// Emit target predicates.
emitSchedModelHelpersImpl(OS);
OS << "} // " << ClassName << "::resolveSchedClass\n\n";
OS << "unsigned " << ClassName
<< "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI,"
<< " unsigned CPUID) const {\n"
<< " return " << Target << "_MC"
<< "::resolveVariantSchedClassImpl(SchedClass, MI, CPUID);\n"
<< "} // " << ClassName << "::resolveVariantSchedClass\n\n";
STIPredicateExpander PE(Target);
PE.setClassPrefix(ClassName);
PE.setExpandDefinition(true);
PE.setByRef(false);
PE.setIndentLevel(0);
for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
PE.expandSTIPredicate(OS, Fn);
}
void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName,
raw_ostream &OS) {
const CodeGenHwModes &CGH = TGT.getHwModes();
assert(CGH.getNumModeIds() > 0);
if (CGH.getNumModeIds() == 1)
return;
OS << "unsigned " << ClassName << "::getHwMode() const {\n";
for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) {
const HwMode &HM = CGH.getMode(M);
OS << " if (checkFeatures(\"" << HM.Features
<< "\")) return " << M << ";\n";
}
OS << " return 0;\n}\n";
}
//
// ParseFeaturesFunction - Produces a subtarget specific function for parsing
// the subtarget features string.
//
void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS,
unsigned NumFeatures,
unsigned NumProcs) {
std::vector<Record*> Features =
Records.getAllDerivedDefinitions("SubtargetFeature");
llvm::sort(Features, LessRecord());
OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
<< "// subtarget options.\n"
<< "void llvm::";
OS << Target;
OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n"
<< " LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
<< " LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n";
if (Features.empty()) {
OS << "}\n";
return;
}
OS << " InitMCProcessorInfo(CPU, FS);\n"
<< " const FeatureBitset& Bits = getFeatureBits();\n";
for (Record *R : Features) {
// Next record
StringRef Instance = R->getName();
StringRef Value = R->getValueAsString("Value");
StringRef Attribute = R->getValueAsString("Attribute");
if (Value=="true" || Value=="false")
OS << " if (Bits[" << Target << "::"
<< Instance << "]) "
<< Attribute << " = " << Value << ";\n";
else
OS << " if (Bits[" << Target << "::"
<< Instance << "] && "
<< Attribute << " < " << Value << ") "
<< Attribute << " = " << Value << ";\n";
}
OS << "}\n";
}
void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) {
OS << "namespace " << Target << "_MC {\n"
<< "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n"
<< " const MCInst *MI, unsigned CPUID) {\n";
emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true);
OS << "}\n";
OS << "} // end of namespace " << Target << "_MC\n\n";
OS << "struct " << Target
<< "GenMCSubtargetInfo : public MCSubtargetInfo {\n";
OS << " " << Target << "GenMCSubtargetInfo(const Triple &TT, \n"
<< " StringRef CPU, StringRef FS, ArrayRef<SubtargetFeatureKV> PF,\n"
<< " ArrayRef<SubtargetSubTypeKV> PD,\n"
<< " const MCWriteProcResEntry *WPR,\n"
<< " const MCWriteLatencyEntry *WL,\n"
<< " const MCReadAdvanceEntry *RA, const InstrStage *IS,\n"
<< " const unsigned *OC, const unsigned *FP) :\n"
<< " MCSubtargetInfo(TT, CPU, FS, PF, PD,\n"
<< " WPR, WL, RA, IS, OC, FP) { }\n\n"
<< " unsigned resolveVariantSchedClass(unsigned SchedClass,\n"
<< " const MCInst *MI, unsigned CPUID) const override {\n"
<< " return " << Target << "_MC"
<< "::resolveVariantSchedClassImpl(SchedClass, MI, CPUID); \n";
OS << " }\n";
OS << "};\n";
}
void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS) {
OS << "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n";
OS << "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
STIPredicateExpander PE(Target);
PE.setExpandForMC(true);
PE.setByRef(true);
for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
PE.expandSTIPredicate(OS, Fn);
OS << "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
OS << "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n";
OS << "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
std::string ClassPrefix = Target + "MCInstrAnalysis";
PE.setExpandDefinition(true);
PE.setClassPrefix(ClassPrefix);
PE.setIndentLevel(0);
for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
PE.expandSTIPredicate(OS, Fn);
OS << "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
}
//
// SubtargetEmitter::run - Main subtarget enumeration emitter.
//
void SubtargetEmitter::run(raw_ostream &OS) {
emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
OS << "#undef GET_SUBTARGETINFO_ENUM\n\n";
DenseMap<Record *, unsigned> FeatureMap;
OS << "namespace llvm {\n";
Enumeration(OS, FeatureMap);
OS << "} // end namespace llvm\n\n";
OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n";
OS << "namespace llvm {\n";
#if 0
OS << "namespace {\n";
#endif
unsigned NumFeatures = FeatureKeyValues(OS, FeatureMap);
OS << "\n";
EmitSchedModel(OS);
OS << "\n";
unsigned NumProcs = CPUKeyValues(OS, FeatureMap);
OS << "\n";
#if 0
OS << "} // end anonymous namespace\n\n";
#endif
// MCInstrInfo initialization routine.
emitGenMCSubtargetInfo(OS);
OS << "\nstatic inline MCSubtargetInfo *create" << Target
<< "MCSubtargetInfoImpl("
<< "const Triple &TT, StringRef CPU, StringRef FS) {\n";
OS << " return new " << Target << "GenMCSubtargetInfo(TT, CPU, FS, ";
if (NumFeatures)
OS << Target << "FeatureKV, ";
else
OS << "None, ";
if (NumProcs)
OS << Target << "SubTypeKV, ";
else
OS << "None, ";
OS << '\n'; OS.indent(22);
OS << Target << "WriteProcResTable, "
<< Target << "WriteLatencyTable, "
<< Target << "ReadAdvanceTable, ";
OS << '\n'; OS.indent(22);
if (SchedModels.hasItineraries()) {
OS << Target << "Stages, "
<< Target << "OperandCycles, "
<< Target << "ForwardingPaths";
} else
OS << "nullptr, nullptr, nullptr";
OS << ");\n}\n\n";
OS << "} // end namespace llvm\n\n";
OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n";
OS << "#include \"llvm/Support/Debug.h\"\n";
OS << "#include \"llvm/Support/raw_ostream.h\"\n\n";
ParseFeaturesFunction(OS, NumFeatures, NumProcs);
OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
// Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
OS << "#undef GET_SUBTARGETINFO_HEADER\n\n";
std::string ClassName = Target + "GenSubtargetInfo";
OS << "namespace llvm {\n";
OS << "class DFAPacketizer;\n";
OS << "namespace " << Target << "_MC {\n"
<< "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,"
<< " const MCInst *MI, unsigned CPUID);\n"
<< "}\n\n";
OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
<< " explicit " << ClassName << "(const Triple &TT, StringRef CPU, "
<< "StringRef FS);\n"
<< "public:\n"
<< " unsigned resolveSchedClass(unsigned SchedClass, "
<< " const MachineInstr *DefMI,"
<< " const TargetSchedModel *SchedModel) const override;\n"
<< " unsigned resolveVariantSchedClass(unsigned SchedClass,"
<< " const MCInst *MI, unsigned CPUID) const override;\n"
<< " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
<< " const;\n";
if (TGT.getHwModes().getNumModeIds() > 1)
OS << " unsigned getHwMode() const override;\n";
STIPredicateExpander PE(Target);
PE.setByRef(false);
for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
PE.expandSTIPredicate(OS, Fn);
OS << "};\n"
<< "} // end namespace llvm\n\n";
OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
OS << "#undef GET_SUBTARGETINFO_CTOR\n\n";
OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n";
OS << "namespace llvm {\n";
OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
OS << "extern const llvm::SubtargetSubTypeKV " << Target << "SubTypeKV[];\n";
OS << "extern const llvm::MCWriteProcResEntry "
<< Target << "WriteProcResTable[];\n";
OS << "extern const llvm::MCWriteLatencyEntry "
<< Target << "WriteLatencyTable[];\n";
OS << "extern const llvm::MCReadAdvanceEntry "
<< Target << "ReadAdvanceTable[];\n";
if (SchedModels.hasItineraries()) {
OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
OS << "extern const unsigned " << Target << "OperandCycles[];\n";
OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
}
OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, "
<< "StringRef FS)\n"
<< " : TargetSubtargetInfo(TT, CPU, FS, ";
if (NumFeatures)
OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
else
OS << "None, ";
if (NumProcs)
OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
else
OS << "None, ";
OS << '\n'; OS.indent(24);
OS << Target << "WriteProcResTable, "
<< Target << "WriteLatencyTable, "
<< Target << "ReadAdvanceTable, ";
OS << '\n'; OS.indent(24);
if (SchedModels.hasItineraries()) {
OS << Target << "Stages, "
<< Target << "OperandCycles, "
<< Target << "ForwardingPaths";
} else
OS << "nullptr, nullptr, nullptr";
OS << ") {}\n\n";
EmitSchedModelHelpers(ClassName, OS);
EmitHwModeCheck(ClassName, OS);
OS << "} // end namespace llvm\n\n";
OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
EmitMCInstrAnalysisPredicateFunctions(OS);
}
namespace llvm {
void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
CodeGenTarget CGTarget(RK);
SubtargetEmitter(RK, CGTarget).run(OS);
}
} // end namespace llvm