| //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/CGSCCPassManager.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/LazyCallGraph.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/PassManagerImpl.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/TimeProfiler.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <iterator> |
| |
| #define DEBUG_TYPE "cgscc" |
| |
| using namespace llvm; |
| |
| // Explicit template instantiations and specialization definitions for core |
| // template typedefs. |
| namespace llvm { |
| static cl::opt<bool> AbortOnMaxDevirtIterationsReached( |
| "abort-on-max-devirt-iterations-reached", |
| cl::desc("Abort when the max iterations for devirtualization CGSCC repeat " |
| "pass is reached")); |
| |
| AnalysisKey ShouldNotRunFunctionPassesAnalysis::Key; |
| |
| // Explicit instantiations for the core proxy templates. |
| template class AllAnalysesOn<LazyCallGraph::SCC>; |
| template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; |
| template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, |
| LazyCallGraph &, CGSCCUpdateResult &>; |
| template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; |
| template class OuterAnalysisManagerProxy<ModuleAnalysisManager, |
| LazyCallGraph::SCC, LazyCallGraph &>; |
| template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; |
| |
| /// Explicitly specialize the pass manager run method to handle call graph |
| /// updates. |
| template <> |
| PreservedAnalyses |
| PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, |
| CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, |
| CGSCCAnalysisManager &AM, |
| LazyCallGraph &G, CGSCCUpdateResult &UR) { |
| // Request PassInstrumentation from analysis manager, will use it to run |
| // instrumenting callbacks for the passes later. |
| PassInstrumentation PI = |
| AM.getResult<PassInstrumentationAnalysis>(InitialC, G); |
| |
| PreservedAnalyses PA = PreservedAnalyses::all(); |
| |
| // The SCC may be refined while we are running passes over it, so set up |
| // a pointer that we can update. |
| LazyCallGraph::SCC *C = &InitialC; |
| |
| // Get Function analysis manager from its proxy. |
| FunctionAnalysisManager &FAM = |
| AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager(); |
| |
| for (auto &Pass : Passes) { |
| // Check the PassInstrumentation's BeforePass callbacks before running the |
| // pass, skip its execution completely if asked to (callback returns false). |
| if (!PI.runBeforePass(*Pass, *C)) |
| continue; |
| |
| PreservedAnalyses PassPA; |
| { |
| TimeTraceScope TimeScope(Pass->name()); |
| PassPA = Pass->run(*C, AM, G, UR); |
| } |
| |
| if (UR.InvalidatedSCCs.count(C)) |
| PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); |
| else |
| PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); |
| |
| // Update the SCC if necessary. |
| C = UR.UpdatedC ? UR.UpdatedC : C; |
| if (UR.UpdatedC) { |
| // If C is updated, also create a proxy and update FAM inside the result. |
| auto *ResultFAMCP = |
| &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); |
| ResultFAMCP->updateFAM(FAM); |
| } |
| |
| // If the CGSCC pass wasn't able to provide a valid updated SCC, the |
| // current SCC may simply need to be skipped if invalid. |
| if (UR.InvalidatedSCCs.count(C)) { |
| LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); |
| break; |
| } |
| // Check that we didn't miss any update scenario. |
| assert(C->begin() != C->end() && "Cannot have an empty SCC!"); |
| |
| // Update the analysis manager as each pass runs and potentially |
| // invalidates analyses. |
| AM.invalidate(*C, PassPA); |
| |
| // Finally, we intersect the final preserved analyses to compute the |
| // aggregate preserved set for this pass manager. |
| PA.intersect(std::move(PassPA)); |
| } |
| |
| // Before we mark all of *this* SCC's analyses as preserved below, intersect |
| // this with the cross-SCC preserved analysis set. This is used to allow |
| // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation |
| // for them. |
| UR.CrossSCCPA.intersect(PA); |
| |
| // Invalidation was handled after each pass in the above loop for the current |
| // SCC. Therefore, the remaining analysis results in the AnalysisManager are |
| // preserved. We mark this with a set so that we don't need to inspect each |
| // one individually. |
| PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); |
| |
| return PA; |
| } |
| |
| PreservedAnalyses |
| ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) { |
| // Setup the CGSCC analysis manager from its proxy. |
| CGSCCAnalysisManager &CGAM = |
| AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager(); |
| |
| // Get the call graph for this module. |
| LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M); |
| |
| // Get Function analysis manager from its proxy. |
| FunctionAnalysisManager &FAM = |
| AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager(); |
| |
| // We keep worklists to allow us to push more work onto the pass manager as |
| // the passes are run. |
| SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist; |
| SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist; |
| |
| // Keep sets for invalidated SCCs and RefSCCs that should be skipped when |
| // iterating off the worklists. |
| SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet; |
| SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet; |
| |
| SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4> |
| InlinedInternalEdges; |
| |
| CGSCCUpdateResult UR = { |
| RCWorklist, CWorklist, InvalidRefSCCSet, InvalidSCCSet, |
| nullptr, nullptr, PreservedAnalyses::all(), InlinedInternalEdges, |
| {}}; |
| |
| // Request PassInstrumentation from analysis manager, will use it to run |
| // instrumenting callbacks for the passes later. |
| PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M); |
| |
| PreservedAnalyses PA = PreservedAnalyses::all(); |
| CG.buildRefSCCs(); |
| for (auto RCI = CG.postorder_ref_scc_begin(), |
| RCE = CG.postorder_ref_scc_end(); |
| RCI != RCE;) { |
| assert(RCWorklist.empty() && |
| "Should always start with an empty RefSCC worklist"); |
| // The postorder_ref_sccs range we are walking is lazily constructed, so |
| // we only push the first one onto the worklist. The worklist allows us |
| // to capture *new* RefSCCs created during transformations. |
| // |
| // We really want to form RefSCCs lazily because that makes them cheaper |
| // to update as the program is simplified and allows us to have greater |
| // cache locality as forming a RefSCC touches all the parts of all the |
| // functions within that RefSCC. |
| // |
| // We also eagerly increment the iterator to the next position because |
| // the CGSCC passes below may delete the current RefSCC. |
| RCWorklist.insert(&*RCI++); |
| |
| do { |
| LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val(); |
| if (InvalidRefSCCSet.count(RC)) { |
| LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n"); |
| continue; |
| } |
| |
| assert(CWorklist.empty() && |
| "Should always start with an empty SCC worklist"); |
| |
| LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC |
| << "\n"); |
| |
| // The top of the worklist may *also* be the same SCC we just ran over |
| // (and invalidated for). Keep track of that last SCC we processed due |
| // to SCC update to avoid redundant processing when an SCC is both just |
| // updated itself and at the top of the worklist. |
| LazyCallGraph::SCC *LastUpdatedC = nullptr; |
| |
| // Push the initial SCCs in reverse post-order as we'll pop off the |
| // back and so see this in post-order. |
| for (LazyCallGraph::SCC &C : llvm::reverse(*RC)) |
| CWorklist.insert(&C); |
| |
| do { |
| LazyCallGraph::SCC *C = CWorklist.pop_back_val(); |
| // Due to call graph mutations, we may have invalid SCCs or SCCs from |
| // other RefSCCs in the worklist. The invalid ones are dead and the |
| // other RefSCCs should be queued above, so we just need to skip both |
| // scenarios here. |
| if (InvalidSCCSet.count(C)) { |
| LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n"); |
| continue; |
| } |
| if (LastUpdatedC == C) { |
| LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n"); |
| continue; |
| } |
| if (&C->getOuterRefSCC() != RC) { |
| LLVM_DEBUG(dbgs() << "Skipping an SCC that is now part of some other " |
| "RefSCC...\n"); |
| continue; |
| } |
| |
| // Ensure we can proxy analysis updates from the CGSCC analysis manager |
| // into the the Function analysis manager by getting a proxy here. |
| // This also needs to update the FunctionAnalysisManager, as this may be |
| // the first time we see this SCC. |
| CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM( |
| FAM); |
| |
| // Each time we visit a new SCC pulled off the worklist, |
| // a transformation of a child SCC may have also modified this parent |
| // and invalidated analyses. So we invalidate using the update record's |
| // cross-SCC preserved set. This preserved set is intersected by any |
| // CGSCC pass that handles invalidation (primarily pass managers) prior |
| // to marking its SCC as preserved. That lets us track everything that |
| // might need invalidation across SCCs without excessive invalidations |
| // on a single SCC. |
| // |
| // This essentially allows SCC passes to freely invalidate analyses |
| // of any ancestor SCC. If this becomes detrimental to successfully |
| // caching analyses, we could force each SCC pass to manually |
| // invalidate the analyses for any SCCs other than themselves which |
| // are mutated. However, that seems to lose the robustness of the |
| // pass-manager driven invalidation scheme. |
| CGAM.invalidate(*C, UR.CrossSCCPA); |
| |
| do { |
| // Check that we didn't miss any update scenario. |
| assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!"); |
| assert(C->begin() != C->end() && "Cannot have an empty SCC!"); |
| assert(&C->getOuterRefSCC() == RC && |
| "Processing an SCC in a different RefSCC!"); |
| |
| LastUpdatedC = UR.UpdatedC; |
| UR.UpdatedRC = nullptr; |
| UR.UpdatedC = nullptr; |
| |
| // Check the PassInstrumentation's BeforePass callbacks before |
| // running the pass, skip its execution completely if asked to |
| // (callback returns false). |
| if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C)) |
| continue; |
| |
| PreservedAnalyses PassPA; |
| { |
| TimeTraceScope TimeScope(Pass->name()); |
| PassPA = Pass->run(*C, CGAM, CG, UR); |
| } |
| |
| if (UR.InvalidatedSCCs.count(C)) |
| PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); |
| else |
| PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); |
| |
| // Update the SCC and RefSCC if necessary. |
| C = UR.UpdatedC ? UR.UpdatedC : C; |
| RC = UR.UpdatedRC ? UR.UpdatedRC : RC; |
| |
| if (UR.UpdatedC) { |
| // If we're updating the SCC, also update the FAM inside the proxy's |
| // result. |
| CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM( |
| FAM); |
| } |
| |
| // If the CGSCC pass wasn't able to provide a valid updated SCC, |
| // the current SCC may simply need to be skipped if invalid. |
| if (UR.InvalidatedSCCs.count(C)) { |
| LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); |
| break; |
| } |
| // Check that we didn't miss any update scenario. |
| assert(C->begin() != C->end() && "Cannot have an empty SCC!"); |
| |
| // We handle invalidating the CGSCC analysis manager's information |
| // for the (potentially updated) SCC here. Note that any other SCCs |
| // whose structure has changed should have been invalidated by |
| // whatever was updating the call graph. This SCC gets invalidated |
| // late as it contains the nodes that were actively being |
| // processed. |
| CGAM.invalidate(*C, PassPA); |
| |
| // Then intersect the preserved set so that invalidation of module |
| // analyses will eventually occur when the module pass completes. |
| // Also intersect with the cross-SCC preserved set to capture any |
| // cross-SCC invalidation. |
| UR.CrossSCCPA.intersect(PassPA); |
| PA.intersect(std::move(PassPA)); |
| |
| // The pass may have restructured the call graph and refined the |
| // current SCC and/or RefSCC. We need to update our current SCC and |
| // RefSCC pointers to follow these. Also, when the current SCC is |
| // refined, re-run the SCC pass over the newly refined SCC in order |
| // to observe the most precise SCC model available. This inherently |
| // cannot cycle excessively as it only happens when we split SCCs |
| // apart, at most converging on a DAG of single nodes. |
| // FIXME: If we ever start having RefSCC passes, we'll want to |
| // iterate there too. |
| if (UR.UpdatedC) |
| LLVM_DEBUG(dbgs() |
| << "Re-running SCC passes after a refinement of the " |
| "current SCC: " |
| << *UR.UpdatedC << "\n"); |
| |
| // Note that both `C` and `RC` may at this point refer to deleted, |
| // invalid SCC and RefSCCs respectively. But we will short circuit |
| // the processing when we check them in the loop above. |
| } while (UR.UpdatedC); |
| } while (!CWorklist.empty()); |
| |
| // We only need to keep internal inlined edge information within |
| // a RefSCC, clear it to save on space and let the next time we visit |
| // any of these functions have a fresh start. |
| InlinedInternalEdges.clear(); |
| } while (!RCWorklist.empty()); |
| } |
| |
| // By definition we preserve the call garph, all SCC analyses, and the |
| // analysis proxies by handling them above and in any nested pass managers. |
| PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); |
| PA.preserve<LazyCallGraphAnalysis>(); |
| PA.preserve<CGSCCAnalysisManagerModuleProxy>(); |
| PA.preserve<FunctionAnalysisManagerModuleProxy>(); |
| return PA; |
| } |
| |
| PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC, |
| CGSCCAnalysisManager &AM, |
| LazyCallGraph &CG, |
| CGSCCUpdateResult &UR) { |
| PreservedAnalyses PA = PreservedAnalyses::all(); |
| PassInstrumentation PI = |
| AM.getResult<PassInstrumentationAnalysis>(InitialC, CG); |
| |
| // The SCC may be refined while we are running passes over it, so set up |
| // a pointer that we can update. |
| LazyCallGraph::SCC *C = &InitialC; |
| |
| // Struct to track the counts of direct and indirect calls in each function |
| // of the SCC. |
| struct CallCount { |
| int Direct; |
| int Indirect; |
| }; |
| |
| // Put value handles on all of the indirect calls and return the number of |
| // direct calls for each function in the SCC. |
| auto ScanSCC = [](LazyCallGraph::SCC &C, |
| SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) { |
| assert(CallHandles.empty() && "Must start with a clear set of handles."); |
| |
| SmallDenseMap<Function *, CallCount> CallCounts; |
| CallCount CountLocal = {0, 0}; |
| for (LazyCallGraph::Node &N : C) { |
| CallCount &Count = |
| CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal)) |
| .first->second; |
| for (Instruction &I : instructions(N.getFunction())) |
| if (auto *CB = dyn_cast<CallBase>(&I)) { |
| if (CB->getCalledFunction()) { |
| ++Count.Direct; |
| } else { |
| ++Count.Indirect; |
| CallHandles.insert({CB, WeakTrackingVH(CB)}); |
| } |
| } |
| } |
| |
| return CallCounts; |
| }; |
| |
| UR.IndirectVHs.clear(); |
| // Populate the initial call handles and get the initial call counts. |
| auto CallCounts = ScanSCC(*C, UR.IndirectVHs); |
| |
| for (int Iteration = 0;; ++Iteration) { |
| if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C)) |
| continue; |
| |
| PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR); |
| |
| if (UR.InvalidatedSCCs.count(C)) |
| PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); |
| else |
| PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); |
| |
| // If the SCC structure has changed, bail immediately and let the outer |
| // CGSCC layer handle any iteration to reflect the refined structure. |
| if (UR.UpdatedC && UR.UpdatedC != C) { |
| PA.intersect(std::move(PassPA)); |
| break; |
| } |
| |
| // If the CGSCC pass wasn't able to provide a valid updated SCC, the |
| // current SCC may simply need to be skipped if invalid. |
| if (UR.InvalidatedSCCs.count(C)) { |
| LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); |
| break; |
| } |
| |
| assert(C->begin() != C->end() && "Cannot have an empty SCC!"); |
| |
| // Check whether any of the handles were devirtualized. |
| bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool { |
| if (P.second) { |
| if (CallBase *CB = dyn_cast<CallBase>(P.second)) { |
| if (CB->getCalledFunction()) { |
| LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n"); |
| return true; |
| } |
| } |
| } |
| return false; |
| }); |
| |
| // Rescan to build up a new set of handles and count how many direct |
| // calls remain. If we decide to iterate, this also sets up the input to |
| // the next iteration. |
| UR.IndirectVHs.clear(); |
| auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs); |
| |
| // If we haven't found an explicit devirtualization already see if we |
| // have decreased the number of indirect calls and increased the number |
| // of direct calls for any function in the SCC. This can be fooled by all |
| // manner of transformations such as DCE and other things, but seems to |
| // work well in practice. |
| if (!Devirt) |
| // Iterate over the keys in NewCallCounts, if Function also exists in |
| // CallCounts, make the check below. |
| for (auto &Pair : NewCallCounts) { |
| auto &CallCountNew = Pair.second; |
| auto CountIt = CallCounts.find(Pair.first); |
| if (CountIt != CallCounts.end()) { |
| const auto &CallCountOld = CountIt->second; |
| if (CallCountOld.Indirect > CallCountNew.Indirect && |
| CallCountOld.Direct < CallCountNew.Direct) { |
| Devirt = true; |
| break; |
| } |
| } |
| } |
| |
| if (!Devirt) { |
| PA.intersect(std::move(PassPA)); |
| break; |
| } |
| |
| // Otherwise, if we've already hit our max, we're done. |
| if (Iteration >= MaxIterations) { |
| if (AbortOnMaxDevirtIterationsReached) |
| report_fatal_error("Max devirtualization iterations reached"); |
| LLVM_DEBUG( |
| dbgs() << "Found another devirtualization after hitting the max " |
| "number of repetitions (" |
| << MaxIterations << ") on SCC: " << *C << "\n"); |
| PA.intersect(std::move(PassPA)); |
| break; |
| } |
| |
| LLVM_DEBUG( |
| dbgs() << "Repeating an SCC pass after finding a devirtualization in: " |
| << *C << "\n"); |
| |
| // Move over the new call counts in preparation for iterating. |
| CallCounts = std::move(NewCallCounts); |
| |
| // Update the analysis manager with each run and intersect the total set |
| // of preserved analyses so we're ready to iterate. |
| AM.invalidate(*C, PassPA); |
| |
| PA.intersect(std::move(PassPA)); |
| } |
| |
| // Note that we don't add any preserved entries here unlike a more normal |
| // "pass manager" because we only handle invalidation *between* iterations, |
| // not after the last iteration. |
| return PA; |
| } |
| |
| PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C, |
| CGSCCAnalysisManager &AM, |
| LazyCallGraph &CG, |
| CGSCCUpdateResult &UR) { |
| // Setup the function analysis manager from its proxy. |
| FunctionAnalysisManager &FAM = |
| AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); |
| |
| SmallVector<LazyCallGraph::Node *, 4> Nodes; |
| for (LazyCallGraph::Node &N : C) |
| Nodes.push_back(&N); |
| |
| // The SCC may get split while we are optimizing functions due to deleting |
| // edges. If this happens, the current SCC can shift, so keep track of |
| // a pointer we can overwrite. |
| LazyCallGraph::SCC *CurrentC = &C; |
| |
| LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n"); |
| |
| PreservedAnalyses PA = PreservedAnalyses::all(); |
| for (LazyCallGraph::Node *N : Nodes) { |
| // Skip nodes from other SCCs. These may have been split out during |
| // processing. We'll eventually visit those SCCs and pick up the nodes |
| // there. |
| if (CG.lookupSCC(*N) != CurrentC) |
| continue; |
| |
| Function &F = N->getFunction(); |
| |
| if (NoRerun && FAM.getCachedResult<ShouldNotRunFunctionPassesAnalysis>(F)) |
| continue; |
| |
| PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F); |
| if (!PI.runBeforePass<Function>(*Pass, F)) |
| continue; |
| |
| PreservedAnalyses PassPA; |
| { |
| TimeTraceScope TimeScope(Pass->name()); |
| PassPA = Pass->run(F, FAM); |
| } |
| |
| PI.runAfterPass<Function>(*Pass, F, PassPA); |
| |
| // We know that the function pass couldn't have invalidated any other |
| // function's analyses (that's the contract of a function pass), so |
| // directly handle the function analysis manager's invalidation here. |
| FAM.invalidate(F, EagerlyInvalidate ? PreservedAnalyses::none() : PassPA); |
| if (NoRerun) |
| (void)FAM.getResult<ShouldNotRunFunctionPassesAnalysis>(F); |
| |
| // Then intersect the preserved set so that invalidation of module |
| // analyses will eventually occur when the module pass completes. |
| PA.intersect(std::move(PassPA)); |
| |
| // If the call graph hasn't been preserved, update it based on this |
| // function pass. This may also update the current SCC to point to |
| // a smaller, more refined SCC. |
| auto PAC = PA.getChecker<LazyCallGraphAnalysis>(); |
| if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) { |
| CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N, |
| AM, UR, FAM); |
| assert(CG.lookupSCC(*N) == CurrentC && |
| "Current SCC not updated to the SCC containing the current node!"); |
| } |
| } |
| |
| // By definition we preserve the proxy. And we preserve all analyses on |
| // Functions. This precludes *any* invalidation of function analyses by the |
| // proxy, but that's OK because we've taken care to invalidate analyses in |
| // the function analysis manager incrementally above. |
| PA.preserveSet<AllAnalysesOn<Function>>(); |
| PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); |
| |
| // We've also ensured that we updated the call graph along the way. |
| PA.preserve<LazyCallGraphAnalysis>(); |
| |
| return PA; |
| } |
| |
| bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( |
| Module &M, const PreservedAnalyses &PA, |
| ModuleAnalysisManager::Invalidator &Inv) { |
| // If literally everything is preserved, we're done. |
| if (PA.areAllPreserved()) |
| return false; // This is still a valid proxy. |
| |
| // If this proxy or the call graph is going to be invalidated, we also need |
| // to clear all the keys coming from that analysis. |
| // |
| // We also directly invalidate the FAM's module proxy if necessary, and if |
| // that proxy isn't preserved we can't preserve this proxy either. We rely on |
| // it to handle module -> function analysis invalidation in the face of |
| // structural changes and so if it's unavailable we conservatively clear the |
| // entire SCC layer as well rather than trying to do invalidation ourselves. |
| auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); |
| if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || |
| Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || |
| Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { |
| InnerAM->clear(); |
| |
| // And the proxy itself should be marked as invalid so that we can observe |
| // the new call graph. This isn't strictly necessary because we cheat |
| // above, but is still useful. |
| return true; |
| } |
| |
| // Directly check if the relevant set is preserved so we can short circuit |
| // invalidating SCCs below. |
| bool AreSCCAnalysesPreserved = |
| PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); |
| |
| // Ok, we have a graph, so we can propagate the invalidation down into it. |
| G->buildRefSCCs(); |
| for (auto &RC : G->postorder_ref_sccs()) |
| for (auto &C : RC) { |
| Optional<PreservedAnalyses> InnerPA; |
| |
| // Check to see whether the preserved set needs to be adjusted based on |
| // module-level analysis invalidation triggering deferred invalidation |
| // for this SCC. |
| if (auto *OuterProxy = |
| InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) |
| for (const auto &OuterInvalidationPair : |
| OuterProxy->getOuterInvalidations()) { |
| AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; |
| const auto &InnerAnalysisIDs = OuterInvalidationPair.second; |
| if (Inv.invalidate(OuterAnalysisID, M, PA)) { |
| if (!InnerPA) |
| InnerPA = PA; |
| for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) |
| InnerPA->abandon(InnerAnalysisID); |
| } |
| } |
| |
| // Check if we needed a custom PA set. If so we'll need to run the inner |
| // invalidation. |
| if (InnerPA) { |
| InnerAM->invalidate(C, *InnerPA); |
| continue; |
| } |
| |
| // Otherwise we only need to do invalidation if the original PA set didn't |
| // preserve all SCC analyses. |
| if (!AreSCCAnalysesPreserved) |
| InnerAM->invalidate(C, PA); |
| } |
| |
| // Return false to indicate that this result is still a valid proxy. |
| return false; |
| } |
| |
| template <> |
| CGSCCAnalysisManagerModuleProxy::Result |
| CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { |
| // Force the Function analysis manager to also be available so that it can |
| // be accessed in an SCC analysis and proxied onward to function passes. |
| // FIXME: It is pretty awkward to just drop the result here and assert that |
| // we can find it again later. |
| (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); |
| |
| return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); |
| } |
| |
| AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; |
| |
| FunctionAnalysisManagerCGSCCProxy::Result |
| FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, |
| CGSCCAnalysisManager &AM, |
| LazyCallGraph &CG) { |
| // Note: unconditionally getting checking that the proxy exists may get it at |
| // this point. There are cases when this is being run unnecessarily, but |
| // it is cheap and having the assertion in place is more valuable. |
| auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG); |
| Module &M = *C.begin()->getFunction().getParent(); |
| bool ProxyExists = |
| MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M); |
| assert(ProxyExists && |
| "The CGSCC pass manager requires that the FAM module proxy is run " |
| "on the module prior to entering the CGSCC walk"); |
| (void)ProxyExists; |
| |
| // We just return an empty result. The caller will use the updateFAM interface |
| // to correctly register the relevant FunctionAnalysisManager based on the |
| // context in which this proxy is run. |
| return Result(); |
| } |
| |
| bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( |
| LazyCallGraph::SCC &C, const PreservedAnalyses &PA, |
| CGSCCAnalysisManager::Invalidator &Inv) { |
| // If literally everything is preserved, we're done. |
| if (PA.areAllPreserved()) |
| return false; // This is still a valid proxy. |
| |
| // All updates to preserve valid results are done below, so we don't need to |
| // invalidate this proxy. |
| // |
| // Note that in order to preserve this proxy, a module pass must ensure that |
| // the FAM has been completely updated to handle the deletion of functions. |
| // Specifically, any FAM-cached results for those functions need to have been |
| // forcibly cleared. When preserved, this proxy will only invalidate results |
| // cached on functions *still in the module* at the end of the module pass. |
| auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); |
| if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { |
| for (LazyCallGraph::Node &N : C) |
| FAM->invalidate(N.getFunction(), PA); |
| |
| return false; |
| } |
| |
| // Directly check if the relevant set is preserved. |
| bool AreFunctionAnalysesPreserved = |
| PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); |
| |
| // Now walk all the functions to see if any inner analysis invalidation is |
| // necessary. |
| for (LazyCallGraph::Node &N : C) { |
| Function &F = N.getFunction(); |
| Optional<PreservedAnalyses> FunctionPA; |
| |
| // Check to see whether the preserved set needs to be pruned based on |
| // SCC-level analysis invalidation that triggers deferred invalidation |
| // registered with the outer analysis manager proxy for this function. |
| if (auto *OuterProxy = |
| FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) |
| for (const auto &OuterInvalidationPair : |
| OuterProxy->getOuterInvalidations()) { |
| AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; |
| const auto &InnerAnalysisIDs = OuterInvalidationPair.second; |
| if (Inv.invalidate(OuterAnalysisID, C, PA)) { |
| if (!FunctionPA) |
| FunctionPA = PA; |
| for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) |
| FunctionPA->abandon(InnerAnalysisID); |
| } |
| } |
| |
| // Check if we needed a custom PA set, and if so we'll need to run the |
| // inner invalidation. |
| if (FunctionPA) { |
| FAM->invalidate(F, *FunctionPA); |
| continue; |
| } |
| |
| // Otherwise we only need to do invalidation if the original PA set didn't |
| // preserve all function analyses. |
| if (!AreFunctionAnalysesPreserved) |
| FAM->invalidate(F, PA); |
| } |
| |
| // Return false to indicate that this result is still a valid proxy. |
| return false; |
| } |
| |
| } // end namespace llvm |
| |
| /// When a new SCC is created for the graph we first update the |
| /// FunctionAnalysisManager in the Proxy's result. |
| /// As there might be function analysis results cached for the functions now in |
| /// that SCC, two forms of updates are required. |
| /// |
| /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be |
| /// created so that any subsequent invalidation events to the SCC are |
| /// propagated to the function analysis results cached for functions within it. |
| /// |
| /// Second, if any of the functions within the SCC have analysis results with |
| /// outer analysis dependencies, then those dependencies would point to the |
| /// *wrong* SCC's analysis result. We forcibly invalidate the necessary |
| /// function analyses so that they don't retain stale handles. |
| static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, |
| LazyCallGraph &G, |
| CGSCCAnalysisManager &AM, |
| FunctionAnalysisManager &FAM) { |
| AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM); |
| |
| // Now walk the functions in this SCC and invalidate any function analysis |
| // results that might have outer dependencies on an SCC analysis. |
| for (LazyCallGraph::Node &N : C) { |
| Function &F = N.getFunction(); |
| |
| auto *OuterProxy = |
| FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); |
| if (!OuterProxy) |
| // No outer analyses were queried, nothing to do. |
| continue; |
| |
| // Forcibly abandon all the inner analyses with dependencies, but |
| // invalidate nothing else. |
| auto PA = PreservedAnalyses::all(); |
| for (const auto &OuterInvalidationPair : |
| OuterProxy->getOuterInvalidations()) { |
| const auto &InnerAnalysisIDs = OuterInvalidationPair.second; |
| for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) |
| PA.abandon(InnerAnalysisID); |
| } |
| |
| // Now invalidate anything we found. |
| FAM.invalidate(F, PA); |
| } |
| } |
| |
| /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c |
| /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly |
| /// added SCCs. |
| /// |
| /// The range of new SCCs must be in postorder already. The SCC they were split |
| /// out of must be provided as \p C. The current node being mutated and |
| /// triggering updates must be passed as \p N. |
| /// |
| /// This function returns the SCC containing \p N. This will be either \p C if |
| /// no new SCCs have been split out, or it will be the new SCC containing \p N. |
| template <typename SCCRangeT> |
| static LazyCallGraph::SCC * |
| incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, |
| LazyCallGraph::Node &N, LazyCallGraph::SCC *C, |
| CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { |
| using SCC = LazyCallGraph::SCC; |
| |
| if (NewSCCRange.empty()) |
| return C; |
| |
| // Add the current SCC to the worklist as its shape has changed. |
| UR.CWorklist.insert(C); |
| LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C |
| << "\n"); |
| |
| SCC *OldC = C; |
| |
| // Update the current SCC. Note that if we have new SCCs, this must actually |
| // change the SCC. |
| assert(C != &*NewSCCRange.begin() && |
| "Cannot insert new SCCs without changing current SCC!"); |
| C = &*NewSCCRange.begin(); |
| assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); |
| |
| // If we had a cached FAM proxy originally, we will want to create more of |
| // them for each SCC that was split off. |
| FunctionAnalysisManager *FAM = nullptr; |
| if (auto *FAMProxy = |
| AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC)) |
| FAM = &FAMProxy->getManager(); |
| |
| // We need to propagate an invalidation call to all but the newly current SCC |
| // because the outer pass manager won't do that for us after splitting them. |
| // FIXME: We should accept a PreservedAnalysis from the CG updater so that if |
| // there are preserved analysis we can avoid invalidating them here for |
| // split-off SCCs. |
| // We know however that this will preserve any FAM proxy so go ahead and mark |
| // that. |
| auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); |
| PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); |
| AM.invalidate(*OldC, PA); |
| |
| // Ensure the now-current SCC's function analyses are updated. |
| if (FAM) |
| updateNewSCCFunctionAnalyses(*C, G, AM, *FAM); |
| |
| for (SCC &NewC : llvm::reverse(llvm::drop_begin(NewSCCRange))) { |
| assert(C != &NewC && "No need to re-visit the current SCC!"); |
| assert(OldC != &NewC && "Already handled the original SCC!"); |
| UR.CWorklist.insert(&NewC); |
| LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); |
| |
| // Ensure new SCCs' function analyses are updated. |
| if (FAM) |
| updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM); |
| |
| // Also propagate a normal invalidation to the new SCC as only the current |
| // will get one from the pass manager infrastructure. |
| AM.invalidate(NewC, PA); |
| } |
| return C; |
| } |
| |
| static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass( |
| LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, |
| CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, |
| FunctionAnalysisManager &FAM, bool FunctionPass) { |
| using Node = LazyCallGraph::Node; |
| using Edge = LazyCallGraph::Edge; |
| using SCC = LazyCallGraph::SCC; |
| using RefSCC = LazyCallGraph::RefSCC; |
| |
| RefSCC &InitialRC = InitialC.getOuterRefSCC(); |
| SCC *C = &InitialC; |
| RefSCC *RC = &InitialRC; |
| Function &F = N.getFunction(); |
| |
| // Walk the function body and build up the set of retained, promoted, and |
| // demoted edges. |
| SmallVector<Constant *, 16> Worklist; |
| SmallPtrSet<Constant *, 16> Visited; |
| SmallPtrSet<Node *, 16> RetainedEdges; |
| SmallSetVector<Node *, 4> PromotedRefTargets; |
| SmallSetVector<Node *, 4> DemotedCallTargets; |
| SmallSetVector<Node *, 4> NewCallEdges; |
| SmallSetVector<Node *, 4> NewRefEdges; |
| |
| // First walk the function and handle all called functions. We do this first |
| // because if there is a single call edge, whether there are ref edges is |
| // irrelevant. |
| for (Instruction &I : instructions(F)) { |
| if (auto *CB = dyn_cast<CallBase>(&I)) { |
| if (Function *Callee = CB->getCalledFunction()) { |
| if (Visited.insert(Callee).second && !Callee->isDeclaration()) { |
| Node *CalleeN = G.lookup(*Callee); |
| assert(CalleeN && |
| "Visited function should already have an associated node"); |
| Edge *E = N->lookup(*CalleeN); |
| assert((E || !FunctionPass) && |
| "No function transformations should introduce *new* " |
| "call edges! Any new calls should be modeled as " |
| "promoted existing ref edges!"); |
| bool Inserted = RetainedEdges.insert(CalleeN).second; |
| (void)Inserted; |
| assert(Inserted && "We should never visit a function twice."); |
| if (!E) |
| NewCallEdges.insert(CalleeN); |
| else if (!E->isCall()) |
| PromotedRefTargets.insert(CalleeN); |
| } |
| } else { |
| // We can miss devirtualization if an indirect call is created then |
| // promoted before updateCGAndAnalysisManagerForPass runs. |
| auto *Entry = UR.IndirectVHs.find(CB); |
| if (Entry == UR.IndirectVHs.end()) |
| UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)}); |
| else if (!Entry->second) |
| Entry->second = WeakTrackingVH(CB); |
| } |
| } |
| } |
| |
| // Now walk all references. |
| for (Instruction &I : instructions(F)) |
| for (Value *Op : I.operand_values()) |
| if (auto *OpC = dyn_cast<Constant>(Op)) |
| if (Visited.insert(OpC).second) |
| Worklist.push_back(OpC); |
| |
| auto VisitRef = [&](Function &Referee) { |
| Node *RefereeN = G.lookup(Referee); |
| assert(RefereeN && |
| "Visited function should already have an associated node"); |
| Edge *E = N->lookup(*RefereeN); |
| assert((E || !FunctionPass) && |
| "No function transformations should introduce *new* ref " |
| "edges! Any new ref edges would require IPO which " |
| "function passes aren't allowed to do!"); |
| bool Inserted = RetainedEdges.insert(RefereeN).second; |
| (void)Inserted; |
| assert(Inserted && "We should never visit a function twice."); |
| if (!E) |
| NewRefEdges.insert(RefereeN); |
| else if (E->isCall()) |
| DemotedCallTargets.insert(RefereeN); |
| }; |
| LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); |
| |
| // Handle new ref edges. |
| for (Node *RefTarget : NewRefEdges) { |
| SCC &TargetC = *G.lookupSCC(*RefTarget); |
| RefSCC &TargetRC = TargetC.getOuterRefSCC(); |
| (void)TargetRC; |
| // TODO: This only allows trivial edges to be added for now. |
| #ifdef EXPENSIVE_CHECKS |
| assert((RC == &TargetRC || |
| RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!"); |
| #endif |
| RC->insertTrivialRefEdge(N, *RefTarget); |
| } |
| |
| // Handle new call edges. |
| for (Node *CallTarget : NewCallEdges) { |
| SCC &TargetC = *G.lookupSCC(*CallTarget); |
| RefSCC &TargetRC = TargetC.getOuterRefSCC(); |
| (void)TargetRC; |
| // TODO: This only allows trivial edges to be added for now. |
| #ifdef EXPENSIVE_CHECKS |
| assert((RC == &TargetRC || |
| RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!"); |
| #endif |
| // Add a trivial ref edge to be promoted later on alongside |
| // PromotedRefTargets. |
| RC->insertTrivialRefEdge(N, *CallTarget); |
| } |
| |
| // Include synthetic reference edges to known, defined lib functions. |
| for (auto *LibFn : G.getLibFunctions()) |
| // While the list of lib functions doesn't have repeats, don't re-visit |
| // anything handled above. |
| if (!Visited.count(LibFn)) |
| VisitRef(*LibFn); |
| |
| // First remove all of the edges that are no longer present in this function. |
| // The first step makes these edges uniformly ref edges and accumulates them |
| // into a separate data structure so removal doesn't invalidate anything. |
| SmallVector<Node *, 4> DeadTargets; |
| for (Edge &E : *N) { |
| if (RetainedEdges.count(&E.getNode())) |
| continue; |
| |
| SCC &TargetC = *G.lookupSCC(E.getNode()); |
| RefSCC &TargetRC = TargetC.getOuterRefSCC(); |
| if (&TargetRC == RC && E.isCall()) { |
| if (C != &TargetC) { |
| // For separate SCCs this is trivial. |
| RC->switchTrivialInternalEdgeToRef(N, E.getNode()); |
| } else { |
| // Now update the call graph. |
| C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), |
| G, N, C, AM, UR); |
| } |
| } |
| |
| // Now that this is ready for actual removal, put it into our list. |
| DeadTargets.push_back(&E.getNode()); |
| } |
| // Remove the easy cases quickly and actually pull them out of our list. |
| llvm::erase_if(DeadTargets, [&](Node *TargetN) { |
| SCC &TargetC = *G.lookupSCC(*TargetN); |
| RefSCC &TargetRC = TargetC.getOuterRefSCC(); |
| |
| // We can't trivially remove internal targets, so skip |
| // those. |
| if (&TargetRC == RC) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '" |
| << *TargetN << "'\n"); |
| RC->removeOutgoingEdge(N, *TargetN); |
| return true; |
| }); |
| |
| // Now do a batch removal of the internal ref edges left. |
| auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); |
| if (!NewRefSCCs.empty()) { |
| // The old RefSCC is dead, mark it as such. |
| UR.InvalidatedRefSCCs.insert(RC); |
| |
| // Note that we don't bother to invalidate analyses as ref-edge |
| // connectivity is not really observable in any way and is intended |
| // exclusively to be used for ordering of transforms rather than for |
| // analysis conclusions. |
| |
| // Update RC to the "bottom". |
| assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); |
| RC = &C->getOuterRefSCC(); |
| assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); |
| |
| // The RC worklist is in reverse postorder, so we enqueue the new ones in |
| // RPO except for the one which contains the source node as that is the |
| // "bottom" we will continue processing in the bottom-up walk. |
| assert(NewRefSCCs.front() == RC && |
| "New current RefSCC not first in the returned list!"); |
| for (RefSCC *NewRC : llvm::reverse(llvm::drop_begin(NewRefSCCs))) { |
| assert(NewRC != RC && "Should not encounter the current RefSCC further " |
| "in the postorder list of new RefSCCs."); |
| UR.RCWorklist.insert(NewRC); |
| LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " |
| << *NewRC << "\n"); |
| } |
| } |
| |
| // Next demote all the call edges that are now ref edges. This helps make |
| // the SCCs small which should minimize the work below as we don't want to |
| // form cycles that this would break. |
| for (Node *RefTarget : DemotedCallTargets) { |
| SCC &TargetC = *G.lookupSCC(*RefTarget); |
| RefSCC &TargetRC = TargetC.getOuterRefSCC(); |
| |
| // The easy case is when the target RefSCC is not this RefSCC. This is |
| // only supported when the target RefSCC is a child of this RefSCC. |
| if (&TargetRC != RC) { |
| #ifdef EXPENSIVE_CHECKS |
| assert(RC->isAncestorOf(TargetRC) && |
| "Cannot potentially form RefSCC cycles here!"); |
| #endif |
| RC->switchOutgoingEdgeToRef(N, *RefTarget); |
| LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N |
| << "' to '" << *RefTarget << "'\n"); |
| continue; |
| } |
| |
| // We are switching an internal call edge to a ref edge. This may split up |
| // some SCCs. |
| if (C != &TargetC) { |
| // For separate SCCs this is trivial. |
| RC->switchTrivialInternalEdgeToRef(N, *RefTarget); |
| continue; |
| } |
| |
| // Now update the call graph. |
| C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, |
| C, AM, UR); |
| } |
| |
| // We added a ref edge earlier for new call edges, promote those to call edges |
| // alongside PromotedRefTargets. |
| for (Node *E : NewCallEdges) |
| PromotedRefTargets.insert(E); |
| |
| // Now promote ref edges into call edges. |
| for (Node *CallTarget : PromotedRefTargets) { |
| SCC &TargetC = *G.lookupSCC(*CallTarget); |
| RefSCC &TargetRC = TargetC.getOuterRefSCC(); |
| |
| // The easy case is when the target RefSCC is not this RefSCC. This is |
| // only supported when the target RefSCC is a child of this RefSCC. |
| if (&TargetRC != RC) { |
| #ifdef EXPENSIVE_CHECKS |
| assert(RC->isAncestorOf(TargetRC) && |
| "Cannot potentially form RefSCC cycles here!"); |
| #endif |
| RC->switchOutgoingEdgeToCall(N, *CallTarget); |
| LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N |
| << "' to '" << *CallTarget << "'\n"); |
| continue; |
| } |
| LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" |
| << N << "' to '" << *CallTarget << "'\n"); |
| |
| // Otherwise we are switching an internal ref edge to a call edge. This |
| // may merge away some SCCs, and we add those to the UpdateResult. We also |
| // need to make sure to update the worklist in the event SCCs have moved |
| // before the current one in the post-order sequence |
| bool HasFunctionAnalysisProxy = false; |
| auto InitialSCCIndex = RC->find(*C) - RC->begin(); |
| bool FormedCycle = RC->switchInternalEdgeToCall( |
| N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { |
| for (SCC *MergedC : MergedSCCs) { |
| assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); |
| |
| HasFunctionAnalysisProxy |= |
| AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( |
| *MergedC) != nullptr; |
| |
| // Mark that this SCC will no longer be valid. |
| UR.InvalidatedSCCs.insert(MergedC); |
| |
| // FIXME: We should really do a 'clear' here to forcibly release |
| // memory, but we don't have a good way of doing that and |
| // preserving the function analyses. |
| auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); |
| PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); |
| AM.invalidate(*MergedC, PA); |
| } |
| }); |
| |
| // If we formed a cycle by creating this call, we need to update more data |
| // structures. |
| if (FormedCycle) { |
| C = &TargetC; |
| assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); |
| |
| // If one of the invalidated SCCs had a cached proxy to a function |
| // analysis manager, we need to create a proxy in the new current SCC as |
| // the invalidated SCCs had their functions moved. |
| if (HasFunctionAnalysisProxy) |
| AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM); |
| |
| // Any analyses cached for this SCC are no longer precise as the shape |
| // has changed by introducing this cycle. However, we have taken care to |
| // update the proxies so it remains valide. |
| auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); |
| PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); |
| AM.invalidate(*C, PA); |
| } |
| auto NewSCCIndex = RC->find(*C) - RC->begin(); |
| // If we have actually moved an SCC to be topologically "below" the current |
| // one due to merging, we will need to revisit the current SCC after |
| // visiting those moved SCCs. |
| // |
| // It is critical that we *do not* revisit the current SCC unless we |
| // actually move SCCs in the process of merging because otherwise we may |
| // form a cycle where an SCC is split apart, merged, split, merged and so |
| // on infinitely. |
| if (InitialSCCIndex < NewSCCIndex) { |
| // Put our current SCC back onto the worklist as we'll visit other SCCs |
| // that are now definitively ordered prior to the current one in the |
| // post-order sequence, and may end up observing more precise context to |
| // optimize the current SCC. |
| UR.CWorklist.insert(C); |
| LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C |
| << "\n"); |
| // Enqueue in reverse order as we pop off the back of the worklist. |
| for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, |
| RC->begin() + NewSCCIndex))) { |
| UR.CWorklist.insert(&MovedC); |
| LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " |
| << MovedC << "\n"); |
| } |
| } |
| } |
| |
| assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); |
| assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); |
| assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); |
| |
| // Record the current RefSCC and SCC for higher layers of the CGSCC pass |
| // manager now that all the updates have been applied. |
| if (RC != &InitialRC) |
| UR.UpdatedRC = RC; |
| if (C != &InitialC) |
| UR.UpdatedC = C; |
| |
| return *C; |
| } |
| |
| LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( |
| LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, |
| CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, |
| FunctionAnalysisManager &FAM) { |
| return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, |
| /* FunctionPass */ true); |
| } |
| LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass( |
| LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, |
| CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, |
| FunctionAnalysisManager &FAM) { |
| return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, |
| /* FunctionPass */ false); |
| } |