|  | //===----- DivisionByConstantInfo.cpp - division by constant -*- C++ -*----===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// | 
|  | /// This file implements support for optimizing divisions by a constant | 
|  | /// | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Support/DivisionByConstantInfo.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | /// Calculate the magic numbers required to implement a signed integer division | 
|  | /// by a constant as a sequence of multiplies, adds and shifts.  Requires that | 
|  | /// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S. | 
|  | /// Warren, Jr., Chapter 10. | 
|  | SignedDivisionByConstantInfo SignedDivisionByConstantInfo::get(const APInt &D) { | 
|  | assert(!D.isZero() && "Precondition violation."); | 
|  |  | 
|  | // We'd be endlessly stuck in the loop. | 
|  | assert(D.getBitWidth() >= 3 && "Does not work at smaller bitwidths."); | 
|  |  | 
|  | APInt Delta; | 
|  | APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth()); | 
|  | struct SignedDivisionByConstantInfo Retval; | 
|  |  | 
|  | APInt AD = D.abs(); | 
|  | APInt T = SignedMin + (D.lshr(D.getBitWidth() - 1)); | 
|  | APInt ANC = T - 1 - T.urem(AD);   // absolute value of NC | 
|  | unsigned P = D.getBitWidth() - 1; // initialize P | 
|  | APInt Q1, R1, Q2, R2; | 
|  | // initialize Q1 = 2P/abs(NC); R1 = rem(2P,abs(NC)) | 
|  | APInt::udivrem(SignedMin, ANC, Q1, R1); | 
|  | // initialize Q2 = 2P/abs(D); R2 = rem(2P,abs(D)) | 
|  | APInt::udivrem(SignedMin, AD, Q2, R2); | 
|  | do { | 
|  | P = P + 1; | 
|  | Q1 <<= 1;      // update Q1 = 2P/abs(NC) | 
|  | R1 <<= 1;      // update R1 = rem(2P/abs(NC)) | 
|  | if (R1.uge(ANC)) { // must be unsigned comparison | 
|  | ++Q1; | 
|  | R1 -= ANC; | 
|  | } | 
|  | Q2 <<= 1;     // update Q2 = 2P/abs(D) | 
|  | R2 <<= 1;     // update R2 = rem(2P/abs(D)) | 
|  | if (R2.uge(AD)) { // must be unsigned comparison | 
|  | ++Q2; | 
|  | R2 -= AD; | 
|  | } | 
|  | // Delta = AD - R2 | 
|  | Delta = AD; | 
|  | Delta -= R2; | 
|  | } while (Q1.ult(Delta) || (Q1 == Delta && R1.isZero())); | 
|  |  | 
|  | Retval.Magic = std::move(Q2); | 
|  | ++Retval.Magic; | 
|  | if (D.isNegative()) | 
|  | Retval.Magic.negate();                  // resulting magic number | 
|  | Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift | 
|  | return Retval; | 
|  | } | 
|  |  | 
|  | /// Calculate the magic numbers required to implement an unsigned integer | 
|  | /// division by a constant as a sequence of multiplies, adds and shifts. | 
|  | /// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry | 
|  | /// S. Warren, Jr., chapter 10. | 
|  | /// LeadingZeros can be used to simplify the calculation if the upper bits | 
|  | /// of the divided value are known zero. | 
|  | UnsignedDivisionByConstantInfo | 
|  | UnsignedDivisionByConstantInfo::get(const APInt &D, unsigned LeadingZeros, | 
|  | bool AllowEvenDivisorOptimization) { | 
|  | assert(!D.isZero() && !D.isOne() && "Precondition violation."); | 
|  | assert(D.getBitWidth() > 1 && "Does not work at smaller bitwidths."); | 
|  |  | 
|  | APInt Delta; | 
|  | struct UnsignedDivisionByConstantInfo Retval; | 
|  | Retval.IsAdd = false; // initialize "add" indicator | 
|  | APInt AllOnes = | 
|  | APInt::getLowBitsSet(D.getBitWidth(), D.getBitWidth() - LeadingZeros); | 
|  | APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth()); | 
|  | APInt SignedMax = APInt::getSignedMaxValue(D.getBitWidth()); | 
|  |  | 
|  | // Calculate NC, the largest dividend such that NC.urem(D) == D-1. | 
|  | APInt NC = AllOnes - (AllOnes + 1 - D).urem(D); | 
|  | assert(NC.urem(D) == D - 1 && "Unexpected NC value"); | 
|  | unsigned P = D.getBitWidth() - 1; // initialize P | 
|  | APInt Q1, R1, Q2, R2; | 
|  | // initialize Q1 = 2P/NC; R1 = rem(2P,NC) | 
|  | APInt::udivrem(SignedMin, NC, Q1, R1); | 
|  | // initialize Q2 = (2P-1)/D; R2 = rem((2P-1),D) | 
|  | APInt::udivrem(SignedMax, D, Q2, R2); | 
|  | do { | 
|  | P = P + 1; | 
|  | if (R1.uge(NC - R1)) { | 
|  | // update Q1 | 
|  | Q1 <<= 1; | 
|  | ++Q1; | 
|  | // update R1 | 
|  | R1 <<= 1; | 
|  | R1 -= NC; | 
|  | } else { | 
|  | Q1 <<= 1; // update Q1 | 
|  | R1 <<= 1; // update R1 | 
|  | } | 
|  | if ((R2 + 1).uge(D - R2)) { | 
|  | if (Q2.uge(SignedMax)) | 
|  | Retval.IsAdd = true; | 
|  | // update Q2 | 
|  | Q2 <<= 1; | 
|  | ++Q2; | 
|  | // update R2 | 
|  | R2 <<= 1; | 
|  | ++R2; | 
|  | R2 -= D; | 
|  | } else { | 
|  | if (Q2.uge(SignedMin)) | 
|  | Retval.IsAdd = true; | 
|  | // update Q2 | 
|  | Q2 <<= 1; | 
|  | // update R2 | 
|  | R2 <<= 1; | 
|  | ++R2; | 
|  | } | 
|  | // Delta = D - 1 - R2 | 
|  | Delta = D; | 
|  | --Delta; | 
|  | Delta -= R2; | 
|  | } while (P < D.getBitWidth() * 2 && | 
|  | (Q1.ult(Delta) || (Q1 == Delta && R1.isZero()))); | 
|  |  | 
|  | if (Retval.IsAdd && !D[0] && AllowEvenDivisorOptimization) { | 
|  | unsigned PreShift = D.countr_zero(); | 
|  | APInt ShiftedD = D.lshr(PreShift); | 
|  | Retval = | 
|  | UnsignedDivisionByConstantInfo::get(ShiftedD, LeadingZeros + PreShift); | 
|  | assert(Retval.IsAdd == 0 && Retval.PreShift == 0); | 
|  | Retval.PreShift = PreShift; | 
|  | return Retval; | 
|  | } | 
|  |  | 
|  | Retval.Magic = std::move(Q2);             // resulting magic number | 
|  | ++Retval.Magic; | 
|  | Retval.PostShift = P - D.getBitWidth(); // resulting shift | 
|  | // Reduce shift amount for IsAdd. | 
|  | if (Retval.IsAdd) { | 
|  | assert(Retval.PostShift > 0 && "Unexpected shift"); | 
|  | Retval.PostShift -= 1; | 
|  | } | 
|  | Retval.PreShift = 0; | 
|  | return Retval; | 
|  | } |