|  | //===- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the DeltaTree and related classes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/DeltaTree.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include <cassert> | 
|  | #include <cstring> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | /// The DeltaTree class is a multiway search tree (BTree) structure with some | 
|  | /// fancy features.  B-Trees are generally more memory and cache efficient | 
|  | /// than binary trees, because they store multiple keys/values in each node. | 
|  | /// | 
|  | /// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing | 
|  | /// fast lookup by FileIndex.  However, an added (important) bonus is that it | 
|  | /// can also efficiently tell us the full accumulated delta for a specific | 
|  | /// file offset as well, without traversing the whole tree. | 
|  | /// | 
|  | /// The nodes of the tree are made up of instances of two classes: | 
|  | /// DeltaTreeNode and DeltaTreeInteriorNode.  The later subclasses the | 
|  | /// former and adds children pointers.  Each node knows the full delta of all | 
|  | /// entries (recursively) contained inside of it, which allows us to get the | 
|  | /// full delta implied by a whole subtree in constant time. | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// SourceDelta - As code in the original input buffer is added and deleted, | 
|  | /// SourceDelta records are used to keep track of how the input SourceLocation | 
|  | /// object is mapped into the output buffer. | 
|  | struct SourceDelta { | 
|  | unsigned FileLoc; | 
|  | int Delta; | 
|  |  | 
|  | static SourceDelta get(unsigned Loc, int D) { | 
|  | SourceDelta Delta; | 
|  | Delta.FileLoc = Loc; | 
|  | Delta.Delta = D; | 
|  | return Delta; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// DeltaTreeNode - The common part of all nodes. | 
|  | /// | 
|  | class DeltaTreeNode { | 
|  | public: | 
|  | struct InsertResult { | 
|  | DeltaTreeNode *LHS, *RHS; | 
|  | SourceDelta Split; | 
|  | }; | 
|  |  | 
|  | private: | 
|  | friend class DeltaTreeInteriorNode; | 
|  |  | 
|  | /// WidthFactor - This controls the number of K/V slots held in the BTree: | 
|  | /// how wide it is.  Each level of the BTree is guaranteed to have at least | 
|  | /// WidthFactor-1 K/V pairs (except the root) and may have at most | 
|  | /// 2*WidthFactor-1 K/V pairs. | 
|  | enum { WidthFactor = 8 }; | 
|  |  | 
|  | /// Values - This tracks the SourceDelta's currently in this node. | 
|  | SourceDelta Values[2 * WidthFactor - 1]; | 
|  |  | 
|  | /// NumValuesUsed - This tracks the number of values this node currently | 
|  | /// holds. | 
|  | unsigned char NumValuesUsed = 0; | 
|  |  | 
|  | /// IsLeaf - This is true if this is a leaf of the btree.  If false, this is | 
|  | /// an interior node, and is actually an instance of DeltaTreeInteriorNode. | 
|  | bool IsLeaf; | 
|  |  | 
|  | /// FullDelta - This is the full delta of all the values in this node and | 
|  | /// all children nodes. | 
|  | int FullDelta = 0; | 
|  |  | 
|  | public: | 
|  | DeltaTreeNode(bool isLeaf = true) : IsLeaf(isLeaf) {} | 
|  |  | 
|  | bool isLeaf() const { return IsLeaf; } | 
|  | int getFullDelta() const { return FullDelta; } | 
|  | bool isFull() const { return NumValuesUsed == 2 * WidthFactor - 1; } | 
|  |  | 
|  | unsigned getNumValuesUsed() const { return NumValuesUsed; } | 
|  |  | 
|  | const SourceDelta &getValue(unsigned i) const { | 
|  | assert(i < NumValuesUsed && "Invalid value #"); | 
|  | return Values[i]; | 
|  | } | 
|  |  | 
|  | SourceDelta &getValue(unsigned i) { | 
|  | assert(i < NumValuesUsed && "Invalid value #"); | 
|  | return Values[i]; | 
|  | } | 
|  |  | 
|  | /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into | 
|  | /// this node.  If insertion is easy, do it and return false.  Otherwise, | 
|  | /// split the node, populate InsertRes with info about the split, and return | 
|  | /// true. | 
|  | bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes); | 
|  |  | 
|  | void DoSplit(InsertResult &InsertRes); | 
|  |  | 
|  | /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a | 
|  | /// local walk over our contained deltas. | 
|  | void RecomputeFullDeltaLocally(); | 
|  |  | 
|  | void Destroy(); | 
|  | }; | 
|  |  | 
|  | /// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers. | 
|  | /// This class tracks them. | 
|  | class DeltaTreeInteriorNode : public DeltaTreeNode { | 
|  | friend class DeltaTreeNode; | 
|  |  | 
|  | DeltaTreeNode *Children[2 * WidthFactor]; | 
|  |  | 
|  | ~DeltaTreeInteriorNode() { | 
|  | for (unsigned i = 0, e = NumValuesUsed + 1; i != e; ++i) | 
|  | Children[i]->Destroy(); | 
|  | } | 
|  |  | 
|  | public: | 
|  | DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {} | 
|  |  | 
|  | DeltaTreeInteriorNode(const InsertResult &IR) | 
|  | : DeltaTreeNode(false /*nonleaf*/) { | 
|  | Children[0] = IR.LHS; | 
|  | Children[1] = IR.RHS; | 
|  | Values[0] = IR.Split; | 
|  | FullDelta = | 
|  | IR.LHS->getFullDelta() + IR.RHS->getFullDelta() + IR.Split.Delta; | 
|  | NumValuesUsed = 1; | 
|  | } | 
|  |  | 
|  | const DeltaTreeNode *getChild(unsigned i) const { | 
|  | assert(i < getNumValuesUsed() + 1 && "Invalid child"); | 
|  | return Children[i]; | 
|  | } | 
|  |  | 
|  | DeltaTreeNode *getChild(unsigned i) { | 
|  | assert(i < getNumValuesUsed() + 1 && "Invalid child"); | 
|  | return Children[i]; | 
|  | } | 
|  |  | 
|  | static bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); } | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | /// Destroy - A 'virtual' destructor. | 
|  | void DeltaTreeNode::Destroy() { | 
|  | if (isLeaf()) | 
|  | delete this; | 
|  | else | 
|  | delete cast<DeltaTreeInteriorNode>(this); | 
|  | } | 
|  |  | 
|  | /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a | 
|  | /// local walk over our contained deltas. | 
|  | void DeltaTreeNode::RecomputeFullDeltaLocally() { | 
|  | int NewFullDelta = 0; | 
|  | for (unsigned i = 0, e = getNumValuesUsed(); i != e; ++i) | 
|  | NewFullDelta += Values[i].Delta; | 
|  | if (auto *IN = dyn_cast<DeltaTreeInteriorNode>(this)) | 
|  | for (unsigned i = 0, e = getNumValuesUsed() + 1; i != e; ++i) | 
|  | NewFullDelta += IN->getChild(i)->getFullDelta(); | 
|  | FullDelta = NewFullDelta; | 
|  | } | 
|  |  | 
|  | /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into | 
|  | /// this node.  If insertion is easy, do it and return false.  Otherwise, | 
|  | /// split the node, populate InsertRes with info about the split, and return | 
|  | /// true. | 
|  | bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta, | 
|  | InsertResult *InsertRes) { | 
|  | // Maintain full delta for this node. | 
|  | FullDelta += Delta; | 
|  |  | 
|  | // Find the insertion point, the first delta whose index is >= FileIndex. | 
|  | unsigned i = 0, e = getNumValuesUsed(); | 
|  | while (i != e && FileIndex > getValue(i).FileLoc) | 
|  | ++i; | 
|  |  | 
|  | // If we found an a record for exactly this file index, just merge this | 
|  | // value into the pre-existing record and finish early. | 
|  | if (i != e && getValue(i).FileLoc == FileIndex) { | 
|  | // NOTE: Delta could drop to zero here.  This means that the delta entry is | 
|  | // useless and could be removed.  Supporting erases is more complex than | 
|  | // leaving an entry with Delta=0, so we just leave an entry with Delta=0 in | 
|  | // the tree. | 
|  | Values[i].Delta += Delta; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, we found an insertion point, and we know that the value at the | 
|  | // specified index is > FileIndex.  Handle the leaf case first. | 
|  | if (isLeaf()) { | 
|  | if (!isFull()) { | 
|  | // For an insertion into a non-full leaf node, just insert the value in | 
|  | // its sorted position.  This requires moving later values over. | 
|  | if (i != e) | 
|  | memmove(&Values[i + 1], &Values[i], sizeof(Values[0]) * (e - i)); | 
|  | Values[i] = SourceDelta::get(FileIndex, Delta); | 
|  | ++NumValuesUsed; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, if this is leaf is full, split the node at its median, insert | 
|  | // the value into one of the children, and return the result. | 
|  | assert(InsertRes && "No result location specified"); | 
|  | DoSplit(*InsertRes); | 
|  |  | 
|  | if (InsertRes->Split.FileLoc > FileIndex) | 
|  | InsertRes->LHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/); | 
|  | else | 
|  | InsertRes->RHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, this is an interior node.  Send the request down the tree. | 
|  | auto *IN = cast<DeltaTreeInteriorNode>(this); | 
|  | if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes)) | 
|  | return false; // If there was space in the child, just return. | 
|  |  | 
|  | // Okay, this split the subtree, producing a new value and two children to | 
|  | // insert here.  If this node is non-full, we can just insert it directly. | 
|  | if (!isFull()) { | 
|  | // Now that we have two nodes and a new element, insert the perclated value | 
|  | // into ourself by moving all the later values/children down, then inserting | 
|  | // the new one. | 
|  | if (i != e) | 
|  | memmove(&IN->Children[i + 2], &IN->Children[i + 1], | 
|  | (e - i) * sizeof(IN->Children[0])); | 
|  | IN->Children[i] = InsertRes->LHS; | 
|  | IN->Children[i + 1] = InsertRes->RHS; | 
|  |  | 
|  | if (e != i) | 
|  | memmove(&Values[i + 1], &Values[i], (e - i) * sizeof(Values[0])); | 
|  | Values[i] = InsertRes->Split; | 
|  | ++NumValuesUsed; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Finally, if this interior node was full and a node is percolated up, split | 
|  | // ourself and return that up the chain.  Start by saving all our info to | 
|  | // avoid having the split clobber it. | 
|  | IN->Children[i] = InsertRes->LHS; | 
|  | DeltaTreeNode *SubRHS = InsertRes->RHS; | 
|  | SourceDelta SubSplit = InsertRes->Split; | 
|  |  | 
|  | // Do the split. | 
|  | DoSplit(*InsertRes); | 
|  |  | 
|  | // Figure out where to insert SubRHS/NewSplit. | 
|  | DeltaTreeInteriorNode *InsertSide; | 
|  | if (SubSplit.FileLoc < InsertRes->Split.FileLoc) | 
|  | InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS); | 
|  | else | 
|  | InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS); | 
|  |  | 
|  | // We now have a non-empty interior node 'InsertSide' to insert | 
|  | // SubRHS/SubSplit into.  Find out where to insert SubSplit. | 
|  |  | 
|  | // Find the insertion point, the first delta whose index is >SubSplit.FileLoc. | 
|  | i = 0; | 
|  | e = InsertSide->getNumValuesUsed(); | 
|  | while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc) | 
|  | ++i; | 
|  |  | 
|  | // Now we know that i is the place to insert the split value into.  Insert it | 
|  | // and the child right after it. | 
|  | if (i != e) | 
|  | memmove(&InsertSide->Children[i + 2], &InsertSide->Children[i + 1], | 
|  | (e - i) * sizeof(IN->Children[0])); | 
|  | InsertSide->Children[i + 1] = SubRHS; | 
|  |  | 
|  | if (e != i) | 
|  | memmove(&InsertSide->Values[i + 1], &InsertSide->Values[i], | 
|  | (e - i) * sizeof(Values[0])); | 
|  | InsertSide->Values[i] = SubSplit; | 
|  | ++InsertSide->NumValuesUsed; | 
|  | InsertSide->FullDelta += SubSplit.Delta + SubRHS->getFullDelta(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values) | 
|  | /// into two subtrees each with "WidthFactor-1" values and a pivot value. | 
|  | /// Return the pieces in InsertRes. | 
|  | void DeltaTreeNode::DoSplit(InsertResult &InsertRes) { | 
|  | assert(isFull() && "Why split a non-full node?"); | 
|  |  | 
|  | // Since this node is full, it contains 2*WidthFactor-1 values.  We move | 
|  | // the first 'WidthFactor-1' values to the LHS child (which we leave in this | 
|  | // node), propagate one value up, and move the last 'WidthFactor-1' values | 
|  | // into the RHS child. | 
|  |  | 
|  | // Create the new child node. | 
|  | DeltaTreeNode *NewNode; | 
|  | if (auto *IN = dyn_cast<DeltaTreeInteriorNode>(this)) { | 
|  | // If this is an interior node, also move over 'WidthFactor' children | 
|  | // into the new node. | 
|  | DeltaTreeInteriorNode *New = new DeltaTreeInteriorNode(); | 
|  | memcpy(&New->Children[0], &IN->Children[WidthFactor], | 
|  | WidthFactor * sizeof(IN->Children[0])); | 
|  | NewNode = New; | 
|  | } else { | 
|  | // Just create the new leaf node. | 
|  | NewNode = new DeltaTreeNode(); | 
|  | } | 
|  |  | 
|  | // Move over the last 'WidthFactor-1' values from here to NewNode. | 
|  | memcpy(&NewNode->Values[0], &Values[WidthFactor], | 
|  | (WidthFactor - 1) * sizeof(Values[0])); | 
|  |  | 
|  | // Decrease the number of values in the two nodes. | 
|  | NewNode->NumValuesUsed = NumValuesUsed = WidthFactor - 1; | 
|  |  | 
|  | // Recompute the two nodes' full delta. | 
|  | NewNode->RecomputeFullDeltaLocally(); | 
|  | RecomputeFullDeltaLocally(); | 
|  |  | 
|  | InsertRes.LHS = this; | 
|  | InsertRes.RHS = NewNode; | 
|  | InsertRes.Split = Values[WidthFactor - 1]; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        DeltaTree Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // #define VERIFY_TREE | 
|  |  | 
|  | #ifdef VERIFY_TREE | 
|  | /// VerifyTree - Walk the btree performing assertions on various properties to | 
|  | /// verify consistency.  This is useful for debugging new changes to the tree. | 
|  | static void VerifyTree(const DeltaTreeNode *N) { | 
|  | const auto *IN = dyn_cast<DeltaTreeInteriorNode>(N); | 
|  | if (IN == 0) { | 
|  | // Verify leaves, just ensure that FullDelta matches up and the elements | 
|  | // are in proper order. | 
|  | int FullDelta = 0; | 
|  | for (unsigned i = 0, e = N->getNumValuesUsed(); i != e; ++i) { | 
|  | if (i) | 
|  | assert(N->getValue(i - 1).FileLoc < N->getValue(i).FileLoc); | 
|  | FullDelta += N->getValue(i).Delta; | 
|  | } | 
|  | assert(FullDelta == N->getFullDelta()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Verify interior nodes: Ensure that FullDelta matches up and the | 
|  | // elements are in proper order and the children are in proper order. | 
|  | int FullDelta = 0; | 
|  | for (unsigned i = 0, e = IN->getNumValuesUsed(); i != e; ++i) { | 
|  | const SourceDelta &IVal = N->getValue(i); | 
|  | const DeltaTreeNode *IChild = IN->getChild(i); | 
|  | if (i) | 
|  | assert(IN->getValue(i - 1).FileLoc < IVal.FileLoc); | 
|  | FullDelta += IVal.Delta; | 
|  | FullDelta += IChild->getFullDelta(); | 
|  |  | 
|  | // The largest value in child #i should be smaller than FileLoc. | 
|  | assert(IChild->getValue(IChild->getNumValuesUsed() - 1).FileLoc < | 
|  | IVal.FileLoc); | 
|  |  | 
|  | // The smallest value in child #i+1 should be larger than FileLoc. | 
|  | assert(IN->getChild(i + 1)->getValue(0).FileLoc > IVal.FileLoc); | 
|  | VerifyTree(IChild); | 
|  | } | 
|  |  | 
|  | FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta(); | 
|  |  | 
|  | assert(FullDelta == N->getFullDelta()); | 
|  | } | 
|  | #endif // VERIFY_TREE | 
|  |  | 
|  | static DeltaTreeNode *getRoot(void *Root) { return (DeltaTreeNode *)Root; } | 
|  |  | 
|  | DeltaTree::DeltaTree() { Root = new DeltaTreeNode(); } | 
|  |  | 
|  | DeltaTree::DeltaTree(const DeltaTree &RHS) { | 
|  | // Currently we only support copying when the RHS is empty. | 
|  | assert(getRoot(RHS.Root)->getNumValuesUsed() == 0 && | 
|  | "Can only copy empty tree"); | 
|  | Root = new DeltaTreeNode(); | 
|  | } | 
|  |  | 
|  | DeltaTree::~DeltaTree() { getRoot(Root)->Destroy(); } | 
|  |  | 
|  | /// getDeltaAt - Return the accumulated delta at the specified file offset. | 
|  | /// This includes all insertions or delections that occurred *before* the | 
|  | /// specified file index. | 
|  | int DeltaTree::getDeltaAt(unsigned FileIndex) const { | 
|  | const DeltaTreeNode *Node = getRoot(Root); | 
|  |  | 
|  | int Result = 0; | 
|  |  | 
|  | // Walk down the tree. | 
|  | while (true) { | 
|  | // For all nodes, include any local deltas before the specified file | 
|  | // index by summing them up directly.  Keep track of how many were | 
|  | // included. | 
|  | unsigned NumValsGreater = 0; | 
|  | for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e; | 
|  | ++NumValsGreater) { | 
|  | const SourceDelta &Val = Node->getValue(NumValsGreater); | 
|  |  | 
|  | if (Val.FileLoc >= FileIndex) | 
|  | break; | 
|  | Result += Val.Delta; | 
|  | } | 
|  |  | 
|  | // If we have an interior node, include information about children and | 
|  | // recurse.  Otherwise, if we have a leaf, we're done. | 
|  | const auto *IN = dyn_cast<DeltaTreeInteriorNode>(Node); | 
|  | if (!IN) | 
|  | return Result; | 
|  |  | 
|  | // Include any children to the left of the values we skipped, all of | 
|  | // their deltas should be included as well. | 
|  | for (unsigned i = 0; i != NumValsGreater; ++i) | 
|  | Result += IN->getChild(i)->getFullDelta(); | 
|  |  | 
|  | // If we found exactly the value we were looking for, break off the | 
|  | // search early.  There is no need to search the RHS of the value for | 
|  | // partial results. | 
|  | if (NumValsGreater != Node->getNumValuesUsed() && | 
|  | Node->getValue(NumValsGreater).FileLoc == FileIndex) | 
|  | return Result + IN->getChild(NumValsGreater)->getFullDelta(); | 
|  |  | 
|  | // Otherwise, traverse down the tree.  The selected subtree may be | 
|  | // partially included in the range. | 
|  | Node = IN->getChild(NumValsGreater); | 
|  | } | 
|  | // NOT REACHED. | 
|  | } | 
|  |  | 
|  | /// AddDelta - When a change is made that shifts around the text buffer, | 
|  | /// this method is used to record that info.  It inserts a delta of 'Delta' | 
|  | /// into the current DeltaTree at offset FileIndex. | 
|  | void DeltaTree::AddDelta(unsigned FileIndex, int Delta) { | 
|  | assert(Delta && "Adding a noop?"); | 
|  | DeltaTreeNode *MyRoot = getRoot(Root); | 
|  |  | 
|  | DeltaTreeNode::InsertResult InsertRes; | 
|  | if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) { | 
|  | Root = new DeltaTreeInteriorNode(InsertRes); | 
|  | #ifdef VERIFY_TREE | 
|  | MyRoot = Root; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef VERIFY_TREE | 
|  | VerifyTree(MyRoot); | 
|  | #endif | 
|  | } |