| //-------------------------------------------------------------------------------------------------- |
| // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. |
| // |
| // Set-up that's shared across all tests in this directory. In principle, this |
| // config could be moved to lit.local.cfg. However, there are downstream users that |
| // do not use these LIT config files. Hence why this is kept inline. |
| // |
| // DEFINE: %{sparsifier_opts} = enable-runtime-library=true |
| // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} |
| // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" |
| // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" |
| // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils |
| // DEFINE: %{run_opts} = -e main -entry-point-result=void |
| // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} |
| // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} |
| // |
| // DEFINE: %{env} = |
| //-------------------------------------------------------------------------------------------------- |
| |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false |
| // RUN: %{compile} | %{run} | FileCheck %s |
| |
| #CCC = #sparse_tensor.encoding<{ |
| map = (d0, d1, d2) -> (d0 : compressed, d1 : compressed, d2 : compressed), |
| posWidth = 64, |
| crdWidth = 32 |
| }> |
| |
| #DenseCSR = #sparse_tensor.encoding<{ |
| map = (d0, d1, d2) -> (d0 : dense, d1 : dense, d2 : compressed), |
| posWidth = 64, |
| crdWidth = 32 |
| }> |
| |
| #CSRDense = #sparse_tensor.encoding<{ |
| map = (d0, d1, d2) -> (d0 : dense, d1 : compressed, d2 : dense), |
| posWidth = 64, |
| crdWidth = 32 |
| }> |
| |
| // |
| // Test assembly operation with CCC, dense-CSR and CSR-dense. |
| // |
| module { |
| // |
| // Main driver. |
| // |
| func.func @main() { |
| %c0 = arith.constant 0 : index |
| %f0 = arith.constant 0.0 : f32 |
| |
| // |
| // Setup CCC. |
| // |
| |
| %data0 = arith.constant dense< |
| [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ]> : tensor<8xf32> |
| %pos00 = arith.constant dense< |
| [ 0, 3 ]> : tensor<2xi64> |
| %crd00 = arith.constant dense< |
| [ 0, 2, 3 ]> : tensor<3xi32> |
| %pos01 = arith.constant dense< |
| [ 0, 2, 4, 5 ]> : tensor<4xi64> |
| %crd01 = arith.constant dense< |
| [ 0, 1, 1, 2, 1 ]> : tensor<5xi32> |
| %pos02 = arith.constant dense< |
| [ 0, 2, 4, 5, 7, 8 ]> : tensor<6xi64> |
| %crd02 = arith.constant dense< |
| [ 0, 1, 0, 1, 0, 0, 1, 0 ]> : tensor<8xi32> |
| |
| %s0 = sparse_tensor.assemble (%pos00, %crd00, %pos01, %crd01, %pos02, %crd02), %data0 : |
| (tensor<2xi64>, tensor<3xi32>, |
| tensor<4xi64>, tensor<5xi32>, |
| tensor<6xi64>, tensor<8xi32>), tensor<8xf32> to tensor<4x3x2xf32, #CCC> |
| |
| // |
| // Setup DenseCSR. |
| // |
| |
| %data1 = arith.constant dense< |
| [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, |
| 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0 ]> : tensor<16xf32> |
| %pos1 = arith.constant dense< |
| [ 0, 2, 3, 4, 6, 6, 7, 9, 11, 13, 14, 15, 16 ]> : tensor<13xi64> |
| %crd1 = arith.constant dense< |
| [ 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1]> : tensor<16xi32> |
| |
| %s1 = sparse_tensor.assemble (%pos1, %crd1), %data1 : (tensor<13xi64>, tensor<16xi32>), tensor<16xf32> to tensor<4x3x2xf32, #DenseCSR> |
| |
| // |
| // Setup CSRDense. |
| // |
| |
| %data2 = arith.constant dense< |
| [ 1.0, 2.0, 0.0, 3.0, 4.0, 0.0, 5.0, 6.0, 0.0, 7.0, 8.0, |
| 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 0.0, 0.0, 15.0, 0.0, 16.0 ]> : tensor<22xf32> |
| %pos2 = arith.constant dense< |
| [ 0, 3, 5, 8, 11 ]> : tensor<5xi64> |
| %crd2 = arith.constant dense< |
| [ 0, 1, 2, 0, 2, 0, 1, 2, 0, 1, 2 ]> : tensor<11xi32> |
| |
| %s2 = sparse_tensor.assemble (%pos2, %crd2), %data2 : (tensor<5xi64>, tensor<11xi32>), tensor<22xf32> to tensor<4x3x2xf32, #CSRDense> |
| |
| // |
| // Verify. |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 8 |
| // CHECK-NEXT: dim = ( 4, 3, 2 ) |
| // CHECK-NEXT: lvl = ( 4, 3, 2 ) |
| // CHECK-NEXT: pos[0] : ( 0, 3 |
| // CHECK-NEXT: crd[0] : ( 0, 2, 3 |
| // CHECK-NEXT: pos[1] : ( 0, 2, 4, 5 |
| // CHECK-NEXT: crd[1] : ( 0, 1, 1, 2, 1 |
| // CHECK-NEXT: pos[2] : ( 0, 2, 4, 5, 7, 8 |
| // CHECK-NEXT: crd[2] : ( 0, 1, 0, 1, 0, 0, 1, 0 |
| // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8 |
| // CHECK-NEXT: ---- |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 16 |
| // CHECK-NEXT: dim = ( 4, 3, 2 ) |
| // CHECK-NEXT: lvl = ( 4, 3, 2 ) |
| // CHECK-NEXT: pos[2] : ( 0, 2, 3, 4, 6, 6, 7, 9, 11, 13, 14, 15, 16 |
| // CHECK-NEXT: crd[2] : ( 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1 |
| // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 |
| // CHECK-NEXT: ---- |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 22 |
| // CHECK-NEXT: dim = ( 4, 3, 2 ) |
| // CHECK-NEXT: lvl = ( 4, 3, 2 ) |
| // CHECK-NEXT: pos[1] : ( 0, 3, 5, 8, 11 |
| // CHECK-NEXT: crd[1] : ( 0, 1, 2, 0, 2, 0, 1, 2, 0, 1, 2 |
| // CHECK-NEXT: values : ( 1, 2, 0, 3, 4, 0, 5, 6, 0, 7, 8, 9, 10, 11, 12, 13, 14, 0, 0, 15, 0, 16 |
| // CHECK-NEXT: ---- |
| // |
| sparse_tensor.print %s0 : tensor<4x3x2xf32, #CCC> |
| sparse_tensor.print %s1 : tensor<4x3x2xf32, #DenseCSR> |
| sparse_tensor.print %s2 : tensor<4x3x2xf32, #CSRDense> |
| |
| // TODO: This check is no longer needed once the codegen path uses the |
| // buffer deallocation pass. "dealloc_tensor" turn into a no-op in the |
| // codegen path. |
| %has_runtime = sparse_tensor.has_runtime_library |
| scf.if %has_runtime { |
| // sparse_tensor.assemble copies buffers when running with the runtime |
| // library. Deallocations are not needed when running in codegen mode. |
| bufferization.dealloc_tensor %s0 : tensor<4x3x2xf32, #CCC> |
| bufferization.dealloc_tensor %s1 : tensor<4x3x2xf32, #DenseCSR> |
| bufferization.dealloc_tensor %s2 : tensor<4x3x2xf32, #CSRDense> |
| } |
| |
| return |
| } |
| } |