|  | //===- X86InterleavedAccess.cpp -------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// This file contains the X86 implementation of the interleaved accesses | 
|  | /// optimization generating X86-specific instructions/intrinsics for | 
|  | /// interleaved access groups. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86ISelLowering.h" | 
|  | #include "X86Subtarget.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/VectorUtils.h" | 
|  | #include "llvm/CodeGenTypes/MachineValueType.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cmath> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// This class holds necessary information to represent an interleaved | 
|  | /// access group and supports utilities to lower the group into | 
|  | /// X86-specific instructions/intrinsics. | 
|  | ///  E.g. A group of interleaving access loads (Factor = 2; accessing every | 
|  | ///       other element) | 
|  | ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr | 
|  | ///        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6> | 
|  | ///        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7> | 
|  | class X86InterleavedAccessGroup { | 
|  | /// Reference to the wide-load instruction of an interleaved access | 
|  | /// group. | 
|  | Instruction *const Inst; | 
|  |  | 
|  | /// Reference to the shuffle(s), consumer(s) of the (load) 'Inst'. | 
|  | ArrayRef<ShuffleVectorInst *> Shuffles; | 
|  |  | 
|  | /// Reference to the starting index of each user-shuffle. | 
|  | ArrayRef<unsigned> Indices; | 
|  |  | 
|  | /// Reference to the interleaving stride in terms of elements. | 
|  | const unsigned Factor; | 
|  |  | 
|  | /// Reference to the underlying target. | 
|  | const X86Subtarget &Subtarget; | 
|  |  | 
|  | const DataLayout &DL; | 
|  |  | 
|  | IRBuilder<> &Builder; | 
|  |  | 
|  | /// Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors | 
|  | /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors. | 
|  | void decompose(Instruction *Inst, unsigned NumSubVectors, FixedVectorType *T, | 
|  | SmallVectorImpl<Instruction *> &DecomposedVectors); | 
|  |  | 
|  | /// Performs matrix transposition on a 4x4 matrix \p InputVectors and | 
|  | /// returns the transposed-vectors in \p TransposedVectors. | 
|  | /// E.g. | 
|  | /// InputVectors: | 
|  | ///   In-V0 = p1, p2, p3, p4 | 
|  | ///   In-V1 = q1, q2, q3, q4 | 
|  | ///   In-V2 = r1, r2, r3, r4 | 
|  | ///   In-V3 = s1, s2, s3, s4 | 
|  | /// OutputVectors: | 
|  | ///   Out-V0 = p1, q1, r1, s1 | 
|  | ///   Out-V1 = p2, q2, r2, s2 | 
|  | ///   Out-V2 = p3, q3, r3, s3 | 
|  | ///   Out-V3 = P4, q4, r4, s4 | 
|  | void transpose_4x4(ArrayRef<Instruction *> InputVectors, | 
|  | SmallVectorImpl<Value *> &TransposedMatrix); | 
|  | void interleave8bitStride4(ArrayRef<Instruction *> InputVectors, | 
|  | SmallVectorImpl<Value *> &TransposedMatrix, | 
|  | unsigned NumSubVecElems); | 
|  | void interleave8bitStride4VF8(ArrayRef<Instruction *> InputVectors, | 
|  | SmallVectorImpl<Value *> &TransposedMatrix); | 
|  | void interleave8bitStride3(ArrayRef<Instruction *> InputVectors, | 
|  | SmallVectorImpl<Value *> &TransposedMatrix, | 
|  | unsigned NumSubVecElems); | 
|  | void deinterleave8bitStride3(ArrayRef<Instruction *> InputVectors, | 
|  | SmallVectorImpl<Value *> &TransposedMatrix, | 
|  | unsigned NumSubVecElems); | 
|  |  | 
|  | public: | 
|  | /// In order to form an interleaved access group X86InterleavedAccessGroup | 
|  | /// requires a wide-load instruction \p 'I', a group of interleaved-vectors | 
|  | /// \p Shuffs, reference to the first indices of each interleaved-vector | 
|  | /// \p 'Ind' and the interleaving stride factor \p F. In order to generate | 
|  | /// X86-specific instructions/intrinsics it also requires the underlying | 
|  | /// target information \p STarget. | 
|  | explicit X86InterleavedAccessGroup(Instruction *I, | 
|  | ArrayRef<ShuffleVectorInst *> Shuffs, | 
|  | ArrayRef<unsigned> Ind, const unsigned F, | 
|  | const X86Subtarget &STarget, | 
|  | IRBuilder<> &B) | 
|  | : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget), | 
|  | DL(Inst->getDataLayout()), Builder(B) {} | 
|  |  | 
|  | /// Returns true if this interleaved access group can be lowered into | 
|  | /// x86-specific instructions/intrinsics, false otherwise. | 
|  | bool isSupported() const; | 
|  |  | 
|  | /// Lowers this interleaved access group into X86-specific | 
|  | /// instructions/intrinsics. | 
|  | bool lowerIntoOptimizedSequence(); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool X86InterleavedAccessGroup::isSupported() const { | 
|  | VectorType *ShuffleVecTy = Shuffles[0]->getType(); | 
|  | Type *ShuffleEltTy = ShuffleVecTy->getElementType(); | 
|  | unsigned ShuffleElemSize = DL.getTypeSizeInBits(ShuffleEltTy); | 
|  | unsigned WideInstSize; | 
|  |  | 
|  | // Currently, lowering is supported for the following vectors: | 
|  | // Stride 4: | 
|  | //    1. Store and load of 4-element vectors of 64 bits on AVX. | 
|  | //    2. Store of 16/32-element vectors of 8 bits on AVX. | 
|  | // Stride 3: | 
|  | //    1. Load of 16/32-element vectors of 8 bits on AVX. | 
|  | if (!Subtarget.hasAVX() || (Factor != 4 && Factor != 3)) | 
|  | return false; | 
|  |  | 
|  | if (isa<LoadInst>(Inst)) { | 
|  | WideInstSize = DL.getTypeSizeInBits(Inst->getType()); | 
|  | if (cast<LoadInst>(Inst)->getPointerAddressSpace()) | 
|  | return false; | 
|  | } else | 
|  | WideInstSize = DL.getTypeSizeInBits(Shuffles[0]->getType()); | 
|  |  | 
|  | // We support shuffle represents stride 4 for byte type with size of | 
|  | // WideInstSize. | 
|  | if (ShuffleElemSize == 64 && WideInstSize == 1024 && Factor == 4) | 
|  | return true; | 
|  |  | 
|  | if (ShuffleElemSize == 8 && isa<StoreInst>(Inst) && Factor == 4 && | 
|  | (WideInstSize == 256 || WideInstSize == 512 || WideInstSize == 1024 || | 
|  | WideInstSize == 2048)) | 
|  | return true; | 
|  |  | 
|  | if (ShuffleElemSize == 8 && Factor == 3 && | 
|  | (WideInstSize == 384 || WideInstSize == 768 || WideInstSize == 1536)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void X86InterleavedAccessGroup::decompose( | 
|  | Instruction *VecInst, unsigned NumSubVectors, FixedVectorType *SubVecTy, | 
|  | SmallVectorImpl<Instruction *> &DecomposedVectors) { | 
|  | assert((isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) && | 
|  | "Expected Load or Shuffle"); | 
|  |  | 
|  | Type *VecWidth = VecInst->getType(); | 
|  | (void)VecWidth; | 
|  | assert(VecWidth->isVectorTy() && | 
|  | DL.getTypeSizeInBits(VecWidth) >= | 
|  | DL.getTypeSizeInBits(SubVecTy) * NumSubVectors && | 
|  | "Invalid Inst-size!!!"); | 
|  |  | 
|  | if (auto *SVI = dyn_cast<ShuffleVectorInst>(VecInst)) { | 
|  | Value *Op0 = SVI->getOperand(0); | 
|  | Value *Op1 = SVI->getOperand(1); | 
|  |  | 
|  | // Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type. | 
|  | for (unsigned i = 0; i < NumSubVectors; ++i) | 
|  | DecomposedVectors.push_back( | 
|  | cast<ShuffleVectorInst>(Builder.CreateShuffleVector( | 
|  | Op0, Op1, | 
|  | createSequentialMask(Indices[i], SubVecTy->getNumElements(), | 
|  | 0)))); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Decompose the load instruction. | 
|  | LoadInst *LI = cast<LoadInst>(VecInst); | 
|  | Type *VecBaseTy; | 
|  | unsigned int NumLoads = NumSubVectors; | 
|  | // In the case of stride 3 with a vector of 32 elements load the information | 
|  | // in the following way: | 
|  | // [0,1...,VF/2-1,VF/2+VF,VF/2+VF+1,...,2VF-1] | 
|  | unsigned VecLength = DL.getTypeSizeInBits(VecWidth); | 
|  | Value *VecBasePtr = LI->getPointerOperand(); | 
|  | if (VecLength == 768 || VecLength == 1536) { | 
|  | VecBaseTy = FixedVectorType::get(Type::getInt8Ty(LI->getContext()), 16); | 
|  | NumLoads = NumSubVectors * (VecLength / 384); | 
|  | } else { | 
|  | VecBaseTy = SubVecTy; | 
|  | } | 
|  | // Generate N loads of T type. | 
|  | assert(VecBaseTy->getPrimitiveSizeInBits().isKnownMultipleOf(8) && | 
|  | "VecBaseTy's size must be a multiple of 8"); | 
|  | const Align FirstAlignment = LI->getAlign(); | 
|  | const Align SubsequentAlignment = commonAlignment( | 
|  | FirstAlignment, VecBaseTy->getPrimitiveSizeInBits().getFixedValue() / 8); | 
|  | Align Alignment = FirstAlignment; | 
|  | for (unsigned i = 0; i < NumLoads; i++) { | 
|  | // TODO: Support inbounds GEP. | 
|  | Value *NewBasePtr = | 
|  | Builder.CreateGEP(VecBaseTy, VecBasePtr, Builder.getInt32(i)); | 
|  | Instruction *NewLoad = | 
|  | Builder.CreateAlignedLoad(VecBaseTy, NewBasePtr, Alignment); | 
|  | DecomposedVectors.push_back(NewLoad); | 
|  | Alignment = SubsequentAlignment; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Changing the scale of the vector type by reducing the number of elements and | 
|  | // doubling the scalar size. | 
|  | static MVT scaleVectorType(MVT VT) { | 
|  | unsigned ScalarSize = VT.getVectorElementType().getScalarSizeInBits() * 2; | 
|  | return MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), | 
|  | VT.getVectorNumElements() / 2); | 
|  | } | 
|  |  | 
|  | static constexpr int Concat[] = { | 
|  | 0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, 12, 13, 14, 15, | 
|  | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, | 
|  | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, | 
|  | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}; | 
|  |  | 
|  | // genShuffleBland - Creates shuffle according to two vectors.This function is | 
|  | // only works on instructions with lane inside 256 registers. According to | 
|  | // the mask 'Mask' creates a new Mask 'Out' by the offset of the mask. The | 
|  | // offset amount depends on the two integer, 'LowOffset' and 'HighOffset'. | 
|  | // Where the 'LowOffset' refers to the first vector and the highOffset refers to | 
|  | // the second vector. | 
|  | // |a0....a5,b0....b4,c0....c4|a16..a21,b16..b20,c16..c20| | 
|  | // |c5...c10,a5....a9,b5....b9|c21..c26,a22..a26,b21..b25| | 
|  | // |b10..b15,c11..c15,a10..a15|b26..b31,c27..c31,a27..a31| | 
|  | // For the sequence to work as a mirror to the load. | 
|  | // We must consider the elements order as above. | 
|  | // In this function we are combining two types of shuffles. | 
|  | // The first one is vpshufed and the second is a type of "blend" shuffle. | 
|  | // By computing the shuffle on a sequence of 16 elements(one lane) and add the | 
|  | // correct offset. We are creating a vpsuffed + blend sequence between two | 
|  | // shuffles. | 
|  | static void genShuffleBland(MVT VT, ArrayRef<int> Mask, | 
|  | SmallVectorImpl<int> &Out, int LowOffset, | 
|  | int HighOffset) { | 
|  | assert(VT.getSizeInBits() >= 256 && | 
|  | "This function doesn't accept width smaller then 256"); | 
|  | unsigned NumOfElm = VT.getVectorNumElements(); | 
|  | for (int I : Mask) | 
|  | Out.push_back(I + LowOffset); | 
|  | for (int I : Mask) | 
|  | Out.push_back(I + HighOffset + NumOfElm); | 
|  | } | 
|  |  | 
|  | // reorderSubVector returns the data to is the original state. And de-facto is | 
|  | // the opposite of  the function concatSubVector. | 
|  |  | 
|  | // For VecElems = 16 | 
|  | // Invec[0] -  |0|      TransposedMatrix[0] - |0| | 
|  | // Invec[1] -  |1|  =>  TransposedMatrix[1] - |1| | 
|  | // Invec[2] -  |2|      TransposedMatrix[2] - |2| | 
|  |  | 
|  | // For VecElems = 32 | 
|  | // Invec[0] -  |0|3|      TransposedMatrix[0] - |0|1| | 
|  | // Invec[1] -  |1|4|  =>  TransposedMatrix[1] - |2|3| | 
|  | // Invec[2] -  |2|5|      TransposedMatrix[2] - |4|5| | 
|  |  | 
|  | // For VecElems = 64 | 
|  | // Invec[0] -  |0|3|6|9 |     TransposedMatrix[0] - |0|1|2 |3 | | 
|  | // Invec[1] -  |1|4|7|10| =>  TransposedMatrix[1] - |4|5|6 |7 | | 
|  | // Invec[2] -  |2|5|8|11|     TransposedMatrix[2] - |8|9|10|11| | 
|  |  | 
|  | static void reorderSubVector(MVT VT, SmallVectorImpl<Value *> &TransposedMatrix, | 
|  | ArrayRef<Value *> Vec, ArrayRef<int> VPShuf, | 
|  | unsigned VecElems, unsigned Stride, | 
|  | IRBuilder<> &Builder) { | 
|  |  | 
|  | if (VecElems == 16) { | 
|  | for (unsigned i = 0; i < Stride; i++) | 
|  | TransposedMatrix[i] = Builder.CreateShuffleVector(Vec[i], VPShuf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SmallVector<int, 32> OptimizeShuf; | 
|  | Value *Temp[8]; | 
|  |  | 
|  | for (unsigned i = 0; i < (VecElems / 16) * Stride; i += 2) { | 
|  | genShuffleBland(VT, VPShuf, OptimizeShuf, (i / Stride) * 16, | 
|  | (i + 1) / Stride * 16); | 
|  | Temp[i / 2] = Builder.CreateShuffleVector( | 
|  | Vec[i % Stride], Vec[(i + 1) % Stride], OptimizeShuf); | 
|  | OptimizeShuf.clear(); | 
|  | } | 
|  |  | 
|  | if (VecElems == 32) { | 
|  | std::copy(Temp, Temp + Stride, TransposedMatrix.begin()); | 
|  | return; | 
|  | } else | 
|  | for (unsigned i = 0; i < Stride; i++) | 
|  | TransposedMatrix[i] = | 
|  | Builder.CreateShuffleVector(Temp[2 * i], Temp[2 * i + 1], Concat); | 
|  | } | 
|  |  | 
|  | void X86InterleavedAccessGroup::interleave8bitStride4VF8( | 
|  | ArrayRef<Instruction *> Matrix, | 
|  | SmallVectorImpl<Value *> &TransposedMatrix) { | 
|  | // Assuming we start from the following vectors: | 
|  | // Matrix[0]= c0 c1 c2 c3 c4 ... c7 | 
|  | // Matrix[1]= m0 m1 m2 m3 m4 ... m7 | 
|  | // Matrix[2]= y0 y1 y2 y3 y4 ... y7 | 
|  | // Matrix[3]= k0 k1 k2 k3 k4 ... k7 | 
|  |  | 
|  | MVT VT = MVT::v8i16; | 
|  | TransposedMatrix.resize(2); | 
|  | SmallVector<int, 16> MaskLow; | 
|  | SmallVector<int, 32> MaskLowTemp1, MaskLowWord; | 
|  | SmallVector<int, 32> MaskHighTemp1, MaskHighWord; | 
|  |  | 
|  | for (unsigned i = 0; i < 8; ++i) { | 
|  | MaskLow.push_back(i); | 
|  | MaskLow.push_back(i + 8); | 
|  | } | 
|  |  | 
|  | createUnpackShuffleMask(VT, MaskLowTemp1, true, false); | 
|  | createUnpackShuffleMask(VT, MaskHighTemp1, false, false); | 
|  | narrowShuffleMaskElts(2, MaskHighTemp1, MaskHighWord); | 
|  | narrowShuffleMaskElts(2, MaskLowTemp1, MaskLowWord); | 
|  | // IntrVec1Low = c0 m0 c1 m1 c2 m2 c3 m3 c4 m4 c5 m5 c6 m6 c7 m7 | 
|  | // IntrVec2Low = y0 k0 y1 k1 y2 k2 y3 k3 y4 k4 y5 k5 y6 k6 y7 k7 | 
|  | Value *IntrVec1Low = | 
|  | Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow); | 
|  | Value *IntrVec2Low = | 
|  | Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow); | 
|  |  | 
|  | // TransposedMatrix[0] = c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3 | 
|  | // TransposedMatrix[1] = c4 m4 y4 k4 c5 m5 y5 k5 c6 m6 y6 k6 c7 m7 y7 k7 | 
|  |  | 
|  | TransposedMatrix[0] = | 
|  | Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskLowWord); | 
|  | TransposedMatrix[1] = | 
|  | Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskHighWord); | 
|  | } | 
|  |  | 
|  | void X86InterleavedAccessGroup::interleave8bitStride4( | 
|  | ArrayRef<Instruction *> Matrix, SmallVectorImpl<Value *> &TransposedMatrix, | 
|  | unsigned NumOfElm) { | 
|  | // Example: Assuming we start from the following vectors: | 
|  | // Matrix[0]= c0 c1 c2 c3 c4 ... c31 | 
|  | // Matrix[1]= m0 m1 m2 m3 m4 ... m31 | 
|  | // Matrix[2]= y0 y1 y2 y3 y4 ... y31 | 
|  | // Matrix[3]= k0 k1 k2 k3 k4 ... k31 | 
|  |  | 
|  | MVT VT = MVT::getVectorVT(MVT::i8, NumOfElm); | 
|  | MVT HalfVT = scaleVectorType(VT); | 
|  |  | 
|  | TransposedMatrix.resize(4); | 
|  | SmallVector<int, 32> MaskHigh; | 
|  | SmallVector<int, 32> MaskLow; | 
|  | SmallVector<int, 32> LowHighMask[2]; | 
|  | SmallVector<int, 32> MaskHighTemp; | 
|  | SmallVector<int, 32> MaskLowTemp; | 
|  |  | 
|  | // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86 | 
|  | // shuffle pattern. | 
|  |  | 
|  | createUnpackShuffleMask(VT, MaskLow, true, false); | 
|  | createUnpackShuffleMask(VT, MaskHigh, false, false); | 
|  |  | 
|  | // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86 | 
|  | // shuffle pattern. | 
|  |  | 
|  | createUnpackShuffleMask(HalfVT, MaskLowTemp, true, false); | 
|  | createUnpackShuffleMask(HalfVT, MaskHighTemp, false, false); | 
|  | narrowShuffleMaskElts(2, MaskLowTemp, LowHighMask[0]); | 
|  | narrowShuffleMaskElts(2, MaskHighTemp, LowHighMask[1]); | 
|  |  | 
|  | // IntrVec1Low  = c0  m0  c1  m1 ... c7  m7  | c16 m16 c17 m17 ... c23 m23 | 
|  | // IntrVec1High = c8  m8  c9  m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31 | 
|  | // IntrVec2Low  = y0  k0  y1  k1 ... y7  k7  | y16 k16 y17 k17 ... y23 k23 | 
|  | // IntrVec2High = y8  k8  y9  k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31 | 
|  | Value *IntrVec[4]; | 
|  |  | 
|  | IntrVec[0] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow); | 
|  | IntrVec[1] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskHigh); | 
|  | IntrVec[2] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow); | 
|  | IntrVec[3] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskHigh); | 
|  |  | 
|  | // cmyk4  cmyk5  cmyk6   cmyk7  | cmyk20 cmyk21 cmyk22 cmyk23 | 
|  | // cmyk12 cmyk13 cmyk14  cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31 | 
|  | // cmyk0  cmyk1  cmyk2   cmyk3  | cmyk16 cmyk17 cmyk18 cmyk19 | 
|  | // cmyk8  cmyk9  cmyk10  cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27 | 
|  |  | 
|  | Value *VecOut[4]; | 
|  | for (int i = 0; i < 4; i++) | 
|  | VecOut[i] = Builder.CreateShuffleVector(IntrVec[i / 2], IntrVec[i / 2 + 2], | 
|  | LowHighMask[i % 2]); | 
|  |  | 
|  | // cmyk0  cmyk1  cmyk2  cmyk3   | cmyk4  cmyk5  cmyk6  cmyk7 | 
|  | // cmyk8  cmyk9  cmyk10 cmyk11  | cmyk12 cmyk13 cmyk14 cmyk15 | 
|  | // cmyk16 cmyk17 cmyk18 cmyk19  | cmyk20 cmyk21 cmyk22 cmyk23 | 
|  | // cmyk24 cmyk25 cmyk26 cmyk27  | cmyk28 cmyk29 cmyk30 cmyk31 | 
|  |  | 
|  | if (VT == MVT::v16i8) { | 
|  | std::copy(VecOut, VecOut + 4, TransposedMatrix.begin()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | reorderSubVector(VT, TransposedMatrix, VecOut, ArrayRef(Concat, 16), NumOfElm, | 
|  | 4, Builder); | 
|  | } | 
|  |  | 
|  | //  createShuffleStride returns shuffle mask of size N. | 
|  | //  The shuffle pattern is as following : | 
|  | //  {0, Stride%(VF/Lane), (2*Stride%(VF/Lane))...(VF*Stride/Lane)%(VF/Lane), | 
|  | //  (VF/ Lane) ,(VF / Lane)+Stride%(VF/Lane),..., | 
|  | //  (VF / Lane)+(VF*Stride/Lane)%(VF/Lane)} | 
|  | //  Where Lane is the # of lanes in a register: | 
|  | //  VectorSize = 128 => Lane = 1 | 
|  | //  VectorSize = 256 => Lane = 2 | 
|  | //  For example shuffle pattern for VF 16 register size 256 -> lanes = 2 | 
|  | //  {<[0|3|6|1|4|7|2|5]-[8|11|14|9|12|15|10|13]>} | 
|  | static void createShuffleStride(MVT VT, int Stride, | 
|  | SmallVectorImpl<int> &Mask) { | 
|  | int VectorSize = VT.getSizeInBits(); | 
|  | int VF = VT.getVectorNumElements(); | 
|  | int LaneCount = std::max(VectorSize / 128, 1); | 
|  | for (int Lane = 0; Lane < LaneCount; Lane++) | 
|  | for (int i = 0, LaneSize = VF / LaneCount; i != LaneSize; ++i) | 
|  | Mask.push_back((i * Stride) % LaneSize + LaneSize * Lane); | 
|  | } | 
|  |  | 
|  | //  setGroupSize sets 'SizeInfo' to the size(number of elements) of group | 
|  | //  inside mask a shuffleMask. A mask contains exactly 3 groups, where | 
|  | //  each group is a monotonically increasing sequence with stride 3. | 
|  | //  For example shuffleMask {0,3,6,1,4,7,2,5} => {3,3,2} | 
|  | static void setGroupSize(MVT VT, SmallVectorImpl<int> &SizeInfo) { | 
|  | int VectorSize = VT.getSizeInBits(); | 
|  | int VF = VT.getVectorNumElements() / std::max(VectorSize / 128, 1); | 
|  | for (int i = 0, FirstGroupElement = 0; i < 3; i++) { | 
|  | int GroupSize = std::ceil((VF - FirstGroupElement) / 3.0); | 
|  | SizeInfo.push_back(GroupSize); | 
|  | FirstGroupElement = ((GroupSize)*3 + FirstGroupElement) % VF; | 
|  | } | 
|  | } | 
|  |  | 
|  | //  DecodePALIGNRMask returns the shuffle mask of vpalign instruction. | 
|  | //  vpalign works according to lanes | 
|  | //  Where Lane is the # of lanes in a register: | 
|  | //  VectorWide = 128 => Lane = 1 | 
|  | //  VectorWide = 256 => Lane = 2 | 
|  | //  For Lane = 1 shuffle pattern is: {DiffToJump,...,DiffToJump+VF-1}. | 
|  | //  For Lane = 2 shuffle pattern is: | 
|  | //  {DiffToJump,...,VF/2-1,VF,...,DiffToJump+VF-1}. | 
|  | //  Imm variable sets the offset amount. The result of the | 
|  | //  function is stored inside ShuffleMask vector and it built as described in | 
|  | //  the begin of the description. AlignDirection is a boolean that indicates the | 
|  | //  direction of the alignment. (false - align to the "right" side while true - | 
|  | //  align to the "left" side) | 
|  | static void DecodePALIGNRMask(MVT VT, unsigned Imm, | 
|  | SmallVectorImpl<int> &ShuffleMask, | 
|  | bool AlignDirection = true, bool Unary = false) { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | unsigned NumLanes = std::max((int)VT.getSizeInBits() / 128, 1); | 
|  | unsigned NumLaneElts = NumElts / NumLanes; | 
|  |  | 
|  | Imm = AlignDirection ? Imm : (NumLaneElts - Imm); | 
|  | unsigned Offset = Imm * (VT.getScalarSizeInBits() / 8); | 
|  |  | 
|  | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { | 
|  | for (unsigned i = 0; i != NumLaneElts; ++i) { | 
|  | unsigned Base = i + Offset; | 
|  | // if i+offset is out of this lane then we actually need the other source | 
|  | // If Unary the other source is the first source. | 
|  | if (Base >= NumLaneElts) | 
|  | Base = Unary ? Base % NumLaneElts : Base + NumElts - NumLaneElts; | 
|  | ShuffleMask.push_back(Base + l); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // concatSubVector - The function rebuilds the data to a correct expected | 
|  | // order. An assumption(The shape of the matrix) was taken for the | 
|  | // deinterleaved to work with lane's instructions like 'vpalign' or 'vphuf'. | 
|  | // This function ensures that the data is built in correct way for the lane | 
|  | // instructions. Each lane inside the vector is a 128-bit length. | 
|  | // | 
|  | // The 'InVec' argument contains the data in increasing order. In InVec[0] You | 
|  | // can find the first 128 bit data. The number of different lanes inside a | 
|  | // vector depends on the 'VecElems'.In general, the formula is | 
|  | // VecElems * type / 128. The size of the array 'InVec' depends and equal to | 
|  | // 'VecElems'. | 
|  |  | 
|  | // For VecElems = 16 | 
|  | // Invec[0] - |0|      Vec[0] - |0| | 
|  | // Invec[1] - |1|  =>  Vec[1] - |1| | 
|  | // Invec[2] - |2|      Vec[2] - |2| | 
|  |  | 
|  | // For VecElems = 32 | 
|  | // Invec[0] - |0|1|      Vec[0] - |0|3| | 
|  | // Invec[1] - |2|3|  =>  Vec[1] - |1|4| | 
|  | // Invec[2] - |4|5|      Vec[2] - |2|5| | 
|  |  | 
|  | // For VecElems = 64 | 
|  | // Invec[0] - |0|1|2 |3 |      Vec[0] - |0|3|6|9 | | 
|  | // Invec[1] - |4|5|6 |7 |  =>  Vec[1] - |1|4|7|10| | 
|  | // Invec[2] - |8|9|10|11|      Vec[2] - |2|5|8|11| | 
|  |  | 
|  | static void concatSubVector(Value **Vec, ArrayRef<Instruction *> InVec, | 
|  | unsigned VecElems, IRBuilder<> &Builder) { | 
|  | if (VecElems == 16) { | 
|  | for (int i = 0; i < 3; i++) | 
|  | Vec[i] = InVec[i]; | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (unsigned j = 0; j < VecElems / 32; j++) | 
|  | for (int i = 0; i < 3; i++) | 
|  | Vec[i + j * 3] = Builder.CreateShuffleVector( | 
|  | InVec[j * 6 + i], InVec[j * 6 + i + 3], ArrayRef(Concat, 32)); | 
|  |  | 
|  | if (VecElems == 32) | 
|  | return; | 
|  |  | 
|  | for (int i = 0; i < 3; i++) | 
|  | Vec[i] = Builder.CreateShuffleVector(Vec[i], Vec[i + 3], Concat); | 
|  | } | 
|  |  | 
|  | void X86InterleavedAccessGroup::deinterleave8bitStride3( | 
|  | ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix, | 
|  | unsigned VecElems) { | 
|  | // Example: Assuming we start from the following vectors: | 
|  | // Matrix[0]= a0 b0 c0 a1 b1 c1 a2 b2 | 
|  | // Matrix[1]= c2 a3 b3 c3 a4 b4 c4 a5 | 
|  | // Matrix[2]= b5 c5 a6 b6 c6 a7 b7 c7 | 
|  |  | 
|  | TransposedMatrix.resize(3); | 
|  | SmallVector<int, 32> VPShuf; | 
|  | SmallVector<int, 32> VPAlign[2]; | 
|  | SmallVector<int, 32> VPAlign2; | 
|  | SmallVector<int, 32> VPAlign3; | 
|  | SmallVector<int, 3> GroupSize; | 
|  | Value *Vec[6], *TempVector[3]; | 
|  |  | 
|  | MVT VT = MVT::getVT(Shuffles[0]->getType()); | 
|  |  | 
|  | createShuffleStride(VT, 3, VPShuf); | 
|  | setGroupSize(VT, GroupSize); | 
|  |  | 
|  | for (int i = 0; i < 2; i++) | 
|  | DecodePALIGNRMask(VT, GroupSize[2 - i], VPAlign[i], false); | 
|  |  | 
|  | DecodePALIGNRMask(VT, GroupSize[2] + GroupSize[1], VPAlign2, true, true); | 
|  | DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, true, true); | 
|  |  | 
|  | concatSubVector(Vec, InVec, VecElems, Builder); | 
|  | // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1 | 
|  | // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4 | 
|  | // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7 | 
|  |  | 
|  | for (int i = 0; i < 3; i++) | 
|  | Vec[i] = Builder.CreateShuffleVector(Vec[i], VPShuf); | 
|  |  | 
|  | // TempVector[0]= a6 a7 a0 a1 a2 b0 b1 b2 | 
|  | // TempVector[1]= c0 c1 c2 c3 c4 a3 a4 a5 | 
|  | // TempVector[2]= b3 b4 b5 b6 b7 c5 c6 c7 | 
|  |  | 
|  | for (int i = 0; i < 3; i++) | 
|  | TempVector[i] = | 
|  | Builder.CreateShuffleVector(Vec[(i + 2) % 3], Vec[i], VPAlign[0]); | 
|  |  | 
|  | // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2 | 
|  | // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4 | 
|  | // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7 | 
|  |  | 
|  | for (int i = 0; i < 3; i++) | 
|  | Vec[i] = Builder.CreateShuffleVector(TempVector[(i + 1) % 3], TempVector[i], | 
|  | VPAlign[1]); | 
|  |  | 
|  | // TransposedMatrix[0]= a0 a1 a2 a3 a4 a5 a6 a7 | 
|  | // TransposedMatrix[1]= b0 b1 b2 b3 b4 b5 b6 b7 | 
|  | // TransposedMatrix[2]= c0 c1 c2 c3 c4 c5 c6 c7 | 
|  |  | 
|  | Value *TempVec = Builder.CreateShuffleVector(Vec[1], VPAlign3); | 
|  | TransposedMatrix[0] = Builder.CreateShuffleVector(Vec[0], VPAlign2); | 
|  | TransposedMatrix[1] = VecElems == 8 ? Vec[2] : TempVec; | 
|  | TransposedMatrix[2] = VecElems == 8 ? TempVec : Vec[2]; | 
|  | } | 
|  |  | 
|  | // group2Shuffle reorder the shuffle stride back into continuous order. | 
|  | // For example For VF16 with Mask1 = {0,3,6,9,12,15,2,5,8,11,14,1,4,7,10,13} => | 
|  | // MaskResult = {0,11,6,1,12,7,2,13,8,3,14,9,4,15,10,5}. | 
|  | static void group2Shuffle(MVT VT, SmallVectorImpl<int> &Mask, | 
|  | SmallVectorImpl<int> &Output) { | 
|  | int IndexGroup[3] = {0, 0, 0}; | 
|  | int Index = 0; | 
|  | int VectorWidth = VT.getSizeInBits(); | 
|  | int VF = VT.getVectorNumElements(); | 
|  | // Find the index of the different groups. | 
|  | int Lane = (VectorWidth / 128 > 0) ? VectorWidth / 128 : 1; | 
|  | for (int i = 0; i < 3; i++) { | 
|  | IndexGroup[(Index * 3) % (VF / Lane)] = Index; | 
|  | Index += Mask[i]; | 
|  | } | 
|  | // According to the index compute the convert mask. | 
|  | for (int i = 0; i < VF / Lane; i++) { | 
|  | Output.push_back(IndexGroup[i % 3]); | 
|  | IndexGroup[i % 3]++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86InterleavedAccessGroup::interleave8bitStride3( | 
|  | ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix, | 
|  | unsigned VecElems) { | 
|  | // Example: Assuming we start from the following vectors: | 
|  | // Matrix[0]= a0 a1 a2 a3 a4 a5 a6 a7 | 
|  | // Matrix[1]= b0 b1 b2 b3 b4 b5 b6 b7 | 
|  | // Matrix[2]= c0 c1 c2 c3 c3 a7 b7 c7 | 
|  |  | 
|  | TransposedMatrix.resize(3); | 
|  | SmallVector<int, 3> GroupSize; | 
|  | SmallVector<int, 32> VPShuf; | 
|  | SmallVector<int, 32> VPAlign[3]; | 
|  | SmallVector<int, 32> VPAlign2; | 
|  | SmallVector<int, 32> VPAlign3; | 
|  |  | 
|  | Value *Vec[3], *TempVector[3]; | 
|  | MVT VT = MVT::getVectorVT(MVT::i8, VecElems); | 
|  |  | 
|  | setGroupSize(VT, GroupSize); | 
|  |  | 
|  | for (int i = 0; i < 3; i++) | 
|  | DecodePALIGNRMask(VT, GroupSize[i], VPAlign[i]); | 
|  |  | 
|  | DecodePALIGNRMask(VT, GroupSize[1] + GroupSize[2], VPAlign2, false, true); | 
|  | DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, false, true); | 
|  |  | 
|  | // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2 | 
|  | // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4 | 
|  | // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7 | 
|  |  | 
|  | Vec[0] = Builder.CreateShuffleVector(InVec[0], VPAlign2); | 
|  | Vec[1] = Builder.CreateShuffleVector(InVec[1], VPAlign3); | 
|  | Vec[2] = InVec[2]; | 
|  |  | 
|  | // Vec[0]= a6 a7 a0 a1 a2 b0 b1 b2 | 
|  | // Vec[1]= c0 c1 c2 c3 c4 a3 a4 a5 | 
|  | // Vec[2]= b3 b4 b5 b6 b7 c5 c6 c7 | 
|  |  | 
|  | for (int i = 0; i < 3; i++) | 
|  | TempVector[i] = | 
|  | Builder.CreateShuffleVector(Vec[i], Vec[(i + 2) % 3], VPAlign[1]); | 
|  |  | 
|  | // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1 | 
|  | // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4 | 
|  | // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7 | 
|  |  | 
|  | for (int i = 0; i < 3; i++) | 
|  | Vec[i] = Builder.CreateShuffleVector(TempVector[i], TempVector[(i + 1) % 3], | 
|  | VPAlign[2]); | 
|  |  | 
|  | // TransposedMatrix[0] = a0 b0 c0 a1 b1 c1 a2 b2 | 
|  | // TransposedMatrix[1] = c2 a3 b3 c3 a4 b4 c4 a5 | 
|  | // TransposedMatrix[2] = b5 c5 a6 b6 c6 a7 b7 c7 | 
|  |  | 
|  | unsigned NumOfElm = VT.getVectorNumElements(); | 
|  | group2Shuffle(VT, GroupSize, VPShuf); | 
|  | reorderSubVector(VT, TransposedMatrix, Vec, VPShuf, NumOfElm, 3, Builder); | 
|  | } | 
|  |  | 
|  | void X86InterleavedAccessGroup::transpose_4x4( | 
|  | ArrayRef<Instruction *> Matrix, | 
|  | SmallVectorImpl<Value *> &TransposedMatrix) { | 
|  | assert(Matrix.size() == 4 && "Invalid matrix size"); | 
|  | TransposedMatrix.resize(4); | 
|  |  | 
|  | // dst = src1[0,1],src2[0,1] | 
|  | static constexpr int IntMask1[] = {0, 1, 4, 5}; | 
|  | ArrayRef<int> Mask = ArrayRef(IntMask1, 4); | 
|  | Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); | 
|  | Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); | 
|  |  | 
|  | // dst = src1[2,3],src2[2,3] | 
|  | static constexpr int IntMask2[] = {2, 3, 6, 7}; | 
|  | Mask = ArrayRef(IntMask2, 4); | 
|  | Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); | 
|  | Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); | 
|  |  | 
|  | // dst = src1[0],src2[0],src1[2],src2[2] | 
|  | static constexpr int IntMask3[] = {0, 4, 2, 6}; | 
|  | Mask = ArrayRef(IntMask3, 4); | 
|  | TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); | 
|  | TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); | 
|  |  | 
|  | // dst = src1[1],src2[1],src1[3],src2[3] | 
|  | static constexpr int IntMask4[] = {1, 5, 3, 7}; | 
|  | Mask = ArrayRef(IntMask4, 4); | 
|  | TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); | 
|  | TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); | 
|  | } | 
|  |  | 
|  | // Lowers this interleaved access group into X86-specific | 
|  | // instructions/intrinsics. | 
|  | bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() { | 
|  | SmallVector<Instruction *, 4> DecomposedVectors; | 
|  | SmallVector<Value *, 4> TransposedVectors; | 
|  | auto *ShuffleTy = cast<FixedVectorType>(Shuffles[0]->getType()); | 
|  |  | 
|  | if (isa<LoadInst>(Inst)) { | 
|  | auto *ShuffleEltTy = cast<FixedVectorType>(Inst->getType()); | 
|  | unsigned NumSubVecElems = ShuffleEltTy->getNumElements() / Factor; | 
|  | switch (NumSubVecElems) { | 
|  | default: | 
|  | return false; | 
|  | case 4: | 
|  | case 8: | 
|  | case 16: | 
|  | case 32: | 
|  | case 64: | 
|  | if (ShuffleTy->getNumElements() != NumSubVecElems) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Try to generate target-sized register(/instruction). | 
|  | decompose(Inst, Factor, ShuffleTy, DecomposedVectors); | 
|  |  | 
|  | // Perform matrix-transposition in order to compute interleaved | 
|  | // results by generating some sort of (optimized) target-specific | 
|  | // instructions. | 
|  |  | 
|  | if (NumSubVecElems == 4) | 
|  | transpose_4x4(DecomposedVectors, TransposedVectors); | 
|  | else | 
|  | deinterleave8bitStride3(DecomposedVectors, TransposedVectors, | 
|  | NumSubVecElems); | 
|  |  | 
|  | // Now replace the unoptimized-interleaved-vectors with the | 
|  | // transposed-interleaved vectors. | 
|  | for (unsigned i = 0, e = Shuffles.size(); i < e; ++i) | 
|  | Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Type *ShuffleEltTy = ShuffleTy->getElementType(); | 
|  | unsigned NumSubVecElems = ShuffleTy->getNumElements() / Factor; | 
|  |  | 
|  | // Lower the interleaved stores: | 
|  | //   1. Decompose the interleaved wide shuffle into individual shuffle | 
|  | //   vectors. | 
|  | decompose(Shuffles[0], Factor, | 
|  | FixedVectorType::get(ShuffleEltTy, NumSubVecElems), | 
|  | DecomposedVectors); | 
|  |  | 
|  | //   2. Transpose the interleaved-vectors into vectors of contiguous | 
|  | //      elements. | 
|  | switch (NumSubVecElems) { | 
|  | case 4: | 
|  | transpose_4x4(DecomposedVectors, TransposedVectors); | 
|  | break; | 
|  | case 8: | 
|  | interleave8bitStride4VF8(DecomposedVectors, TransposedVectors); | 
|  | break; | 
|  | case 16: | 
|  | case 32: | 
|  | case 64: | 
|  | if (Factor == 4) | 
|  | interleave8bitStride4(DecomposedVectors, TransposedVectors, | 
|  | NumSubVecElems); | 
|  | if (Factor == 3) | 
|  | interleave8bitStride3(DecomposedVectors, TransposedVectors, | 
|  | NumSubVecElems); | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //   3. Concatenate the contiguous-vectors back into a wide vector. | 
|  | Value *WideVec = concatenateVectors(Builder, TransposedVectors); | 
|  |  | 
|  | //   4. Generate a store instruction for wide-vec. | 
|  | StoreInst *SI = cast<StoreInst>(Inst); | 
|  | Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(), SI->getAlign()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Lower interleaved load(s) into target specific instructions/ | 
|  | // intrinsics. Lowering sequence varies depending on the vector-types, factor, | 
|  | // number of shuffles and ISA. | 
|  | // Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX. | 
|  | bool X86TargetLowering::lowerInterleavedLoad( | 
|  | Instruction *Load, Value *Mask, ArrayRef<ShuffleVectorInst *> Shuffles, | 
|  | ArrayRef<unsigned> Indices, unsigned Factor, const APInt &GapMask) const { | 
|  | assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && | 
|  | "Invalid interleave factor"); | 
|  | assert(!Shuffles.empty() && "Empty shufflevector input"); | 
|  | assert(Shuffles.size() == Indices.size() && | 
|  | "Unmatched number of shufflevectors and indices"); | 
|  |  | 
|  | auto *LI = dyn_cast<LoadInst>(Load); | 
|  | if (!LI) | 
|  | return false; | 
|  | assert(!Mask && GapMask.popcount() == Factor && "Unexpected mask on a load"); | 
|  |  | 
|  | // Create an interleaved access group. | 
|  | IRBuilder<> Builder(LI); | 
|  | X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget, | 
|  | Builder); | 
|  |  | 
|  | return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::lowerInterleavedStore(Instruction *Store, | 
|  | Value *LaneMask, | 
|  | ShuffleVectorInst *SVI, | 
|  | unsigned Factor, | 
|  | const APInt &GapMask) const { | 
|  | assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && | 
|  | "Invalid interleave factor"); | 
|  |  | 
|  | assert(cast<FixedVectorType>(SVI->getType())->getNumElements() % Factor == | 
|  | 0 && | 
|  | "Invalid interleaved store"); | 
|  |  | 
|  | auto *SI = dyn_cast<StoreInst>(Store); | 
|  | if (!SI) | 
|  | return false; | 
|  | assert(!LaneMask && GapMask.popcount() == Factor && | 
|  | "Unexpected mask on store"); | 
|  |  | 
|  | // Holds the indices of SVI that correspond to the starting index of each | 
|  | // interleaved shuffle. | 
|  | auto Mask = SVI->getShuffleMask(); | 
|  | SmallVector<unsigned, 4> Indices(Mask.take_front(Factor)); | 
|  |  | 
|  | ArrayRef<ShuffleVectorInst *> Shuffles = ArrayRef(SVI); | 
|  |  | 
|  | // Create an interleaved access group. | 
|  | IRBuilder<> Builder(SI); | 
|  | X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget, | 
|  | Builder); | 
|  |  | 
|  | return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); | 
|  | } |