|  | //=== X86CallingConv.cpp - X86 Custom Calling Convention Impl   -*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the implementation of custom routines for the X86 | 
|  | // Calling Convention that aren't done by tablegen. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86CallingConv.h" | 
|  | #include "X86Subtarget.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/IR/Module.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | /// When regcall calling convention compiled to 32 bit arch, special treatment | 
|  | /// is required for 64 bit masks. | 
|  | /// The value should be assigned to two GPRs. | 
|  | /// \return true if registers were allocated and false otherwise. | 
|  | static bool CC_X86_32_RegCall_Assign2Regs(unsigned &ValNo, MVT &ValVT, | 
|  | MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State) { | 
|  | // List of GPR registers that are available to store values in regcall | 
|  | // calling convention. | 
|  | static const MCPhysReg RegList[] = {X86::EAX, X86::ECX, X86::EDX, X86::EDI, | 
|  | X86::ESI}; | 
|  |  | 
|  | // The vector will save all the available registers for allocation. | 
|  | SmallVector<unsigned, 5> AvailableRegs; | 
|  |  | 
|  | // searching for the available registers. | 
|  | for (auto Reg : RegList) { | 
|  | if (!State.isAllocated(Reg)) | 
|  | AvailableRegs.push_back(Reg); | 
|  | } | 
|  |  | 
|  | const size_t RequiredGprsUponSplit = 2; | 
|  | if (AvailableRegs.size() < RequiredGprsUponSplit) | 
|  | return false; // Not enough free registers - continue the search. | 
|  |  | 
|  | // Allocating the available registers. | 
|  | for (unsigned I = 0; I < RequiredGprsUponSplit; I++) { | 
|  |  | 
|  | // Marking the register as located. | 
|  | MCRegister Reg = State.AllocateReg(AvailableRegs[I]); | 
|  |  | 
|  | // Since we previously made sure that 2 registers are available | 
|  | // we expect that a real register number will be returned. | 
|  | assert(Reg && "Expecting a register will be available"); | 
|  |  | 
|  | // Assign the value to the allocated register | 
|  | State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | 
|  | } | 
|  |  | 
|  | // Successful in allocating registers - stop scanning next rules. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static ArrayRef<MCPhysReg> CC_X86_VectorCallGetSSEs(const MVT &ValVT) { | 
|  | if (ValVT.is512BitVector()) { | 
|  | static const MCPhysReg RegListZMM[] = {X86::ZMM0, X86::ZMM1, X86::ZMM2, | 
|  | X86::ZMM3, X86::ZMM4, X86::ZMM5}; | 
|  | return RegListZMM; | 
|  | } | 
|  |  | 
|  | if (ValVT.is256BitVector()) { | 
|  | static const MCPhysReg RegListYMM[] = {X86::YMM0, X86::YMM1, X86::YMM2, | 
|  | X86::YMM3, X86::YMM4, X86::YMM5}; | 
|  | return RegListYMM; | 
|  | } | 
|  |  | 
|  | static const MCPhysReg RegListXMM[] = {X86::XMM0, X86::XMM1, X86::XMM2, | 
|  | X86::XMM3, X86::XMM4, X86::XMM5}; | 
|  | return RegListXMM; | 
|  | } | 
|  |  | 
|  | static ArrayRef<MCPhysReg> CC_X86_64_VectorCallGetGPRs() { | 
|  | static const MCPhysReg RegListGPR[] = {X86::RCX, X86::RDX, X86::R8, X86::R9}; | 
|  | return RegListGPR; | 
|  | } | 
|  |  | 
|  | static bool CC_X86_VectorCallAssignRegister(unsigned &ValNo, MVT &ValVT, | 
|  | MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State) { | 
|  |  | 
|  | ArrayRef<MCPhysReg> RegList = CC_X86_VectorCallGetSSEs(ValVT); | 
|  | bool Is64bit = static_cast<const X86Subtarget &>( | 
|  | State.getMachineFunction().getSubtarget()) | 
|  | .is64Bit(); | 
|  |  | 
|  | for (auto Reg : RegList) { | 
|  | // If the register is not marked as allocated - assign to it. | 
|  | if (!State.isAllocated(Reg)) { | 
|  | MCRegister AssigedReg = State.AllocateReg(Reg); | 
|  | assert(AssigedReg == Reg && "Expecting a valid register allocation"); | 
|  | State.addLoc( | 
|  | CCValAssign::getReg(ValNo, ValVT, AssigedReg, LocVT, LocInfo)); | 
|  | return true; | 
|  | } | 
|  | // If the register is marked as shadow allocated - assign to it. | 
|  | if (Is64bit && State.IsShadowAllocatedReg(Reg)) { | 
|  | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Clang should ensure that hva marked vectors will have " | 
|  | "an available register."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Vectorcall calling convention has special handling for vector types or | 
|  | /// HVA for 64 bit arch. | 
|  | /// For HVAs shadow registers might be allocated on the first pass | 
|  | /// and actual XMM registers are allocated on the second pass. | 
|  | /// For vector types, actual XMM registers are allocated on the first pass. | 
|  | /// \return true if registers were allocated and false otherwise. | 
|  | static bool CC_X86_64_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, CCState &State) { | 
|  | // On the second pass, go through the HVAs only. | 
|  | if (ArgFlags.isSecArgPass()) { | 
|  | if (ArgFlags.isHva()) | 
|  | return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo, | 
|  | ArgFlags, State); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Process only vector types as defined by vectorcall spec: | 
|  | // "A vector type is either a floating-point type, for example, | 
|  | //  a float or double, or an SIMD vector type, for example, __m128 or __m256". | 
|  | if (!(ValVT.isFloatingPoint() || | 
|  | (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) { | 
|  | // If R9 was already assigned it means that we are after the fourth element | 
|  | // and because this is not an HVA / Vector type, we need to allocate | 
|  | // shadow XMM register. | 
|  | if (State.isAllocated(X86::R9)) { | 
|  | // Assign shadow XMM register. | 
|  | (void)State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT)); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!ArgFlags.isHva() || ArgFlags.isHvaStart()) { | 
|  | // Assign shadow GPR register. | 
|  | (void)State.AllocateReg(CC_X86_64_VectorCallGetGPRs()); | 
|  |  | 
|  | // Assign XMM register - (shadow for HVA and non-shadow for non HVA). | 
|  | if (MCRegister Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) { | 
|  | // In Vectorcall Calling convention, additional shadow stack can be | 
|  | // created on top of the basic 32 bytes of win64. | 
|  | // It can happen if the fifth or sixth argument is vector type or HVA. | 
|  | // At that case for each argument a shadow stack of 8 bytes is allocated. | 
|  | const TargetRegisterInfo *TRI = | 
|  | State.getMachineFunction().getSubtarget().getRegisterInfo(); | 
|  | if (TRI->regsOverlap(Reg, X86::XMM4) || | 
|  | TRI->regsOverlap(Reg, X86::XMM5)) | 
|  | State.AllocateStack(8, Align(8)); | 
|  |  | 
|  | if (!ArgFlags.isHva()) { | 
|  | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | 
|  | return true; // Allocated a register - Stop the search. | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is an HVA - Stop the search, | 
|  | // otherwise continue the search. | 
|  | return ArgFlags.isHva(); | 
|  | } | 
|  |  | 
|  | /// Vectorcall calling convention has special handling for vector types or | 
|  | /// HVA for 32 bit arch. | 
|  | /// For HVAs actual XMM registers are allocated on the second pass. | 
|  | /// For vector types, actual XMM registers are allocated on the first pass. | 
|  | /// \return true if registers were allocated and false otherwise. | 
|  | static bool CC_X86_32_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, CCState &State) { | 
|  | // On the second pass, go through the HVAs only. | 
|  | if (ArgFlags.isSecArgPass()) { | 
|  | if (ArgFlags.isHva()) | 
|  | return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo, | 
|  | ArgFlags, State); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Process only vector types as defined by vectorcall spec: | 
|  | // "A vector type is either a floating point type, for example, | 
|  | //  a float or double, or an SIMD vector type, for example, __m128 or __m256". | 
|  | if (!(ValVT.isFloatingPoint() || | 
|  | (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (ArgFlags.isHva()) | 
|  | return true; // If this is an HVA - Stop the search. | 
|  |  | 
|  | // Assign XMM register. | 
|  | if (MCRegister Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) { | 
|  | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // In case we did not find an available XMM register for a vector - | 
|  | // pass it indirectly. | 
|  | // It is similar to CCPassIndirect, with the addition of inreg. | 
|  | if (!ValVT.isFloatingPoint()) { | 
|  | LocVT = MVT::i32; | 
|  | LocInfo = CCValAssign::Indirect; | 
|  | ArgFlags.setInReg(); | 
|  | } | 
|  |  | 
|  | return false; // No register was assigned - Continue the search. | 
|  | } | 
|  |  | 
|  | static bool CC_X86_AnyReg_Error(unsigned &, MVT &, MVT &, | 
|  | CCValAssign::LocInfo &, ISD::ArgFlagsTy &, | 
|  | CCState &) { | 
|  | llvm_unreachable("The AnyReg calling convention is only supported by the " | 
|  | "stackmap and patchpoint intrinsics."); | 
|  | // gracefully fallback to X86 C calling convention on Release builds. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool CC_X86_32_MCUInReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, CCState &State) { | 
|  | // This is similar to CCAssignToReg<[EAX, EDX, ECX]>, but makes sure | 
|  | // not to split i64 and double between a register and stack | 
|  | static const MCPhysReg RegList[] = {X86::EAX, X86::EDX, X86::ECX}; | 
|  | static const unsigned NumRegs = std::size(RegList); | 
|  |  | 
|  | SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs(); | 
|  |  | 
|  | // If this is the first part of an double/i64/i128, or if we're already | 
|  | // in the middle of a split, add to the pending list. If this is not | 
|  | // the end of the split, return, otherwise go on to process the pending | 
|  | // list | 
|  | if (ArgFlags.isSplit() || !PendingMembers.empty()) { | 
|  | PendingMembers.push_back( | 
|  | CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); | 
|  | if (!ArgFlags.isSplitEnd()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If there are no pending members, we are not in the middle of a split, | 
|  | // so do the usual inreg stuff. | 
|  | if (PendingMembers.empty()) { | 
|  | if (MCRegister Reg = State.AllocateReg(RegList)) { | 
|  | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(ArgFlags.isSplitEnd()); | 
|  |  | 
|  | // We now have the entire original argument in PendingMembers, so decide | 
|  | // whether to use registers or the stack. | 
|  | // Per the MCU ABI: | 
|  | // a) To use registers, we need to have enough of them free to contain | 
|  | // the entire argument. | 
|  | // b) We never want to use more than 2 registers for a single argument. | 
|  |  | 
|  | unsigned FirstFree = State.getFirstUnallocated(RegList); | 
|  | bool UseRegs = PendingMembers.size() <= std::min(2U, NumRegs - FirstFree); | 
|  |  | 
|  | for (auto &It : PendingMembers) { | 
|  | if (UseRegs) | 
|  | It.convertToReg(State.AllocateReg(RegList[FirstFree++])); | 
|  | else | 
|  | It.convertToMem(State.AllocateStack(4, Align(4))); | 
|  | State.addLoc(It); | 
|  | } | 
|  |  | 
|  | PendingMembers.clear(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// X86 interrupt handlers can only take one or two stack arguments, but if | 
|  | /// there are two arguments, they are in the opposite order from the standard | 
|  | /// convention. Therefore, we have to look at the argument count up front before | 
|  | /// allocating stack for each argument. | 
|  | static bool CC_X86_Intr(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, CCState &State) { | 
|  | const MachineFunction &MF = State.getMachineFunction(); | 
|  | size_t ArgCount = State.getMachineFunction().getFunction().arg_size(); | 
|  | bool Is64Bit = MF.getSubtarget<X86Subtarget>().is64Bit(); | 
|  | unsigned SlotSize = Is64Bit ? 8 : 4; | 
|  | unsigned Offset; | 
|  | if (ArgCount == 1 && ValNo == 0) { | 
|  | // If we have one argument, the argument is five stack slots big, at fixed | 
|  | // offset zero. | 
|  | Offset = State.AllocateStack(5 * SlotSize, Align(4)); | 
|  | } else if (ArgCount == 2 && ValNo == 0) { | 
|  | // If we have two arguments, the stack slot is *after* the error code | 
|  | // argument. Pretend it doesn't consume stack space, and account for it when | 
|  | // we assign the second argument. | 
|  | Offset = SlotSize; | 
|  | } else if (ArgCount == 2 && ValNo == 1) { | 
|  | // If this is the second of two arguments, it must be the error code. It | 
|  | // appears first on the stack, and is then followed by the five slot | 
|  | // interrupt struct. | 
|  | Offset = 0; | 
|  | (void)State.AllocateStack(6 * SlotSize, Align(4)); | 
|  | } else { | 
|  | report_fatal_error("unsupported x86 interrupt prototype"); | 
|  | } | 
|  |  | 
|  | // FIXME: This should be accounted for in | 
|  | // X86FrameLowering::getFrameIndexReference, not here. | 
|  | if (Is64Bit && ArgCount == 2) | 
|  | Offset += SlotSize; | 
|  |  | 
|  | State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool CC_X86_64_Pointer(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, CCState &State) { | 
|  | if (LocVT != MVT::i64) { | 
|  | LocVT = MVT::i64; | 
|  | LocInfo = CCValAssign::ZExt; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Special handling for i128: Either allocate the value to two consecutive | 
|  | /// i64 registers, or to the stack. Do not partially allocate in registers, | 
|  | /// and do not reserve any registers when allocating to the stack. | 
|  | static bool CC_X86_64_I128(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, CCState &State) { | 
|  | assert(ValVT == MVT::i64 && "Should have i64 parts"); | 
|  | SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs(); | 
|  | PendingMembers.push_back( | 
|  | CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); | 
|  |  | 
|  | if (!ArgFlags.isInConsecutiveRegsLast()) | 
|  | return true; | 
|  |  | 
|  | unsigned NumRegs = PendingMembers.size(); | 
|  | assert(NumRegs == 2 && "Should have two parts"); | 
|  |  | 
|  | static const MCPhysReg Regs[] = {X86::RDI, X86::RSI, X86::RDX, | 
|  | X86::RCX, X86::R8,  X86::R9}; | 
|  | ArrayRef<MCPhysReg> Allocated = State.AllocateRegBlock(Regs, NumRegs); | 
|  | if (!Allocated.empty()) { | 
|  | PendingMembers[0].convertToReg(Allocated[0]); | 
|  | PendingMembers[1].convertToReg(Allocated[1]); | 
|  | } else { | 
|  | int64_t Offset = State.AllocateStack(16, Align(16)); | 
|  | PendingMembers[0].convertToMem(Offset); | 
|  | PendingMembers[1].convertToMem(Offset + 8); | 
|  | } | 
|  | State.addLoc(PendingMembers[0]); | 
|  | State.addLoc(PendingMembers[1]); | 
|  | PendingMembers.clear(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Special handling for i128 and fp128: on x86-32, i128 and fp128 get legalized | 
|  | /// as four i32s, but fp128 must be passed on the stack with 16-byte alignment. | 
|  | /// Technically only fp128 has a specified ABI, but it makes sense to handle | 
|  | /// i128 the same until we hear differently. | 
|  | static bool CC_X86_32_I128_FP128(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, CCState &State) { | 
|  | assert(ValVT == MVT::i32 && "Should have i32 parts"); | 
|  | SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs(); | 
|  | PendingMembers.push_back( | 
|  | CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); | 
|  |  | 
|  | if (!ArgFlags.isInConsecutiveRegsLast()) | 
|  | return true; | 
|  |  | 
|  | assert(PendingMembers.size() == 4 && "Should have four parts"); | 
|  |  | 
|  | int64_t Offset = State.AllocateStack(16, Align(16)); | 
|  | PendingMembers[0].convertToMem(Offset); | 
|  | PendingMembers[1].convertToMem(Offset + 4); | 
|  | PendingMembers[2].convertToMem(Offset + 8); | 
|  | PendingMembers[3].convertToMem(Offset + 12); | 
|  |  | 
|  | State.addLoc(PendingMembers[0]); | 
|  | State.addLoc(PendingMembers[1]); | 
|  | State.addLoc(PendingMembers[2]); | 
|  | State.addLoc(PendingMembers[3]); | 
|  | PendingMembers.clear(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Provides entry points of CC_X86 and RetCC_X86. | 
|  | #include "X86GenCallingConv.inc" |