| //===- VectorTransforms.cpp - Conversion within the Vector dialect --------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements target-independent rewrites as 1->N patterns. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" |
| |
| #include <cassert> |
| #include <cstdint> |
| #include <functional> |
| #include <optional> |
| |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/Arith/Utils/Utils.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/Dialect/SCF/IR/SCF.h" |
| #include "mlir/Dialect/Utils/IndexingUtils.h" |
| #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
| #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| #include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h" |
| #include "mlir/Dialect/Vector/Utils/VectorUtils.h" |
| #include "mlir/IR/BuiltinTypes.h" |
| #include "mlir/IR/Location.h" |
| #include "mlir/IR/Matchers.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/IR/TypeUtilities.h" |
| |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/FormatVariadic.h" |
| |
| #define DEBUG_TYPE "vector-to-vector" |
| |
| using namespace mlir; |
| using namespace mlir::vector; |
| |
| template <typename IntType> |
| static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { |
| return llvm::to_vector<4>(llvm::map_range( |
| arrayAttr.getAsRange<IntegerAttr>(), |
| [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); |
| } |
| |
| // Helper to find an index in an affine map. |
| static std::optional<int64_t> getResultIndex(AffineMap map, int64_t index) { |
| for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { |
| int64_t idx = map.getDimPosition(i); |
| if (idx == index) |
| return i; |
| } |
| return std::nullopt; |
| } |
| |
| namespace { |
| |
| /// Convert MulIOp/MulFOp + MultiDimReductionOp<add> into ContractionOp. |
| /// Ex: |
| /// ``` |
| /// %0 = arith.mulf %arg0, %arg1 : vector<8x32x16xf32> |
| /// %1 = vector.multi_reduction add, %0 [1] |
| /// : vector<8x32x16xf32> to vector<8x16xf32> |
| /// ``` |
| /// Gets converted to: |
| /// ``` |
| /// %1 = vector.contract {indexing_maps = [ |
| /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1)>], |
| /// iterator_types = ["parallel", "parallel", "reduction"], |
| /// kind = add} %0, %arg1, %cst_f0 |
| /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> |
| /// ``` |
| struct MultiReduceToContract |
| : public OpRewritePattern<vector::MultiDimReductionOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::MultiDimReductionOp reduceOp, |
| PatternRewriter &rewriter) const override { |
| if (reduceOp.getKind() != vector::CombiningKind::ADD) |
| return failure(); |
| Operation *mulOp = reduceOp.getSource().getDefiningOp(); |
| if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp)) |
| return failure(); |
| SmallVector<bool> reductionMask = reduceOp.getReductionMask(); |
| auto srcMap = rewriter.getMultiDimIdentityMap(reductionMask.size()); |
| SmallVector<AffineExpr> exprs; |
| SmallVector<vector::IteratorType> iteratorTypes; |
| for (const auto &isReduceDim : llvm::enumerate(reductionMask)) { |
| if (!isReduceDim.value()) { |
| iteratorTypes.push_back(vector::IteratorType::parallel); |
| exprs.push_back(rewriter.getAffineDimExpr(isReduceDim.index())); |
| } else { |
| iteratorTypes.push_back(vector::IteratorType::reduction); |
| } |
| } |
| auto dstMap = |
| AffineMap::get(/*dimCount=*/reductionMask.size(), |
| /*symbolCount=*/0, exprs, reduceOp.getContext()); |
| rewriter.replaceOpWithNewOp<mlir::vector::ContractionOp>( |
| reduceOp, mulOp->getOperand(0), mulOp->getOperand(1), reduceOp.getAcc(), |
| rewriter.getAffineMapArrayAttr({srcMap, srcMap, dstMap}), |
| rewriter.getArrayAttr(llvm::to_vector(llvm::map_range( |
| iteratorTypes, [&](IteratorType t) -> mlir::Attribute { |
| return IteratorTypeAttr::get(rewriter.getContext(), t); |
| })))); |
| return success(); |
| } |
| }; |
| |
| /// Merge LHS/RHS (A/B) TransposeOp into ContractionOp user. |
| /// Ex: |
| /// ``` |
| /// %0 = vector.transpose %arg0, [2, 0, 1] |
| /// : vector<32x16x8xf32> to vector<8x32x16xf32> |
| /// %1 = vector.contract {indexing_maps = [ |
| /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1)>], |
| /// iterator_types = ["parallel", "parallel", "reduction"], |
| /// kind = add} %0, %arg1, %cst_f0 |
| /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> |
| /// ``` |
| /// Gets converted to: |
| /// ``` |
| /// %1 = vector.contract {indexing_maps = [ |
| /// affine_map<(d0, d1, d2) -> (d1, d2, d0)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1)>], |
| /// iterator_types = ["parallel", "parallel", "reduction"], |
| /// kind = add} %arg0, %arg1, %cst_f0 |
| /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> |
| /// ``` |
| struct CombineContractABTranspose final |
| : public OpRewritePattern<vector::ContractionOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ContractionOp contractOp, |
| PatternRewriter &rewriter) const override { |
| SmallVector<AffineMap> maps = |
| llvm::to_vector<4>(contractOp.getIndexingMapsArray()); |
| Value lhs = contractOp.getLhs(); |
| Value rhs = contractOp.getRhs(); |
| size_t index = 0; |
| bool changed = false; |
| for (Value *operand : {&lhs, &rhs}) { |
| AffineMap &map = maps[index++]; |
| auto transposeOp = operand->getDefiningOp<vector::TransposeOp>(); |
| if (!transposeOp) |
| continue; |
| AffineMap permutationMap = AffineMap::getPermutationMap( |
| transposeOp.getPermutation(), contractOp.getContext()); |
| map = inversePermutation(permutationMap).compose(map); |
| *operand = transposeOp.getVector(); |
| changed = true; |
| } |
| if (!changed) |
| return failure(); |
| rewriter.replaceOpWithNewOp<vector::ContractionOp>( |
| contractOp, lhs, rhs, contractOp.getAcc(), |
| rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes()); |
| return success(); |
| } |
| }; |
| |
| /// Merges accumulator and result transposes into contract. |
| /// |
| /// For example: |
| /// ```mlir |
| /// %accT = vector.transpose %acc, [0, 2, 1] |
| /// : vector<2x8x4xf32> to vector<2x4x8xf32> |
| /// %contract = vector.contract { |
| /// indexing_maps = [ |
| /// affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, |
| /// affine_map<(d0, d1, d2, d3) -> (d3, d2)>, |
| /// affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)> |
| /// ], |
| /// iterator_types = ["parallel", "parallel", "parallel", "reduction"], |
| /// kind = #vector.kind<add> |
| /// } %lhs, %rhs, %accT |
| /// : vector<2x4x4xf32>, vector<4x8xf32> into vector<2x4x8xf32> |
| /// %0 = vector.transpose %contract, [0, 2, 1] |
| /// : vector<2x4x8xf32> to vector<2x8x4> |
| /// ``` |
| /// Becomes: |
| /// ```mlir |
| /// %0 = vector.contract { |
| /// indexing_maps = [ |
| /// affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, |
| /// affine_map<(d0, d1, d2, d3) -> (d3, d2)>, |
| /// affine_map<(d0, d1, d2, d3) -> (d0, d2, d1)> |
| /// ], |
| /// iterator_types = ["parallel", "parallel", "parallel", "reduction"], |
| /// kind = #vector.kind<add> |
| /// } %lhs, %rhs, %acc |
| /// : vector<2x4x4xf32>, vector<4x8xf32> into vector<2x8x4xf32> |
| /// ``` |
| struct CombineContractResultTranspose final |
| : public OpRewritePattern<vector::TransposeOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::TransposeOp resTOp, |
| PatternRewriter &rewriter) const override { |
| auto contractOp = resTOp.getVector().getDefiningOp<vector::ContractionOp>(); |
| if (!contractOp || !contractOp->hasOneUse()) |
| return failure(); |
| |
| auto accTOp = contractOp.getAcc().getDefiningOp<vector::TransposeOp>(); |
| if (!accTOp) |
| return failure(); |
| |
| MLIRContext *context = contractOp.getContext(); |
| auto maps = llvm::to_vector<3>(contractOp.getIndexingMapsArray()); |
| AffineMap contractMap = maps.back(); |
| |
| // Accumulator transpose performs f(A) -> B. Contract performs g(C) -> B. |
| // To index into A in contract, we need revert(f)(g(C)) -> A. |
| auto accTMap = |
| AffineMap::getPermutationMap(accTOp.getPermutation(), context); |
| |
| // Contract performs g(C) -> D. Result transpose performs h(D) -> E. |
| // To index into E in contract, we need h(g(C)) -> E. |
| auto resTMap = |
| AffineMap::getPermutationMap(resTOp.getPermutation(), context); |
| auto combinedResMap = resTMap.compose(contractMap); |
| |
| // The accumulator and result share the same indexing map. So they should be |
| // the same to be able to merge. This means combinedResMap is the same as |
| // inversePermutation(accTMap).compose(contractMap), which means |
| if (inversePermutation(accTMap) != resTMap) |
| return failure(); |
| maps.back() = combinedResMap; |
| |
| rewriter.replaceOpWithNewOp<vector::ContractionOp>( |
| resTOp, contractOp.getLhs(), contractOp.getRhs(), accTOp.getVector(), |
| rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes()); |
| return success(); |
| } |
| }; |
| |
| /// Merge BroadcastOp into ContractionOp user. |
| /// Ex: |
| /// ``` |
| /// %0 = vector.broadcast %arg0 : vector<32x16xf32> to vector<8x32x16xf32> |
| /// %1 = vector.contract {indexing_maps = [ |
| /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1)>], |
| /// iterator_types = ["parallel", "parallel", "reduction"], |
| /// kind = add} %0, %arg1, %cst_f0 |
| /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> |
| /// ``` |
| /// Gets converted to: |
| /// ``` |
| /// %1 = vector.contract {indexing_maps = [ |
| /// affine_map<(d0, d1, d2) -> (d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1)>], |
| /// iterator_types = ["parallel", "parallel", "reduction"], |
| /// kind = add} %arg0, %arg1, %cst_f0 |
| /// : vector<32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> |
| /// ``` |
| struct CombineContractBroadcast |
| : public OpRewritePattern<vector::ContractionOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ContractionOp contractOp, |
| PatternRewriter &rewriter) const override { |
| SmallVector<AffineMap> maps = |
| llvm::to_vector<4>(contractOp.getIndexingMapsArray()); |
| Value lhs = contractOp.getLhs(); |
| Value rhs = contractOp.getRhs(); |
| size_t index = 0; |
| bool changed = false; |
| for (Value *operand : {&lhs, &rhs}) { |
| AffineMap &map = maps[index++]; |
| auto broadcast = operand->getDefiningOp<vector::BroadcastOp>(); |
| if (!broadcast) |
| continue; |
| // contractionOp can only take vector as operands. |
| auto srcType = dyn_cast<VectorType>(broadcast.getSourceType()); |
| if (!srcType || |
| srcType.getRank() == broadcast.getResultVectorType().getRank()) |
| continue; |
| int64_t rankDiff = |
| broadcast.getResultVectorType().getRank() - srcType.getRank(); |
| bool innerDimBroadcast = false; |
| SmallVector<AffineExpr> originalDims; |
| for (const auto &dim : llvm::enumerate(srcType.getShape())) { |
| if (dim.value() != broadcast.getResultVectorType().getDimSize( |
| rankDiff + dim.index())) { |
| innerDimBroadcast = true; |
| break; |
| } |
| originalDims.push_back( |
| rewriter.getAffineDimExpr(dim.index() + rankDiff)); |
| } |
| // Contract doesn't support inner dimension broadcast. Once this is |
| // relaxed we can remove this case. |
| if (innerDimBroadcast) |
| continue; |
| |
| // It would be incorrect to fold a broadcast onto a reduction dimension |
| // of non-unit size. |
| bool nonUnitDimReductionBroadcast = false; |
| for (int64_t i = 0; i < rankDiff; ++i) { |
| if (broadcast.getResultVectorType().getDimSize(i) != 1 && |
| isReductionIterator(contractOp.getIteratorTypes() |
| .getValue()[map.getDimPosition(i)])) { |
| nonUnitDimReductionBroadcast = true; |
| break; |
| } |
| } |
| if (nonUnitDimReductionBroadcast) |
| continue; |
| |
| AffineMap broadcastMap = |
| AffineMap::get(broadcast.getResultVectorType().getRank(), 0, |
| originalDims, contractOp.getContext()); |
| map = broadcastMap.compose(map); |
| *operand = broadcast.getSource(); |
| changed = true; |
| } |
| |
| if (!changed) |
| return failure(); |
| |
| // Determine which dims are usused, now that the maps have been composed |
| // with the broadcast maps. |
| llvm::SmallBitVector unusedDimsBitVector = getUnusedDimsBitVector(maps); |
| // Compress unused dims. |
| for (auto &m : maps) |
| m = compressDims(m, unusedDimsBitVector); |
| // Compute the combined iterators. |
| SmallVector<Attribute> iterators; |
| for (unsigned i = 0; i < unusedDimsBitVector.size(); ++i) { |
| if (!unusedDimsBitVector.test(i)) |
| iterators.push_back(contractOp.getIteratorTypes().getValue()[i]); |
| } |
| // Check that compressing unused dims isn't removing all reduction dimension |
| // pairs. For example, if the vector.contract had only one reduction |
| // iterator and that was a unit-dimension created by a broadcast, |
| // then we should bail here, otherwise we would create a contract without |
| // a reduction dimension pair. |
| bool hasReductionIteratorApplyingOnBothSides = false; |
| for (unsigned i = 0; i < iterators.size(); ++i) { |
| if (!isReductionIterator(iterators[i])) |
| continue; |
| if (getResultIndex(maps[0], i) && getResultIndex(maps[1], i)) { |
| hasReductionIteratorApplyingOnBothSides = true; |
| break; |
| } |
| } |
| if (!hasReductionIteratorApplyingOnBothSides) |
| return failure(); |
| |
| // If the compressed maps have a dimension that is not used by either LHS or |
| // RHS then the ContractionOp verifier would fail. |
| if (getUnusedDimsBitVector({maps[0], maps[1]}).any()) |
| return failure(); |
| rewriter.replaceOpWithNewOp<vector::ContractionOp>( |
| contractOp, lhs, rhs, contractOp.getAcc(), |
| rewriter.getAffineMapArrayAttr(maps), rewriter.getArrayAttr(iterators)); |
| return success(); |
| } |
| }; |
| |
| /// Reorders cast(broadcast) to broadcast(cast). This makes broadcast ops and |
| /// contraction ops closer, which kicks in CombineContractBroadcast pattern when |
| /// casting ops are around these operations. |
| /// Ex: |
| /// ``` |
| /// %0 = vector.broadcast %arg0 : vector<32x16xi8> to vector<8x32x16xi8> |
| /// %1 = arith.extsi %0 : vector<8x32x16xi8> to vector<8x32x16xi32> |
| /// ``` |
| /// Gets converted to: |
| /// ``` |
| /// %0 = arith.extsi %0 : vector<32x16xi8> to vector<32x16xi32> |
| /// %1 = vector.broadcast %arg0 : vector<32x16xi32> to vector<8x32x16xi32> |
| /// ``` |
| struct ReorderCastOpsOnBroadcast |
| : public OpInterfaceRewritePattern<CastOpInterface> { |
| using OpInterfaceRewritePattern<CastOpInterface>::OpInterfaceRewritePattern; |
| |
| LogicalResult matchAndRewrite(CastOpInterface op, |
| PatternRewriter &rewriter) const override { |
| if (op->getNumOperands() != 1) |
| return failure(); |
| auto bcastOp = op->getOperand(0).getDefiningOp<vector::BroadcastOp>(); |
| if (!bcastOp) |
| return failure(); |
| |
| Type castResTy = getElementTypeOrSelf(op->getResult(0)); |
| if (auto vecTy = dyn_cast<VectorType>(bcastOp.getSourceType())) |
| castResTy = vecTy.clone(castResTy); |
| auto *castOp = |
| rewriter.create(op->getLoc(), op->getName().getIdentifier(), |
| bcastOp.getSource(), castResTy, op->getAttrs()); |
| rewriter.replaceOpWithNewOp<vector::BroadcastOp>( |
| op, op->getResult(0).getType(), castOp->getResult(0)); |
| return success(); |
| } |
| }; |
| |
| /// Reorders elementwise(transpose) to transpose(elementwise). This makes |
| /// transpose ops and contraction ops closer, which kicks in |
| /// CombineContractABTranspose pattern when elementwise ops are between these |
| /// operations. Ex: |
| /// ``` |
| /// %at = vector.transpose %a, [1, 0]: vector<4x2xf32> to vector<2x4xf32> |
| /// %bt = vector.transpose %b, [1, 0]: vector<4x2xf32> to vector<2x4xf32> |
| /// %r = arith.addf %at, %bt : vector<2x4xf32> |
| /// ``` |
| /// Gets converted to: |
| /// ``` |
| /// %0 = arith.addf %a, %b : vector<4x2xf32> |
| /// %r = vector.transpose %0, [1, 0] : vector<2x4xf32> |
| /// ``` |
| struct ReorderElementwiseOpsOnTranspose final |
| : public OpTraitRewritePattern<OpTrait::Elementwise> { |
| using OpTraitRewritePattern::OpTraitRewritePattern; |
| LogicalResult matchAndRewrite(Operation *op, |
| PatternRewriter &rewriter) const override { |
| if (op->getNumResults() != 1 || op->getNumRegions() != 0) |
| return failure(); |
| |
| // Make sure all operands are transpose/constant ops and collect their |
| // transposition maps. |
| SmallVector<ArrayRef<int64_t>> transposeMaps; |
| transposeMaps.reserve(op->getNumOperands()); |
| // Record the initial type before transposition. We'll use its shape later. |
| // Any type will do here as we will check all transpose maps are the same. |
| VectorType srcType; |
| for (Value operand : op->getOperands()) { |
| auto transposeOp = operand.getDefiningOp<vector::TransposeOp>(); |
| if (transposeOp) { |
| transposeMaps.push_back(transposeOp.getPermutation()); |
| srcType = transposeOp.getSourceVectorType(); |
| } else if (!matchPattern(operand, m_Constant())) { |
| return failure(); |
| } |
| } |
| if (transposeMaps.empty()) |
| return failure(); |
| // This is an elementwise op, so all transposed operands should have the |
| // same type. We need to additionally check that all transposes uses the |
| // same map. |
| if (!llvm::all_equal(transposeMaps)) |
| return rewriter.notifyMatchFailure(op, "different transpose map"); |
| |
| SmallVector<Value> srcValues; |
| srcValues.reserve(op->getNumOperands()); |
| |
| // If there are constant operands, we need to insert inverse transposes for |
| // them. Calculate the inverse order first. |
| auto order = transposeMaps.front(); |
| SmallVector<int64_t> invOrder(order.size()); |
| for (int i = 0, e = order.size(); i < e; ++i) |
| invOrder[order[i]] = i; |
| |
| for (Value operand : op->getOperands()) { |
| auto transposeOp = operand.getDefiningOp<vector::TransposeOp>(); |
| if (transposeOp) { |
| srcValues.push_back(transposeOp.getVector()); |
| } else { |
| // This is a constant. Create a reverse transpose op for it. |
| auto vectorType = |
| srcType.clone(cast<VectorType>(operand.getType()).getElementType()); |
| srcValues.push_back(rewriter.create<vector::TransposeOp>( |
| operand.getLoc(), vectorType, operand, invOrder)); |
| } |
| } |
| |
| auto vectorType = srcType.clone( |
| cast<VectorType>(op->getResultTypes()[0]).getElementType()); |
| Operation *elementwiseOp = |
| rewriter.create(op->getLoc(), op->getName().getIdentifier(), srcValues, |
| vectorType, op->getAttrs()); |
| rewriter.replaceOpWithNewOp<vector::TransposeOp>( |
| op, op->getResultTypes()[0], elementwiseOp->getResult(0), |
| transposeMaps.front()); |
| return success(); |
| } |
| }; |
| |
| // Returns the values in `arrayAttr` as an integer vector. |
| static SmallVector<int64_t> getIntValueVector(ArrayAttr arrayAttr) { |
| return llvm::to_vector<4>( |
| llvm::map_range(arrayAttr.getAsRange<IntegerAttr>(), |
| [](IntegerAttr attr) { return attr.getInt(); })); |
| } |
| |
| // Shuffles vector.bitcast op after vector.extract op. |
| // |
| // This transforms IR like: |
| // %0 = vector.bitcast %src : vector<4xf32> to vector<8xf16> |
| // %1 = vector.extract %0[3] : f16 from vector<8xf16> |
| // Into: |
| // %0 = vector.extract %src[1] : f32 from vector<4xf32> |
| // %1 = vector.bitcast %0: vector<1xf32> to vector<2xf16> |
| // %2 = vector.extract %1[1] : f16 from vector<2xf16> |
| struct BubbleDownVectorBitCastForExtract |
| : public OpRewritePattern<vector::ExtractOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ExtractOp extractOp, |
| PatternRewriter &rewriter) const override { |
| // Only support extracting scalars for now. |
| if (extractOp.getSourceVectorType().getRank() != 1) |
| return failure(); |
| |
| auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>(); |
| if (!castOp) |
| return failure(); |
| |
| VectorType castSrcType = castOp.getSourceVectorType(); |
| VectorType castDstType = castOp.getResultVectorType(); |
| assert(castSrcType.getRank() == castDstType.getRank()); |
| |
| // Fail to match if we only have one element in the cast op source. |
| // This is to avoid infinite loop given that this pattern can generate |
| // such cases. |
| if (castSrcType.getNumElements() == 1) |
| return failure(); |
| |
| // Only support casting to a larger number of elements or now. |
| // E.g., vector<4xf32> -> vector<8xf16>. |
| if (castSrcType.getNumElements() > castDstType.getNumElements()) |
| return failure(); |
| |
| unsigned expandRatio = |
| castDstType.getNumElements() / castSrcType.getNumElements(); |
| |
| // Get the first element of the mixed position as integer. |
| auto mixedPos = extractOp.getMixedPosition(); |
| if (mixedPos.size() > 0 && !isa<Attribute>(mixedPos[0])) |
| return failure(); |
| uint64_t index = cast<IntegerAttr>(cast<Attribute>(mixedPos[0])).getInt(); |
| |
| // Get the single scalar (as a vector) in the source value that packs the |
| // desired scalar. E.g. extract vector<1xf32> from vector<4xf32> |
| Location loc = extractOp.getLoc(); |
| Value packedValue = rewriter.create<vector::ExtractOp>( |
| loc, castOp.getSource(), index / expandRatio); |
| Type packedVecType = VectorType::get(/*shape=*/{1}, packedValue.getType()); |
| Value zero = rewriter.create<arith::ConstantOp>( |
| loc, packedVecType, rewriter.getZeroAttr(packedVecType)); |
| packedValue = rewriter.create<vector::InsertOp>(loc, packedValue, zero, |
| /*position=*/0); |
| |
| // Cast it to a vector with the desired scalar's type. |
| // E.g. f32 -> vector<2xf16> |
| VectorType packedType = |
| VectorType::get({expandRatio}, castDstType.getElementType()); |
| Value castedValue = |
| rewriter.create<vector::BitCastOp>(loc, packedType, packedValue); |
| |
| // Finally extract the desired scalar. |
| rewriter.replaceOpWithNewOp<vector::ExtractOp>(extractOp, castedValue, |
| index % expandRatio); |
| return success(); |
| } |
| }; |
| |
| // Shuffles vector.bitcast op after vector.extract_strided_slice op. |
| // |
| // This transforms IR like: |
| // %cast = vector.bitcast %arg0: vector<4xf32> to vector<8xf16> |
| // %0 = vector.extract_strided_slice %cast { |
| // offsets = [4], sizes = [4], strides = [1] |
| // } : vector<8xf16> to vector<4xf16> |
| // Into: |
| // %0 = vector.extract_strided_slice %src { |
| // offsets = [2], sizes = [2], strides = [1] |
| // } : vector<4xf32> to vector<2xf32> |
| // %1 = vector.bitcast %0 : vector<2xf32> to vector<4xf16> |
| struct BubbleDownBitCastForStridedSliceExtract |
| : public OpRewritePattern<vector::ExtractStridedSliceOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp, |
| PatternRewriter &rewriter) const override { |
| auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>(); |
| if (!castOp) |
| return failure(); |
| |
| VectorType castSrcType = castOp.getSourceVectorType(); |
| VectorType castDstType = castOp.getResultVectorType(); |
| assert(castSrcType.getRank() == castDstType.getRank()); |
| |
| int64_t castSrcLastDim = castSrcType.getShape().back(); |
| int64_t castDstLastDim = castDstType.getShape().back(); |
| // Require casting to more elements for now; other cases to be implemented. |
| if (castSrcLastDim > castDstLastDim) |
| return failure(); |
| |
| // Only accept all one strides for now. |
| if (llvm::any_of(extractOp.getStrides().getAsValueRange<IntegerAttr>(), |
| [](const APInt &val) { return !val.isOne(); })) |
| return failure(); |
| |
| unsigned rank = extractOp.getSourceVectorType().getRank(); |
| assert(castDstLastDim % castSrcLastDim == 0); |
| int64_t expandRatio = castDstLastDim / castSrcLastDim; |
| |
| // If we have a less number of offsets than the rank, then implicitly we |
| // are selecting the full range for the last bitcasted dimension; other |
| // dimensions aren't affected. Otherwise, we need to scale down the last |
| // dimension's offset given we are extracting from less elements now. |
| ArrayAttr newOffsets = extractOp.getOffsets(); |
| if (newOffsets.size() == rank) { |
| SmallVector<int64_t> offsets = getIntValueVector(newOffsets); |
| if (offsets.back() % expandRatio != 0) |
| return failure(); |
| offsets.back() = offsets.back() / expandRatio; |
| newOffsets = rewriter.getI64ArrayAttr(offsets); |
| } |
| |
| // Similarly for sizes. |
| ArrayAttr newSizes = extractOp.getSizes(); |
| if (newSizes.size() == rank) { |
| SmallVector<int64_t> sizes = getIntValueVector(newSizes); |
| if (sizes.back() % expandRatio != 0) |
| return failure(); |
| sizes.back() = sizes.back() / expandRatio; |
| newSizes = rewriter.getI64ArrayAttr(sizes); |
| } |
| |
| SmallVector<int64_t> dims = |
| llvm::to_vector<4>(cast<VectorType>(extractOp.getType()).getShape()); |
| dims.back() = dims.back() / expandRatio; |
| VectorType newExtractType = |
| VectorType::get(dims, castSrcType.getElementType()); |
| |
| auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>( |
| extractOp.getLoc(), newExtractType, castOp.getSource(), newOffsets, |
| newSizes, extractOp.getStrides()); |
| |
| rewriter.replaceOpWithNewOp<vector::BitCastOp>( |
| extractOp, extractOp.getType(), newExtractOp); |
| |
| return success(); |
| } |
| }; |
| |
| // Shuffles vector.bitcast op before vector.insert_strided_slice op. |
| // |
| // This transforms IR like: |
| // %0 = vector.insert %val, %dst[4] : vector<32xi4> into vector<8x32xi4> |
| // %1 = vector.bitcast %0 : vector<8x32xi4> to vector<8x16xi8> |
| // Into: |
| // %0 = vector.bitcast %val : vector<32xi4> to vector<16xi8> |
| // %1 = vector.bitcast %dst : vector<8x32xi4> to vector<8x16xi8> |
| // %2 = vector.insert %0, %1 [4] : vector<16xi8> into vector<8x16xi8> |
| // |
| struct BubbleUpBitCastForInsert : public OpRewritePattern<vector::BitCastOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp, |
| PatternRewriter &rewriter) const override { |
| VectorType castSrcType = bitcastOp.getSourceVectorType(); |
| VectorType castDstType = bitcastOp.getResultVectorType(); |
| |
| // 0-D and scalable vectors are not supported yet. |
| if (castSrcType.getRank() == 0 || castSrcType.isScalable() || |
| castDstType.isScalable()) |
| return failure(); |
| |
| int64_t castSrcLastDim = castSrcType.getShape().back(); |
| int64_t castDstLastDim = castDstType.getShape().back(); |
| bool isNumElemsShrink = castSrcLastDim >= castDstLastDim; |
| int64_t ratio; |
| if (isNumElemsShrink) { |
| assert(castSrcLastDim % castDstLastDim == 0); |
| ratio = castSrcLastDim / castDstLastDim; |
| } else { |
| assert(castDstLastDim % castSrcLastDim == 0); |
| ratio = castDstLastDim / castSrcLastDim; |
| } |
| |
| auto insertOp = bitcastOp.getSource().getDefiningOp<vector::InsertOp>(); |
| if (!insertOp) |
| return failure(); |
| |
| // Only vector sources are supported for now. |
| auto insertSrcType = dyn_cast<VectorType>(insertOp.getValueToStoreType()); |
| if (!insertSrcType) |
| return failure(); |
| |
| // Bitcast the source. |
| SmallVector<int64_t> srcDims(insertSrcType.getShape()); |
| srcDims.back() = |
| isNumElemsShrink ? srcDims.back() / ratio : srcDims.back() * ratio; |
| VectorType newCastSrcType = |
| VectorType::get(srcDims, castDstType.getElementType()); |
| auto newCastSrcOp = rewriter.create<vector::BitCastOp>( |
| bitcastOp.getLoc(), newCastSrcType, insertOp.getValueToStore()); |
| |
| SmallVector<int64_t> dstDims(insertOp.getDestVectorType().getShape()); |
| dstDims.back() = |
| isNumElemsShrink ? dstDims.back() / ratio : dstDims.back() * ratio; |
| VectorType newCastDstType = |
| VectorType::get(dstDims, castDstType.getElementType()); |
| |
| // Bitcast the destination. |
| auto newCastDstOp = rewriter.create<vector::BitCastOp>( |
| bitcastOp.getLoc(), newCastDstType, insertOp.getDest()); |
| |
| // Generate new insert. |
| rewriter.replaceOpWithNewOp<vector::InsertOp>( |
| bitcastOp, newCastSrcOp, newCastDstOp, insertOp.getMixedPosition()); |
| return success(); |
| } |
| }; |
| |
| // Shuffles vector.bitcast op before vector.insert_strided_slice op. |
| // |
| // This transforms IR like: |
| // %0 = vector.insert_strided_slice %src, %dst { |
| // offsets = [0], strides = [1]} : vector<4xf16> into vector<8xf16> |
| // %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32> |
| // Into: |
| // %0 = vector.bitcast %src : vector<4xf16> to vector<2xf32> |
| // %1 = vector.bitcast %dst : vector<8xf16> to vector<4xf32> |
| // %2 = vector.insert_strided_slice %src, %dst { |
| // offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32> |
| struct BubbleUpBitCastForStridedSliceInsert |
| : public OpRewritePattern<vector::BitCastOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp, |
| PatternRewriter &rewriter) const override { |
| VectorType castSrcType = bitcastOp.getSourceVectorType(); |
| VectorType castDstType = bitcastOp.getResultVectorType(); |
| assert(castSrcType.getRank() == castDstType.getRank()); |
| // Skip 0-D vector which will not from InsertStridedSliceOp. |
| if (castSrcType.getRank() == 0) |
| return failure(); |
| |
| int64_t castSrcLastDim = castSrcType.getShape().back(); |
| int64_t castDstLastDim = castDstType.getShape().back(); |
| // Require casting to less elements for now; other cases to be implemented. |
| if (castSrcLastDim < castDstLastDim) |
| return failure(); |
| |
| assert(castSrcLastDim % castDstLastDim == 0); |
| int64_t shrinkRatio = castSrcLastDim / castDstLastDim; |
| |
| auto insertOp = |
| bitcastOp.getSource().getDefiningOp<vector::InsertStridedSliceOp>(); |
| if (!insertOp) |
| return failure(); |
| |
| // Only accept all one strides for now. |
| if (llvm::any_of(insertOp.getStrides().getAsValueRange<IntegerAttr>(), |
| [](const APInt &val) { return !val.isOne(); })) |
| return failure(); |
| |
| unsigned rank = insertOp.getSourceVectorType().getRank(); |
| // Require insert op to have the same rank for the source and destination |
| // vector; other cases to be implemented. |
| if (rank != insertOp.getDestVectorType().getRank()) |
| return failure(); |
| |
| // Requires that shape of insert op src is castable to dstType. |
| unsigned sourceWidth = castSrcType.getElementType().getIntOrFloatBitWidth(); |
| unsigned destinationWidth = |
| castDstType.getElementType().getIntOrFloatBitWidth(); |
| unsigned numElements = destinationWidth / sourceWidth; |
| if (insertOp.getSourceVectorType().getNumElements() % numElements != 0) |
| return failure(); |
| |
| ArrayAttr newOffsets = insertOp.getOffsets(); |
| assert(newOffsets.size() == rank); |
| SmallVector<int64_t> offsets = getIntValueVector(newOffsets); |
| if (offsets.back() % shrinkRatio != 0) |
| return failure(); |
| offsets.back() = offsets.back() / shrinkRatio; |
| newOffsets = rewriter.getI64ArrayAttr(offsets); |
| |
| SmallVector<int64_t> srcDims = |
| llvm::to_vector<4>(insertOp.getSourceVectorType().getShape()); |
| srcDims.back() = srcDims.back() / shrinkRatio; |
| VectorType newCastSrcType = |
| VectorType::get(srcDims, castDstType.getElementType()); |
| |
| auto newCastSrcOp = rewriter.create<vector::BitCastOp>( |
| bitcastOp.getLoc(), newCastSrcType, insertOp.getValueToStore()); |
| |
| SmallVector<int64_t> dstDims = |
| llvm::to_vector<4>(insertOp.getDestVectorType().getShape()); |
| dstDims.back() = dstDims.back() / shrinkRatio; |
| VectorType newCastDstType = |
| VectorType::get(dstDims, castDstType.getElementType()); |
| |
| auto newCastDstOp = rewriter.create<vector::BitCastOp>( |
| bitcastOp.getLoc(), newCastDstType, insertOp.getDest()); |
| |
| rewriter.replaceOpWithNewOp<vector::InsertStridedSliceOp>( |
| bitcastOp, bitcastOp.getType(), newCastSrcOp, newCastDstOp, newOffsets, |
| insertOp.getStrides()); |
| |
| return success(); |
| } |
| }; |
| |
| // Breaks down vector.bitcast op |
| // |
| // This transforms IR like: |
| // %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32> |
| // Into: |
| // %cst = vector.splat %c0_f32 : vector<4xf32> |
| // %1 = vector.extract_strided_slice %0 { |
| // offsets = [0], sizes = [4], strides = [1] |
| // } : vector<8xf16> to vector<4xf16> |
| // %2 = vector.bitcast %1 : vector<4xf16> to vector<2xf32> |
| // %4 = vector.insert_strided_slice %2, %cst { |
| // offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32> |
| // %5 = vector.extract_strided_slice %0 { |
| // offsets = [4], sizes = [4], strides = [1] |
| // } : vector<8xf16> to vector<4xf16> |
| // %6 = vector.bitcast %5 : vector<4xf16> to vector<2xf32> |
| // %7 = vector.insert_strided_slice %6, %cst { |
| // offsets = [2], strides = [1]} : vector<2xf32> into vector<4xf32> |
| struct BreakDownVectorBitCast : public OpRewritePattern<vector::BitCastOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| public: |
| BreakDownVectorBitCast(MLIRContext *context, |
| std::function<bool(vector::BitCastOp)> controlFn, |
| PatternBenefit benefit) |
| : OpRewritePattern(context, benefit), controlFn(std::move(controlFn)) {} |
| |
| LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp, |
| PatternRewriter &rewriter) const override { |
| |
| if (controlFn && !controlFn(bitcastOp)) |
| return failure(); |
| |
| VectorType castSrcType = bitcastOp.getSourceVectorType(); |
| VectorType castDstType = bitcastOp.getResultVectorType(); |
| assert(castSrcType.getRank() == castDstType.getRank()); |
| |
| // This transformation builds on top of |
| // vector.{extract|insert}_strided_slice, which do not support |
| // extracting/inserting "scallable sub-vectors". Bail out. |
| if (castSrcType.isScalable()) |
| return rewriter.notifyMatchFailure(bitcastOp, |
| "Scalable vectors are not supported"); |
| |
| // Only support rank 1 case for now. |
| if (castSrcType.getRank() != 1) |
| return failure(); |
| |
| int64_t castSrcLastDim = castSrcType.getShape().back(); |
| int64_t castDstLastDim = castDstType.getShape().back(); |
| // Require casting to less elements for now; other cases to be implemented. |
| if (castSrcLastDim < castDstLastDim) |
| return failure(); |
| |
| assert(castSrcLastDim % castDstLastDim == 0); |
| int64_t shrinkRatio = castSrcLastDim / castDstLastDim; |
| // Nothing to do if it is already bitcasting to a single element. |
| if (castSrcLastDim == shrinkRatio) |
| return failure(); |
| |
| Location loc = bitcastOp.getLoc(); |
| Type elemType = castDstType.getElementType(); |
| assert(elemType.isSignlessIntOrIndexOrFloat()); |
| |
| Value zero = rewriter.create<arith::ConstantOp>( |
| loc, elemType, rewriter.getZeroAttr(elemType)); |
| Value res = rewriter.create<SplatOp>(loc, castDstType, zero); |
| |
| SmallVector<int64_t> sliceShape = {castDstLastDim}; |
| SmallVector<int64_t> strides = {1}; |
| VectorType newCastDstType = |
| VectorType::get(SmallVector<int64_t>{castDstLastDim / shrinkRatio}, |
| castDstType.getElementType()); |
| |
| for (int i = 0, e = shrinkRatio; i < e; ++i) { |
| Value extracted = rewriter.create<ExtractStridedSliceOp>( |
| loc, bitcastOp.getSource(), ArrayRef<int64_t>{i * castDstLastDim}, |
| sliceShape, strides); |
| Value bitcast = |
| rewriter.create<BitCastOp>(loc, newCastDstType, extracted); |
| res = rewriter.create<InsertStridedSliceOp>( |
| loc, bitcast, res, |
| ArrayRef<int64_t>{i * castDstLastDim / shrinkRatio}, strides); |
| } |
| rewriter.replaceOp(bitcastOp, res); |
| return success(); |
| } |
| |
| private: |
| std::function<bool(BitCastOp)> controlFn; |
| }; |
| |
| /// Reorders elementwise(broadcast/splat) to broadcast(elementwise). Ex: |
| /// |
| /// Example: |
| /// ``` |
| /// %a = vector.broadcast %arg1 : index to vector<1x4xindex> |
| /// %b = vector.broadcast %arg2 : index to vector<1x4xindex> |
| /// %r = arith.addi %a, %b : vector<1x4xindex> |
| /// ``` |
| /// Gets converted to: |
| /// ``` |
| /// %r = arith.addi %arg0, %arg1 : index |
| /// %b = vector.broadcast %r : index to vector<1x4xindex> |
| /// ``` |
| /// |
| /// Both `vector.broadcast` and `vector.splat` are supported as broadcasting |
| /// ops. |
| struct ReorderElementwiseOpsOnBroadcast final |
| : public OpTraitRewritePattern<OpTrait::Elementwise> { |
| using OpTraitRewritePattern::OpTraitRewritePattern; |
| LogicalResult matchAndRewrite(Operation *op, |
| PatternRewriter &rewriter) const override { |
| if (op->getNumResults() != 1) |
| return failure(); |
| if (!llvm::isa<ShapedType>(op->getResults()[0].getType())) |
| return failure(); |
| if (!OpTrait::hasElementwiseMappableTraits(op)) |
| return rewriter.notifyMatchFailure( |
| op, "Op doesn't have ElementwiseMappableTraits"); |
| if (op->getNumOperands() == 0) |
| return failure(); |
| if (op->getResults()[0].getType() != op->getOperand(0).getType()) |
| return rewriter.notifyMatchFailure(op, |
| "result and operand type mismatch"); |
| if (isa<vector::FMAOp>(op)) { |
| return rewriter.notifyMatchFailure( |
| op, |
| "Op only accepts vector types - not supported as broadcast source " |
| "might be a scalar"); |
| } |
| |
| // Get the type of the lhs operand |
| auto *lhsBcastOrSplat = op->getOperand(0).getDefiningOp(); |
| if (!lhsBcastOrSplat || |
| !isa<vector::BroadcastOp, vector::SplatOp>(*lhsBcastOrSplat)) |
| return failure(); |
| auto lhsBcastOrSplatType = lhsBcastOrSplat->getOperand(0).getType(); |
| |
| // Make sure that all operands are broadcast from identical types: |
| // * scalar (`vector.broadcast` + `vector.splat`), or |
| // * vector (`vector.broadcast`). |
| // Otherwise the re-ordering wouldn't be safe. |
| if (!llvm::all_of(op->getOperands(), [&lhsBcastOrSplatType](Value val) { |
| auto bcast = val.getDefiningOp<vector::BroadcastOp>(); |
| if (bcast) |
| return (bcast.getOperand().getType() == lhsBcastOrSplatType); |
| auto splat = val.getDefiningOp<vector::SplatOp>(); |
| if (splat) |
| return (splat.getOperand().getType() == lhsBcastOrSplatType); |
| return false; |
| })) { |
| return failure(); |
| } |
| |
| // Collect the source values before broadcasting |
| SmallVector<Value> srcValues; |
| srcValues.reserve(op->getNumOperands()); |
| for (Value operand : op->getOperands()) { |
| srcValues.push_back(operand.getDefiningOp()->getOperand(0)); |
| } |
| |
| // Create the "elementwise" Op |
| Operation *elementwiseOp = |
| rewriter.create(op->getLoc(), op->getName().getIdentifier(), srcValues, |
| lhsBcastOrSplatType, op->getAttrs()); |
| |
| // Replace the original Op with the elementwise Op |
| auto vectorType = op->getResultTypes()[0]; |
| rewriter.replaceOpWithNewOp<vector::BroadcastOp>( |
| op, vectorType, elementwiseOp->getResults()); |
| |
| return success(); |
| } |
| }; |
| |
| /// Pattern to rewrite a ExtractOp(Elementwise) -> Elementwise(ExtractOp). |
| /// This may result in cleaner code when extracting a single value |
| /// from multi-element vector and also to help canonicalize 1-element vectors to |
| /// scalars. |
| /// |
| /// Example: |
| /// ``` |
| /// %0 = arith.addf %arg0, %arg1 : vector<4xf32> |
| /// %1 = vector.extract %0[1] : f32 from vector<4xf32> |
| /// ``` |
| /// Gets converted to: |
| /// ``` |
| /// %0 = vector.extract %arg0[1] : f32 from vector<4xf32> |
| /// %1 = vector.extract %arg1[1] : f32 from vector<4xf32> |
| /// %2 = arith.addf %0, %1 : f32 |
| /// ``` |
| class ExtractOpFromElementwise final |
| : public OpRewritePattern<vector::ExtractOp> { |
| public: |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ExtractOp op, |
| PatternRewriter &rewriter) const override { |
| Operation *eltwise = op.getVector().getDefiningOp(); |
| |
| // TODO: vector::FMAOp is not an ElemetwiseMappable even if it claims to be, |
| // as it doesn't support scalars. |
| if (!eltwise || !OpTrait::hasElementwiseMappableTraits(eltwise) || |
| isa<vector::FMAOp>(eltwise)) |
| return rewriter.notifyMatchFailure(op, "not an elementwise op"); |
| |
| if (eltwise->getNumResults() != 1) |
| return rewriter.notifyMatchFailure(op, "expected single result"); |
| |
| if (!eltwise->hasOneUse()) |
| return rewriter.notifyMatchFailure(op, "expected single op use"); |
| |
| if (!llvm::all_equal(eltwise->getOperandTypes())) |
| return rewriter.notifyMatchFailure(op, "operand types are different"); |
| |
| Type dstType = op.getType(); |
| |
| OpBuilder::InsertionGuard g(rewriter); |
| rewriter.setInsertionPoint(eltwise); |
| |
| IRMapping mapping; |
| Location loc = eltwise->getLoc(); |
| SmallVector<OpFoldResult> pos = op.getMixedPosition(); |
| for (Value arg : eltwise->getOperands()) { |
| Value newArg = rewriter.create<vector::ExtractOp>(loc, arg, pos); |
| mapping.map(arg, newArg); |
| } |
| |
| Operation *newEltwise = rewriter.clone(*eltwise, mapping); |
| newEltwise->getResult(0).setType(dstType); |
| |
| rewriter.replaceOp(op, newEltwise); |
| rewriter.eraseOp(eltwise); |
| return success(); |
| } |
| }; |
| |
| /// Check if the element type is suitable for vector.load/store sinking. |
| /// Element type must be index or byte-aligned integer or floating-point type. |
| static bool isSupportedMemSinkElementType(Type type) { |
| if (isa<IndexType>(type)) |
| return true; |
| |
| return type.isIntOrFloat() && type.getIntOrFloatBitWidth() % 8 == 0; |
| } |
| |
| /// Pattern to rewrite `vector.extract(vector.load) -> vector/memref.load. |
| /// Only index and byte-aligned integer and floating-point element types are |
| /// supported for now. |
| /// |
| /// Example: |
| /// ``` |
| /// vector.load %arg0[%arg1] : memref<?xf32>, vector<4xf32> |
| /// vector.extract %0[1] : f32 from vector<4xf32> |
| /// ``` |
| /// Gets converted to: |
| /// ``` |
| /// %c1 = arith.constant 1 : index |
| /// %0 = arith.addi %arg1, %c1 overflow<nsw> : index |
| /// %1 = memref.load %arg0[%0] : memref<?xf32> |
| /// ``` |
| class ExtractOpFromLoad final : public OpRewritePattern<vector::ExtractOp> { |
| public: |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ExtractOp op, |
| PatternRewriter &rewriter) const override { |
| auto loadOp = op.getVector().getDefiningOp<vector::LoadOp>(); |
| if (!loadOp) |
| return rewriter.notifyMatchFailure(op, "expected a load op"); |
| |
| // Checking for single use so we won't duplicate load ops. |
| if (!loadOp->hasOneUse()) |
| return rewriter.notifyMatchFailure(op, "expected single op use"); |
| |
| VectorType loadVecType = loadOp.getVectorType(); |
| if (loadVecType.isScalable()) |
| return rewriter.notifyMatchFailure(op, |
| "scalable vectors are not supported"); |
| |
| MemRefType memType = loadOp.getMemRefType(); |
| |
| // Non-byte-aligned types are tricky and may require special handling, |
| // ignore them for now. |
| if (!isSupportedMemSinkElementType(memType.getElementType())) |
| return rewriter.notifyMatchFailure(op, "unsupported element type"); |
| |
| int64_t rankOffset = memType.getRank() - loadVecType.getRank(); |
| if (rankOffset < 0) |
| return rewriter.notifyMatchFailure(op, "unsupported ranks combination"); |
| |
| auto extractVecType = dyn_cast<VectorType>(op.getResult().getType()); |
| int64_t finalRank = 0; |
| if (extractVecType) |
| finalRank = extractVecType.getRank(); |
| |
| SmallVector<Value> indices = loadOp.getIndices(); |
| SmallVector<OpFoldResult> extractPos = op.getMixedPosition(); |
| |
| // There may be memory stores between the load and the extract op, so we |
| // need to make sure that the new load op is inserted at the same place as |
| // the original load op. |
| OpBuilder::InsertionGuard g(rewriter); |
| rewriter.setInsertionPoint(loadOp); |
| Location loc = loadOp.getLoc(); |
| ArithIndexingBuilder idxBuilderf(rewriter, loc); |
| for (auto i : llvm::seq<int64_t>(rankOffset, indices.size() - finalRank)) { |
| OpFoldResult pos = extractPos[i - rankOffset]; |
| if (isConstantIntValue(pos, 0)) |
| continue; |
| |
| Value offset = getValueOrCreateConstantIndexOp(rewriter, loc, pos); |
| indices[i] = idxBuilderf.add(indices[i], offset); |
| } |
| |
| Value base = loadOp.getBase(); |
| if (extractVecType) { |
| rewriter.replaceOpWithNewOp<vector::LoadOp>(op, extractVecType, base, |
| indices); |
| } else { |
| rewriter.replaceOpWithNewOp<memref::LoadOp>(op, base, indices); |
| } |
| // We checked for single use so we can safely erase the load op. |
| rewriter.eraseOp(loadOp); |
| return success(); |
| } |
| }; |
| |
| /// Pattern to rewrite vector.store(vector.splat) -> vector/memref.store. |
| /// |
| /// Example: |
| /// ``` |
| /// %0 = vector.splat %arg2 : vector<1xf32> |
| /// vector.store %0, %arg0[%arg1] : memref<?xf32>, vector<1xf32> |
| /// ``` |
| /// Gets converted to: |
| /// ``` |
| /// memref.store %arg2, %arg0[%arg1] : memref<?xf32> |
| /// ``` |
| class StoreOpFromSplatOrBroadcast final |
| : public OpRewritePattern<vector::StoreOp> { |
| public: |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::StoreOp op, |
| PatternRewriter &rewriter) const override { |
| VectorType vecType = op.getVectorType(); |
| if (vecType.isScalable()) |
| return rewriter.notifyMatchFailure(op, |
| "scalable vectors are not supported"); |
| |
| if (isa<VectorType>(op.getMemRefType().getElementType())) |
| return rewriter.notifyMatchFailure( |
| op, "memrefs of vectors are not supported"); |
| |
| if (vecType.getNumElements() != 1) |
| return rewriter.notifyMatchFailure( |
| op, "only 1-element vectors are supported"); |
| |
| Operation *splat = op.getValueToStore().getDefiningOp(); |
| if (!isa_and_present<vector::BroadcastOp, vector::SplatOp>(splat)) |
| return rewriter.notifyMatchFailure(op, "neither a splat nor a broadcast"); |
| |
| // Checking for single use so we can remove splat. |
| if (!splat->hasOneUse()) |
| return rewriter.notifyMatchFailure(op, "expected single op use"); |
| |
| Value source = splat->getOperand(0); |
| Value base = op.getBase(); |
| ValueRange indices = op.getIndices(); |
| |
| if (isa<VectorType>(source.getType())) { |
| rewriter.replaceOpWithNewOp<vector::StoreOp>(op, source, base, indices); |
| } else { |
| rewriter.replaceOpWithNewOp<memref::StoreOp>(op, source, base, indices); |
| } |
| rewriter.eraseOp(splat); |
| return success(); |
| } |
| }; |
| |
| // Helper that returns a vector comparison that constructs a mask: |
| // mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b] |
| // |
| // If `dim == 0` then the result will be a 0-D vector. |
| // |
| // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative, |
| // much more compact, IR for this operation, but LLVM eventually |
| // generates more elaborate instructions for this intrinsic since it |
| // is very conservative on the boundary conditions. |
| static Value buildVectorComparison(PatternRewriter &rewriter, Operation *op, |
| bool force32BitVectorIndices, int64_t dim, |
| Value b, Value *off = nullptr) { |
| auto loc = op->getLoc(); |
| // If we can assume all indices fit in 32-bit, we perform the vector |
| // comparison in 32-bit to get a higher degree of SIMD parallelism. |
| // Otherwise we perform the vector comparison using 64-bit indices. |
| Type idxType = |
| force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type(); |
| DenseIntElementsAttr indicesAttr; |
| if (dim == 0 && force32BitVectorIndices) { |
| indicesAttr = DenseIntElementsAttr::get( |
| VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int32_t>{0}); |
| } else if (dim == 0) { |
| indicesAttr = DenseIntElementsAttr::get( |
| VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int64_t>{0}); |
| } else if (force32BitVectorIndices) { |
| indicesAttr = rewriter.getI32VectorAttr( |
| llvm::to_vector<4>(llvm::seq<int32_t>(0, dim))); |
| } else { |
| indicesAttr = rewriter.getI64VectorAttr( |
| llvm::to_vector<4>(llvm::seq<int64_t>(0, dim))); |
| } |
| Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr); |
| // Add in an offset if requested. |
| if (off) { |
| Value o = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, *off); |
| Value ov = rewriter.create<vector::SplatOp>(loc, indices.getType(), o); |
| indices = rewriter.create<arith::AddIOp>(loc, ov, indices); |
| } |
| // Construct the vector comparison. |
| Value bound = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, b); |
| Value bounds = |
| rewriter.create<vector::SplatOp>(loc, indices.getType(), bound); |
| return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, indices, |
| bounds); |
| } |
| |
| template <typename ConcreteOp> |
| struct MaterializeTransferMask : public OpRewritePattern<ConcreteOp> { |
| public: |
| explicit MaterializeTransferMask(MLIRContext *context, bool enableIndexOpt, |
| PatternBenefit benefit = 1) |
| : mlir::OpRewritePattern<ConcreteOp>(context, benefit), |
| force32BitVectorIndices(enableIndexOpt) {} |
| |
| LogicalResult matchAndRewrite(ConcreteOp xferOp, |
| PatternRewriter &rewriter) const override { |
| if (!xferOp.hasOutOfBoundsDim()) |
| return failure(); |
| |
| if (xferOp.getVectorType().getRank() > 1 || xferOp.getIndices().empty()) |
| return failure(); |
| |
| Location loc = xferOp->getLoc(); |
| VectorType vtp = xferOp.getVectorType(); |
| |
| // Create the in-bounds mask with all elements between [0 .. dim - offset) |
| // set and [dim - offset .. vector_length) unset. |
| // |
| // TODO: when the leaf transfer rank is k > 1, we need the last `k` |
| // dimensions here. |
| unsigned lastIndex = llvm::size(xferOp.getIndices()) - 1; |
| Value off = xferOp.getIndices()[lastIndex]; |
| Value dim = |
| vector::createOrFoldDimOp(rewriter, loc, xferOp.getBase(), lastIndex); |
| Value b = rewriter.create<arith::SubIOp>(loc, dim.getType(), dim, off); |
| Value mask = rewriter.create<vector::CreateMaskOp>( |
| loc, |
| VectorType::get(vtp.getShape(), rewriter.getI1Type(), |
| vtp.getScalableDims()), |
| b); |
| if (xferOp.getMask()) { |
| // Intersect the in-bounds with the mask specified as an op parameter. |
| mask = rewriter.create<arith::AndIOp>(loc, mask, xferOp.getMask()); |
| } |
| |
| rewriter.modifyOpInPlace(xferOp, [&]() { |
| xferOp.getMaskMutable().assign(mask); |
| xferOp.setInBoundsAttr(rewriter.getBoolArrayAttr({true})); |
| }); |
| |
| return success(); |
| } |
| |
| private: |
| const bool force32BitVectorIndices; |
| }; |
| |
| /// Conversion pattern for a `vector.create_mask` (0-D and 1-D only). |
| class VectorCreateMaskOpConversion |
| : public OpRewritePattern<vector::CreateMaskOp> { |
| public: |
| explicit VectorCreateMaskOpConversion(MLIRContext *context, |
| bool enableIndexOpt, |
| PatternBenefit benefit = 1) |
| : mlir::OpRewritePattern<vector::CreateMaskOp>(context, benefit), |
| force32BitVectorIndices(enableIndexOpt) {} |
| |
| LogicalResult matchAndRewrite(vector::CreateMaskOp op, |
| PatternRewriter &rewriter) const override { |
| auto dstType = op.getType(); |
| if (cast<VectorType>(dstType).isScalable()) |
| return failure(); |
| int64_t rank = dstType.getRank(); |
| if (rank > 1) |
| return failure(); |
| rewriter.replaceOp( |
| op, buildVectorComparison(rewriter, op, force32BitVectorIndices, |
| rank == 0 ? 0 : dstType.getDimSize(0), |
| op.getOperand(0))); |
| return success(); |
| } |
| |
| private: |
| const bool force32BitVectorIndices; |
| }; |
| |
| /// Returns true if all the `i1` elements of `constantOp` are set to `value`. |
| static bool allI1ConstantValuesSetTo(arith::ConstantOp constantOp, bool value) { |
| auto denseAttr = dyn_cast<DenseIntElementsAttr>(constantOp.getValue()); |
| // TODO: Support non-dense constant. |
| if (!denseAttr) |
| return false; |
| |
| assert(denseAttr.getElementType().isInteger(1) && "Unexpected type"); |
| return denseAttr.isSplat() && denseAttr.getSplatValue<bool>() == value; |
| } |
| |
| /// Folds a select operation between an all-true and all-false vector. For now, |
| /// only single element vectors (i.e., vector<1xi1>) are supported. That is: |
| /// |
| /// %true = arith.constant dense<true> : vector<1xi1> |
| /// %false = arith.constant dense<false> : vector<1xi1> |
| /// %result = arith.select %cond, %true, %false : i1, vector<1xi1> |
| /// => |
| /// %result = vector.broadcast %cond : i1 to vector<1xi1> |
| /// |
| /// InstCombine seems to handle vectors with multiple elements but not the |
| /// single element ones. |
| struct FoldI1Select : public OpRewritePattern<arith::SelectOp> { |
| using OpRewritePattern<arith::SelectOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(arith::SelectOp selectOp, |
| PatternRewriter &rewriter) const override { |
| auto vecType = dyn_cast<VectorType>(selectOp.getType()); |
| if (!vecType || !vecType.getElementType().isInteger(1)) |
| return failure(); |
| |
| // Only scalar conditions can be folded. |
| Value cond = selectOp.getCondition(); |
| if (isa<VectorType>(cond.getType())) |
| return failure(); |
| |
| // TODO: Support n-D and scalable vectors. |
| if (vecType.getRank() != 1 || vecType.isScalable()) |
| return failure(); |
| |
| // TODO: Support vectors with multiple elements. |
| if (vecType.getShape()[0] != 1) |
| return failure(); |
| |
| auto trueConst = selectOp.getTrueValue().getDefiningOp<arith::ConstantOp>(); |
| if (!trueConst || !allI1ConstantValuesSetTo(trueConst, true)) |
| return failure(); |
| |
| auto falseConst = |
| selectOp.getFalseValue().getDefiningOp<arith::ConstantOp>(); |
| if (!falseConst || !allI1ConstantValuesSetTo(falseConst, false)) |
| return failure(); |
| |
| // Replace select with its condition broadcasted to single element vector. |
| auto elemType = rewriter.getIntegerType(vecType.getNumElements()); |
| auto bcastType = VectorType::get(/*shape=*/{1}, elemType); |
| rewriter.replaceOpWithNewOp<vector::BroadcastOp>(selectOp, bcastType, cond); |
| return success(); |
| } |
| }; |
| |
| /// Returns the number of dims can be folded away from transfer ops. It returns |
| /// a failure if it can not determine the number of dims to be folded. |
| /// |
| /// Ex 1: returns "2" if `srcType` is memref<512x16x1x1xf32> and |
| /// `vectorType` is vector<16x16x1x1xf32> |
| /// (there two inner most dims can be dropped by memref.subview ops) |
| /// |
| /// Ex 2: returns "1" if `srcType` is memref<512x16x1x1xf32> with |
| /// [8192, 16, 8, 1] strides and `vectorType` is vector<16x16x1x1xf32> |
| /// (only the inner most unit dim of `srcType` can be dropped) |
| /// |
| /// Ex 3: return "0" if `srcType` is memref<512x16x1x1xf32> and |
| /// `vectorType` is vector<16x16x1x[1]xf32> |
| /// (the most inner dim in `vectorType` is not a unit dim (it's a "scalable |
| /// unit") |
| static FailureOr<size_t> |
| getTransferFoldableInnerUnitDims(MemRefType srcType, VectorType vectorType) { |
| SmallVector<int64_t> srcStrides; |
| int64_t srcOffset; |
| if (failed(srcType.getStridesAndOffset(srcStrides, srcOffset))) |
| return failure(); |
| |
| auto isUnitDim = [](VectorType type, int dim) { |
| return type.getDimSize(dim) == 1 && !type.getScalableDims()[dim]; |
| }; |
| |
| // According to vector.transfer_read/write semantics, the vector can be a |
| // slice. Thus, we have to offset the check index with `rankDiff` in |
| // `srcStrides` and source dim sizes. |
| size_t result = 0; |
| int rankDiff = srcType.getRank() - vectorType.getRank(); |
| for (int64_t i = 0, e = vectorType.getRank(); i < e; ++i) { |
| // Check that the inner dim size is 1 for both memref type and vector slice. |
| // It can be folded only if they are 1 and the stride is 1. |
| int dim = vectorType.getRank() - i - 1; |
| if (srcStrides[dim + rankDiff] != 1 || |
| srcType.getDimSize(dim + rankDiff) != 1 || !isUnitDim(vectorType, dim)) |
| break; |
| result++; |
| } |
| return result; |
| } |
| |
| /// Drop inner most contiguous unit dimensions from transfer_read operand. |
| class DropInnerMostUnitDimsTransferRead |
| : public OpRewritePattern<vector::TransferReadOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::TransferReadOp readOp, |
| PatternRewriter &rewriter) const override { |
| // TODO: support 0-d corner case. |
| if (readOp.getTransferRank() == 0) |
| return failure(); |
| |
| // TODO: support mask. |
| if (readOp.getMask()) |
| return failure(); |
| |
| auto srcType = dyn_cast<MemRefType>(readOp.getBase().getType()); |
| if (!srcType) |
| return failure(); |
| |
| if (!readOp.getPermutationMap().isMinorIdentity()) |
| return failure(); |
| |
| auto targetType = readOp.getVectorType(); |
| if (targetType.getRank() <= 1) |
| return failure(); |
| |
| FailureOr<size_t> maybeDimsToDrop = |
| getTransferFoldableInnerUnitDims(srcType, targetType); |
| if (failed(maybeDimsToDrop)) |
| return failure(); |
| |
| size_t dimsToDrop = maybeDimsToDrop.value(); |
| if (dimsToDrop == 0) |
| return failure(); |
| |
| auto inBounds = readOp.getInBoundsValues(); |
| auto droppedInBounds = ArrayRef<bool>(inBounds).take_back(dimsToDrop); |
| if (llvm::is_contained(droppedInBounds, false)) |
| return failure(); |
| |
| auto resultTargetVecType = |
| VectorType::get(targetType.getShape().drop_back(dimsToDrop), |
| targetType.getElementType(), |
| targetType.getScalableDims().drop_back(dimsToDrop)); |
| |
| auto loc = readOp.getLoc(); |
| SmallVector<OpFoldResult> sizes = |
| memref::getMixedSizes(rewriter, loc, readOp.getBase()); |
| SmallVector<OpFoldResult> offsets(srcType.getRank(), |
| rewriter.getIndexAttr(0)); |
| SmallVector<OpFoldResult> strides(srcType.getRank(), |
| rewriter.getIndexAttr(1)); |
| MemRefType resultMemrefType = memref::SubViewOp::inferRankReducedResultType( |
| srcType.getShape().drop_back(dimsToDrop), srcType, offsets, sizes, |
| strides); |
| ArrayAttr inBoundsAttr = rewriter.getArrayAttr( |
| readOp.getInBoundsAttr().getValue().drop_back(dimsToDrop)); |
| Value rankedReducedView = rewriter.create<memref::SubViewOp>( |
| loc, resultMemrefType, readOp.getBase(), offsets, sizes, strides); |
| auto permMap = getTransferMinorIdentityMap( |
| cast<ShapedType>(rankedReducedView.getType()), resultTargetVecType); |
| Value result = rewriter.create<vector::TransferReadOp>( |
| loc, resultTargetVecType, rankedReducedView, |
| readOp.getIndices().drop_back(dimsToDrop), AffineMapAttr::get(permMap), |
| readOp.getPadding(), |
| // TODO: support mask. |
| /*mask=*/Value(), inBoundsAttr); |
| rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(readOp, targetType, |
| result); |
| return success(); |
| } |
| }; |
| |
| /// Drop inner most contiguous unit dimensions from transfer_write operand. |
| /// E.g., |
| /// vector.transfer_write %arg1, %arg0[%c0, %arg2, %c0, %c0, %c0] |
| /// {in_bounds = [true, true, true, true, true]} |
| /// : vector<1x16x16x1x1xf32>, memref<1x512x16x1x1xf32> |
| /// |
| /// will be replaced with |
| /// |
| /// %subview = memref.subview %arg0 |
| /// [0, 0, 0, 0, 0] [1, 512, 16, 1, 1] [1, 1, 1, 1, 1] |
| /// : memref<1x512x16x1x1xf32> to memref<1x512x16xf32> |
| /// %0 = vector.shape_cast %arg1 : vector<1x16x16x1x1xf32> |
| /// to vector<1x16x16xf32> |
| /// vector.transfer_write %0, %subview[%c0, %arg2, %c0] |
| /// {in_bounds = [true, true, true]} |
| /// : vector<1x16x16xf32>, memref<1x512x16xf32> |
| /// |
| /// Note, this pattern will not collapse "scalable unit" dims (i.e. `[1]`). |
| class DropInnerMostUnitDimsTransferWrite |
| : public OpRewritePattern<vector::TransferWriteOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::TransferWriteOp writeOp, |
| PatternRewriter &rewriter) const override { |
| // TODO: support 0-d corner case. |
| if (writeOp.getTransferRank() == 0) |
| return failure(); |
| |
| // TODO: support mask. |
| if (writeOp.getMask()) |
| return failure(); |
| |
| auto srcType = dyn_cast<MemRefType>(writeOp.getBase().getType()); |
| if (!srcType) |
| return failure(); |
| |
| if (!writeOp.getPermutationMap().isMinorIdentity()) |
| return failure(); |
| |
| auto targetType = writeOp.getVectorType(); |
| if (targetType.getRank() <= 1) |
| return failure(); |
| |
| FailureOr<size_t> maybeDimsToDrop = |
| getTransferFoldableInnerUnitDims(srcType, targetType); |
| if (failed(maybeDimsToDrop)) |
| return failure(); |
| |
| size_t dimsToDrop = maybeDimsToDrop.value(); |
| if (dimsToDrop == 0) |
| return failure(); |
| |
| auto inBounds = writeOp.getInBoundsValues(); |
| auto droppedInBounds = ArrayRef<bool>(inBounds).take_back(dimsToDrop); |
| if (llvm::is_contained(droppedInBounds, false)) |
| return failure(); |
| |
| auto resultTargetVecType = |
| VectorType::get(targetType.getShape().drop_back(dimsToDrop), |
| targetType.getElementType(), |
| targetType.getScalableDims().drop_back(dimsToDrop)); |
| |
| Location loc = writeOp.getLoc(); |
| SmallVector<OpFoldResult> sizes = |
| memref::getMixedSizes(rewriter, loc, writeOp.getBase()); |
| SmallVector<OpFoldResult> offsets(srcType.getRank(), |
| rewriter.getIndexAttr(0)); |
| SmallVector<OpFoldResult> strides(srcType.getRank(), |
| rewriter.getIndexAttr(1)); |
| MemRefType resultMemrefType = memref::SubViewOp::inferRankReducedResultType( |
| srcType.getShape().drop_back(dimsToDrop), srcType, offsets, sizes, |
| strides); |
| ArrayAttr inBoundsAttr = rewriter.getArrayAttr( |
| writeOp.getInBoundsAttr().getValue().drop_back(dimsToDrop)); |
| |
| Value rankedReducedView = rewriter.create<memref::SubViewOp>( |
| loc, resultMemrefType, writeOp.getBase(), offsets, sizes, strides); |
| auto permMap = getTransferMinorIdentityMap( |
| cast<ShapedType>(rankedReducedView.getType()), resultTargetVecType); |
| |
| auto shapeCast = rewriter.createOrFold<vector::ShapeCastOp>( |
| loc, resultTargetVecType, writeOp.getVector()); |
| rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( |
| writeOp, shapeCast, rankedReducedView, |
| writeOp.getIndices().drop_back(dimsToDrop), AffineMapAttr::get(permMap), |
| // TODO: support mask. |
| /*mask=*/Value(), inBoundsAttr); |
| return success(); |
| } |
| }; |
| |
| /// Canonicalization of a `vector.contraction %a, %b, %c` with row-major matmul |
| /// semantics to a contraction suitable for MMT (matrix matrix multiplication |
| /// with the RHS transposed) lowering. |
| struct CanonicalizeContractMatmulToMMT final |
| : OpRewritePattern<vector::ContractionOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| using FilterConstraintType = |
| std::function<LogicalResult(vector::ContractionOp op)>; |
| |
| CanonicalizeContractMatmulToMMT(MLIRContext *context, PatternBenefit benefit, |
| FilterConstraintType constraint) |
| : OpRewritePattern<vector::ContractionOp>(context, benefit), |
| filter(std::move(constraint)) {} |
| |
| LogicalResult matchAndRewrite(vector::ContractionOp op, |
| PatternRewriter &rewriter) const override { |
| if (failed(filter(op))) |
| return failure(); |
| |
| Location loc = op.getLoc(); |
| Value lhs = op.getLhs(); |
| Value rhs = op.getRhs(); |
| Value res = op.getAcc(); |
| |
| // Set up the parallel/reduction structure in right form. |
| using MapList = ArrayRef<ArrayRef<AffineExpr>>; |
| auto infer = [&](MapList m) { |
| return AffineMap::inferFromExprList(m, op.getContext()); |
| }; |
| AffineExpr m; |
| AffineExpr n; |
| AffineExpr k; |
| bindDims(rewriter.getContext(), m, n, k); |
| static constexpr std::array<int64_t, 2> perm = {1, 0}; |
| auto iteratorTypes = op.getIteratorTypes().getValue(); |
| SmallVector<AffineMap, 4> maps = op.getIndexingMapsArray(); |
| if (iteratorTypes.size() != 3 || |
| !vector::isParallelIterator(iteratorTypes[0]) || |
| !vector::isParallelIterator(iteratorTypes[1]) || |
| !vector::isReductionIterator(iteratorTypes[2])) |
| return rewriter.notifyMatchFailure(op, "contraction is not a gemm"); |
| |
| // The canonical form is "TNT" = A row-major, B col-major, C row-major. |
| const auto canonicalForm = infer({{m, k}, {n, k}, {m, n}}); |
| if (maps == canonicalForm) |
| return rewriter.notifyMatchFailure(op, "already in the canonical form"); |
| |
| // Create a vector transpose making sure to emit zero/sign-extend at the |
| // end. |
| auto createTranspose = [&rewriter, loc](Value mat) -> Value { |
| if (auto sext = mat.getDefiningOp<arith::ExtSIOp>()) { |
| Value trans = |
| rewriter.create<vector::TransposeOp>(loc, sext.getIn(), perm); |
| VectorType newType = |
| cast<VectorType>(trans.getType()) |
| .clone(cast<VectorType>(mat.getType()).getElementType()); |
| return rewriter.create<arith::ExtSIOp>(loc, newType, trans); |
| } |
| if (auto zext = mat.getDefiningOp<arith::ExtUIOp>()) { |
| Value trans = |
| rewriter.create<vector::TransposeOp>(loc, zext.getIn(), perm); |
| VectorType newType = |
| VectorType::get(cast<VectorType>(trans.getType()).getShape(), |
| cast<VectorType>(mat.getType()).getElementType()); |
| return rewriter.create<arith::ExtUIOp>(loc, newType, trans); |
| } |
| return rewriter.create<vector::TransposeOp>(loc, mat, perm); |
| }; |
| |
| if (maps == infer({{m, k}, {k, n}, {m, n}})) { |
| rhs = createTranspose(rhs); |
| } else if (maps == infer({{k, m}, {n, k}, {m, n}})) { |
| lhs = createTranspose(lhs); |
| } else if (maps == infer({{k, m}, {k, n}, {m, n}})) { |
| rhs = createTranspose(rhs); |
| lhs = createTranspose(lhs); |
| } else if (maps == infer({{k, m}, {k, n}, {n, m}})) { |
| std::swap(rhs, lhs); |
| rhs = createTranspose(rhs); |
| lhs = createTranspose(lhs); |
| } else if (maps == infer({{k, m}, {n, k}, {n, m}})) { |
| std::swap(rhs, lhs); |
| rhs = createTranspose(rhs); |
| } else if (maps == infer({{m, k}, {k, n}, {n, m}})) { |
| std::swap(lhs, rhs); |
| lhs = createTranspose(lhs); |
| } else if (maps == infer({{m, k}, {n, k}, {n, m}})) { |
| std::swap(lhs, rhs); |
| } else { |
| return rewriter.notifyMatchFailure(op, "unhandled contraction form"); |
| } |
| rewriter.replaceOpWithNewOp<vector::ContractionOp>( |
| op, lhs, rhs, res, rewriter.getAffineMapArrayAttr(canonicalForm), |
| op.getIteratorTypes()); |
| return success(); |
| }; |
| |
| private: |
| FilterConstraintType filter; |
| }; |
| |
| /// Pattern to fold arithmetic extensions on floating point data types into |
| /// vector contraction operations. linalg.matmul introduces arithmetic |
| /// extensions on its operands. Please mlir snippets below for more details. |
| /// ```mlir |
| /// "linalg.matmul"(%lhs, %rhs, %acc) ({ |
| /// ^bb0(%arg1: f16, %arg2: f16, %arg3: f32): |
| /// %lhs_f32 = "arith.extf"(%arg1) : (f16) -> f32 |
| /// %rhs_f32 = "arith.extf"(%arg2) : (f16) -> f32 |
| /// %mul = "arith.mulf"(%lhs_f32, %rhs_f32) : (f32, f32) -> f32 |
| /// %acc = "arith.addf"(%arg3, %mul) : (f32, f32) -> f32 |
| /// "linalg.yield"(%acc) : (f32) -> () |
| /// }) |
| /// ``` |
| /// This restricts the native usage of mixed precision NVIDIA Ampere Tensor |
| /// Cores, i.e, `mma.sync.*.f32.f16.f16.f32` and `mma.sync.*.f32.bf16.bf16.f32`. |
| /// This pattern folds the arithmetic extensions into the vector contraction and |
| /// enables the usage of native mixed precision Tensor Core instructions. |
| template <typename ExtOp> |
| struct FoldArithExtIntoContractionOp |
| : public OpRewritePattern<vector::ContractionOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ContractionOp contractOp, |
| PatternRewriter &rewriter) const override { |
| |
| auto lhsDefOp = contractOp.getLhs().getDefiningOp<ExtOp>(); |
| auto rhsDefOp = contractOp.getRhs().getDefiningOp<ExtOp>(); |
| |
| if (!lhsDefOp || !rhsDefOp) { |
| return rewriter.notifyMatchFailure(contractOp, |
| "no defining op on contract operands"); |
| } |
| |
| rewriter.replaceOpWithNewOp<vector::ContractionOp>( |
| contractOp, lhsDefOp->getOperand(0), rhsDefOp->getOperand(0), |
| contractOp.getAcc(), contractOp.getIndexingMapsAttr(), |
| contractOp.getIteratorTypesAttr()); |
| |
| return success(); |
| } |
| }; |
| |
| /// Pattern to fold chained reduction to a series of vector additions and a |
| /// final reduction. This form should require fewer subgroup operations. |
| /// |
| /// ```mlir |
| /// %a = vector.reduction <add> %x, %acc |
| /// %b = vector.reduction <add> %y, %a |
| /// ==> |
| /// %a = arith.addf %x, %y |
| /// %b = vector.reduction <add> %a, %acc |
| /// ``` |
| struct ChainedReduction final : OpRewritePattern<vector::ReductionOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ReductionOp op, |
| PatternRewriter &rewriter) const override { |
| // TODO: Handle other combining kinds. |
| if (op.getKind() != vector::CombiningKind::ADD) |
| return failure(); |
| |
| // Accumulator is optional. |
| Value acc = op.getAcc(); |
| if (!acc) |
| return failure(); |
| |
| if (!acc.getType().isIntOrFloat()) |
| return failure(); |
| |
| auto parentReduction = acc.getDefiningOp<vector::ReductionOp>(); |
| if (!parentReduction) |
| return failure(); |
| |
| Location loc = op.getLoc(); |
| Value vAdd; |
| if (isa<IntegerType>(acc.getType())) { |
| vAdd = rewriter.createOrFold<arith::AddIOp>( |
| loc, parentReduction.getVector(), op.getVector()); |
| } else { |
| vAdd = rewriter.create<arith::AddFOp>(loc, parentReduction.getVector(), |
| op.getVector()); |
| } |
| rewriter.replaceOpWithNewOp<vector::ReductionOp>(op, op.getKind(), vAdd, |
| parentReduction.getAcc()); |
| return success(); |
| } |
| }; |
| |
| // Helper function dropping unit non-scalable dimension from a VectorType |
| // keeping at least 1 dimension to avoid generating 0-D vectors. Scalable unit |
| // dimensions are not dropped. Folding such dimensions would require "shifting" |
| // the scalable flag onto some other fixed-width dim (e.g. vector<[1]x4xf32> -> |
| // vector<[4]xf32>). This could be implemented in the future. |
| static VectorType dropNonScalableUnitDimFromType(VectorType inVecTy) { |
| auto inVecShape = inVecTy.getShape(); |
| SmallVector<int64_t> newShape; |
| SmallVector<bool> newScalableDims; |
| for (auto [dim, isScalable] : |
| llvm::zip_equal(inVecShape, inVecTy.getScalableDims())) { |
| if (dim == 1 && !isScalable) |
| continue; |
| |
| newShape.push_back(dim); |
| newScalableDims.push_back(isScalable); |
| } |
| // All dims have been dropped, return vector<1xeType>. |
| if (newShape.empty()) { |
| newShape.push_back(1); |
| newScalableDims.push_back(false); |
| } |
| |
| return VectorType::get(newShape, inVecTy.getElementType(), newScalableDims); |
| } |
| |
| /// For vectors with at least one unit dim, replaces: |
| /// elementwise(a, b) |
| /// with: |
| /// sc_a = shape_cast(a) |
| /// sc_b = shape_cast(b) |
| /// res = elementwise(sc_a, sc_b) |
| /// return shape_cast(res) |
| /// The newly inserted shape_cast Ops fold (before elementwise Op) and then |
| /// restore (after elementwise Op) the unit dim. Vectors `a` and `b` are |
| /// required to be rank > 1. |
| /// |
| /// Ex: |
| /// %mul = arith.mulf %B_row, %A_row : vector<1x[4]xf32> |
| /// %cast = vector.shape_cast %mul : vector<1x[4]xf32> to vector<[4]xf32> |
| /// |
| /// gets converted to: |
| /// |
| /// %B_row_sc = vector.shape_cast %B_row : vector<1x[4]xf32> to vector<[4]xf32> |
| /// %A_row_sc = vector.shape_cast %A_row : vector<1x[4]xf32> to vector<[4]xf32> |
| /// %mul = arith.mulf %B_row_sc, %A_row_sc : vector<[4]xf32> |
| /// %cast_new = vector.shape_cast %mul : vector<[4]xf32> to vector<1x[4]xf32> |
| /// %cast = vector.shape_cast %cast_new : vector<1x[4]xf32> to vector<[4]xf32> |
| /// |
| /// Patterns for folding shape_casts should instantly eliminate `%cast_new` and |
| /// `%cast`. |
| struct DropUnitDimFromElementwiseOps final |
| : public OpTraitRewritePattern<OpTrait::Elementwise> { |
| using OpTraitRewritePattern::OpTraitRewritePattern; |
| LogicalResult matchAndRewrite(Operation *op, |
| PatternRewriter &rewriter) const override { |
| if (op->getNumResults() != 1 || op->getNumRegions() != 0) |
| return failure(); |
| |
| auto resultVectorType = dyn_cast<VectorType>(op->getResult(0).getType()); |
| if (!resultVectorType) |
| return failure(); |
| |
| // Check the operand pre-conditions. For `Elementwise` ops all operands are |
| // guaranteed to have identical shapes (with some exceptions such as |
| // `arith.select`) and it suffices to only check one of them. |
| auto sourceVectorType = dyn_cast<VectorType>(op->getOperand(0).getType()); |
| if (!sourceVectorType) |
| return failure(); |
| if (sourceVectorType.getRank() < 2) |
| return failure(); |
| |
| SmallVector<Value> newOperands; |
| auto loc = op->getLoc(); |
| for (auto operand : op->getOperands()) { |
| auto opVectorType = cast<VectorType>(operand.getType()); |
| auto newVType = dropNonScalableUnitDimFromType(opVectorType); |
| if (newVType == opVectorType) |
| return rewriter.notifyMatchFailure(op, "No unit dimension to remove."); |
| |
| auto opSC = rewriter.create<vector::ShapeCastOp>(loc, newVType, operand); |
| newOperands.push_back(opSC); |
| } |
| |
| VectorType newResultVectorType = |
| dropNonScalableUnitDimFromType(resultVectorType); |
| // Create an updated elementwise Op without unit dim. |
| Operation *elementwiseOp = |
| rewriter.create(loc, op->getName().getIdentifier(), newOperands, |
| newResultVectorType, op->getAttrs()); |
| |
| // Restore the unit dim by applying vector.shape_cast to the result. |
| rewriter.replaceOpWithNewOp<ShapeCastOp>(op, resultVectorType, |
| elementwiseOp->getResult(0)); |
| |
| return success(); |
| } |
| }; |
| |
| /// A pattern to drop unit dims from vector.transpose. |
| /// |
| /// Example: |
| /// |
| /// BEFORE: |
| /// ```mlir |
| /// %transpose = vector.transpose %vector, [3, 0, 1, 2] |
| /// : vector<1x1x4x[4]xf32> to vector<[4]x1x1x4xf32> |
| /// ``` |
| /// |
| /// AFTER: |
| /// ```mlir |
| /// %dropDims = vector.shape_cast %vector |
| /// : vector<1x1x4x[4]xf32> to vector<4x[4]xf32> |
| /// %transpose = vector.transpose %0, [1, 0] |
| /// : vector<4x[4]xf32> to vector<[4]x4xf32> |
| /// %restoreDims = vector.shape_cast %transpose |
| /// : vector<[4]x4xf32> to vector<[4]x1x1x4xf32> |
| /// ``` |
| struct DropUnitDimsFromTransposeOp final |
| : OpRewritePattern<vector::TransposeOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::TransposeOp op, |
| PatternRewriter &rewriter) const override { |
| VectorType sourceType = op.getSourceVectorType(); |
| VectorType sourceTypeWithoutUnitDims = |
| dropNonScalableUnitDimFromType(sourceType); |
| |
| if (sourceType == sourceTypeWithoutUnitDims) |
| return failure(); |
| |
| // Construct a map from dimIdx -> number of dims dropped before dimIdx. |
| auto sourceDims = llvm::to_vector(vector::getDims(sourceType)); |
| SmallVector<int64_t> droppedDimsBefore(sourceType.getRank()); |
| int64_t droppedDims = 0; |
| for (auto [i, dim] : llvm::enumerate(sourceDims)) { |
| droppedDimsBefore[i] = droppedDims; |
| if (dim == std::make_tuple(1, false)) |
| ++droppedDims; |
| } |
| |
| // Drop unit dims from transpose permutation. |
| ArrayRef<int64_t> perm = op.getPermutation(); |
| SmallVector<int64_t> newPerm; |
| for (int64_t idx : perm) { |
| if (sourceDims[idx] == std::make_tuple(1, false)) |
| continue; |
| newPerm.push_back(idx - droppedDimsBefore[idx]); |
| } |
| |
| // Fixup for `newPerm`. The `sourceTypeWithoutUnitDims` could be vector<1xT> |
| // type when the dimensions are unit dimensions. In this case, the newPerm |
| // should be [0]. |
| if (newPerm.empty()) { |
| newPerm.push_back(0); |
| } |
| |
| Location loc = op.getLoc(); |
| // Drop the unit dims via shape_cast. |
| auto dropDimsShapeCast = rewriter.create<vector::ShapeCastOp>( |
| loc, sourceTypeWithoutUnitDims, op.getVector()); |
| // Create the new transpose. |
| auto transposeWithoutUnitDims = |
| rewriter.create<vector::TransposeOp>(loc, dropDimsShapeCast, newPerm); |
| // Restore the unit dims via shape cast. |
| rewriter.replaceOpWithNewOp<vector::ShapeCastOp>( |
| op, op.getResultVectorType(), transposeWithoutUnitDims); |
| |
| return success(); |
| } |
| }; |
| |
| /// A pattern to drop unit dims from the iter_args of an scf.for. |
| /// |
| /// Example: |
| /// |
| /// BEFORE: |
| /// ```mlir |
| /// %res = scf.for ... iter_args(%iter = %init) -> vector<[4]x1x1x4xf32> { |
| /// ... |
| /// scf.yield % |
| /// } |
| /// ``` |
| /// |
| /// AFTER: |
| /// ```mlir |
| /// %drop = vector.shape_cast %init |
| /// : vector<4x1x1x[4]xf32> to vector<4x[4]xf32> |
| /// %new_loop = scf.for ... iter_args(%iter = %drop) -> vector<[4]x4xf32> { |
| /// %new_iter = vector.shape_cast %iter |
| /// : vector<[4]x4xf32> to vector<[4]x1x1x4xf32> |
| /// ... |
| /// } |
| /// %res = vector.shape_cast %new_loop |
| /// : vector<[4]x4xf32> to vector<[4]x1x1x4xf32> |
| /// ``` |
| struct DropUnitDimsFromScfForOp final : OpRewritePattern<scf::ForOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(scf::ForOp forOp, |
| PatternRewriter &rewriter) const override { |
| /// Find the first iter_arg with droppable unit dims. Further applications |
| /// of this pattern will apply to later arguments. |
| for (OpOperand &operand : forOp.getInitArgsMutable()) { |
| auto vectorType = dyn_cast<VectorType>(operand.get().getType()); |
| if (!vectorType) |
| continue; |
| |
| VectorType newVectorType = dropNonScalableUnitDimFromType(vectorType); |
| if (vectorType == newVectorType) |
| continue; |
| |
| // Create a new ForOp with that iter operand replaced. |
| auto castFn = [](OpBuilder &b, Location loc, Type type, Value source) { |
| return b.create<vector::ShapeCastOp>(loc, type, source); |
| }; |
| |
| Value replacement = |
| castFn(rewriter, forOp.getLoc(), newVectorType, operand.get()); |
| rewriter.replaceOp(forOp, |
| replaceAndCastForOpIterArg(rewriter, forOp, operand, |
| replacement, castFn)); |
| return success(); |
| } |
| return failure(); |
| } |
| }; |
| |
| /// Pattern to eliminate redundant zero-constants added to reduction operands. |
| /// It's enough for there to be one initial zero value, so we can eliminate the |
| /// extra ones that feed into `vector.reduction <add>`. These get created by the |
| /// `ChainedReduction` pattern. |
| /// |
| /// ```mlir |
| /// %a = arith.addf %x, %zero |
| /// %b = arith.addf %a, %y |
| /// %c = vector.reduction <add> %b, %acc |
| /// ==> |
| /// %b = arith.addf %a, %y |
| /// %c = vector.reduction <add> %b, %acc |
| /// ``` |
| struct ReduceRedundantZero final : OpRewritePattern<vector::ReductionOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ReductionOp op, |
| PatternRewriter &rewriter) const override { |
| // TODO: Handle other reduction kinds and their identity values. |
| if (op.getKind() != vector::CombiningKind::ADD) |
| return failure(); |
| |
| Type elemType = op.getSourceVectorType().getElementType(); |
| // The integer case should be handled by `arith.addi` folders, only check |
| // for floats here. |
| if (!isa<FloatType>(elemType)) |
| return failure(); |
| |
| auto vAdd = op.getVector().getDefiningOp<arith::AddFOp>(); |
| if (!vAdd) |
| return failure(); |
| auto addLhs = vAdd.getLhs().getDefiningOp<arith::AddFOp>(); |
| if (!addLhs) |
| return failure(); |
| |
| if (!matchPattern(addLhs.getRhs(), m_AnyZeroFloat())) |
| return failure(); |
| |
| auto newAdd = rewriter.create<arith::AddFOp>(vAdd.getLoc(), addLhs.getLhs(), |
| vAdd.getRhs()); |
| rewriter.replaceOpWithNewOp<vector::ReductionOp>(op, op.getKind(), newAdd, |
| op.getAcc()); |
| return success(); |
| } |
| }; |
| |
| /// Example: |
| /// ``` |
| /// %a = vector.reduction <add> %x : vector<2xf32> into f32 |
| /// ``` |
| /// is transformed into: |
| /// ``` |
| /// %y = vector.extract %x[0] : f32 from vector<2xf32> |
| /// %z = vector.extract %x[1] : f32 from vector<2xf32> |
| /// %a = arith.addf %y, %z : f32 |
| /// ``` |
| struct BreakDownVectorReduction final : OpRewritePattern<vector::ReductionOp> { |
| BreakDownVectorReduction(MLIRContext *context, |
| unsigned maxNumElementsToExtract, |
| PatternBenefit benefit) |
| : OpRewritePattern(context, benefit), |
| maxNumElementsToExtract(maxNumElementsToExtract) {} |
| |
| LogicalResult matchAndRewrite(vector::ReductionOp op, |
| PatternRewriter &rewriter) const override { |
| VectorType type = op.getSourceVectorType(); |
| if (type.isScalable() || op.isMasked()) |
| return failure(); |
| assert(type.getRank() == 1 && "Expected a 1-d vector"); |
| |
| int64_t numElems = type.getNumElements(); |
| if (numElems > maxNumElementsToExtract) { |
| return rewriter.notifyMatchFailure( |
| op, llvm::formatv("has too many vector elements ({0}) to break down " |
| "(max allowed: {1})", |
| numElems, maxNumElementsToExtract)); |
| } |
| |
| Location loc = op.getLoc(); |
| SmallVector<Value> extracted(numElems, nullptr); |
| for (auto [idx, extractedElem] : llvm::enumerate(extracted)) |
| extractedElem = rewriter.create<vector::ExtractOp>( |
| loc, op.getVector(), static_cast<int64_t>(idx)); |
| |
| Value res = extracted.front(); |
| for (auto extractedElem : llvm::drop_begin(extracted)) |
| res = vector::makeArithReduction(rewriter, loc, op.getKind(), res, |
| extractedElem, op.getFastmathAttr()); |
| if (Value acc = op.getAcc()) |
| res = vector::makeArithReduction(rewriter, loc, op.getKind(), res, acc, |
| op.getFastmathAttr()); |
| |
| rewriter.replaceOp(op, res); |
| return success(); |
| } |
| |
| private: |
| unsigned maxNumElementsToExtract = 0; |
| }; |
| |
| /// Fold `mulf(tr(broadcast(A)), broadcast(B))` into `vector.outerproduct(A, |
| /// B)`. |
| /// Example: |
| /// %lhsBcast = vector.broadcast %lhs : vector<4xi32> to vector<4x4xi32> |
| /// %lhsT = vector.transpose %lhsBcast, [1, 0] : vector<4x4xi32> to |
| /// vector<4x4xi32> %rhsBcast = vector.broadcast %rhs : vector<4xi32> to |
| /// vector<4x4xi32> %mul = arith.muli %lhsT, %rhsBcast : vector<4x4xi32> |
| /// |
| /// Becomes : |
| /// |
| /// %res = vector.outerproduct %lhs, %rhs : vector<4xi32>, vector<4xi32> |
| /// |
| /// Supports only 1D-to-2D broadcasts. The following cases are not supported. |
| /// %ex1 = vector.broadcast %lhsCast : vector<1x4xf32> to vector<4x4xf32> |
| /// %ex2 = vector.broadcast %lhsCast : f32 to vector<4x4xf32> |
| /// %ex3 = vector.broadcast %lhsCast : vector<1x1xf32> to vector<4x4xf32> |
| template <typename MulOpType> |
| struct FoldArithToVectorOuterProduct : public OpRewritePattern<MulOpType> { |
| using OpRewritePattern<MulOpType>::OpRewritePattern; |
| // Returns whether a vector.broadcast matches requirements for an outerproduct |
| // pattern. aka a 1D-to-2D broadcastOp without broadcasted unit dimension. |
| bool isValidBroadcastSource(vector::BroadcastOp broadcastOp) const { |
| // Fail if it is not a 1-to-2 dimension to broadcast to avoid generating |
| // shape_casts/broadcasts which does not belong in this pattern. |
| if (!broadcastOp.computeBroadcastedUnitDims().empty()) |
| return false; |
| // Avoid broadcast like f32 or vector<f32> -> ResType |
| auto srcType = dyn_cast<VectorType>(broadcastOp.getSourceType()); |
| return srcType && srcType.getRank() != 2; |
| } |
| |
| LogicalResult matchAndRewrite(MulOpType mulOp, |
| PatternRewriter &rewriter) const override { |
| auto resType = llvm::cast<VectorType>(mulOp.getResult().getType()); |
| if (!resType) |
| return failure(); |
| if (resType.getRank() != 2) |
| return failure(); |
| /// If operandA can be written as tr(broadcast(A)) and operandB as |
| /// broadcast(B) where broadcasts are 1D-to-2D, create and return |
| /// vector.outerproduct(A, B). Returns failure() otherwise. |
| auto matchOuterProduct = |
| [&](Value operandA, |
| Value operandB) -> FailureOr<vector::OuterProductOp> { |
| auto transposedLhs = operandA.getDefiningOp<vector::TransposeOp>(); |
| if (!transposedLhs) |
| return failure(); |
| // Fail unless this is a true 2-D matrix transpose. |
| ArrayRef<int64_t> permutation = transposedLhs.getPermutation(); |
| if (permutation.size() != 2 || permutation[0] != 1 || permutation[1] != 0) |
| return failure(); |
| |
| auto broadcastedLhs = |
| transposedLhs.getVector().getDefiningOp<vector::BroadcastOp>(); |
| if (!broadcastedLhs || !isValidBroadcastSource(broadcastedLhs)) |
| return failure(); |
| |
| auto broadcastedRhs = operandB.getDefiningOp<vector::BroadcastOp>(); |
| if (!broadcastedRhs || !isValidBroadcastSource(broadcastedRhs)) |
| return failure(); |
| |
| return rewriter.create<vector::OuterProductOp>( |
| mulOp->getLoc(), resType, broadcastedLhs.getSource(), |
| broadcastedRhs.getSource(), Value(), vector::CombiningKind::ADD); |
| }; |
| |
| Value lhs = mulOp->getOperand(0), rhs = mulOp->getOperand(1); |
| auto maybeOuterP = matchOuterProduct(lhs, rhs); |
| // Handle commutativity, the transposed op is the outerproduct LHS. |
| if (failed(maybeOuterP)) |
| maybeOuterP = matchOuterProduct(rhs, lhs); |
| if (failed(maybeOuterP)) |
| return failure(); |
| rewriter.replaceOp(mulOp, maybeOuterP->getResult()); |
| return success(); |
| } |
| }; |
| |
| } // namespace |
| |
| void mlir::vector::populateFoldArithExtensionPatterns( |
| RewritePatternSet &patterns) { |
| patterns.add<FoldArithExtIntoContractionOp<arith::ExtFOp>, |
| FoldArithExtIntoContractionOp<arith::ExtSIOp>>( |
| patterns.getContext()); |
| } |
| |
| void mlir::vector::populateVectorMaskMaterializationPatterns( |
| RewritePatternSet &patterns, bool force32BitVectorIndices, |
| PatternBenefit benefit) { |
| patterns.add<VectorCreateMaskOpConversion, |
| MaterializeTransferMask<vector::TransferReadOp>, |
| MaterializeTransferMask<vector::TransferWriteOp>>( |
| patterns.getContext(), force32BitVectorIndices, benefit); |
| patterns.add<FoldI1Select>(patterns.getContext(), benefit); |
| } |
| |
| void mlir::vector::populateDropUnitDimWithShapeCastPatterns( |
| RewritePatternSet &patterns, PatternBenefit benefit) { |
| // TODO: Consider either: |
| // * including DropInnerMostUnitDimsTransferRead and |
| // DropInnerMostUnitDimsTransferWrite, or |
| // * better naming to distinguish this and |
| // populateVectorTransferCollapseInnerMostContiguousDimsPatterns. |
| patterns.add<DropUnitDimFromElementwiseOps, DropUnitDimsFromScfForOp, |
| DropUnitDimsFromTransposeOp>(patterns.getContext(), benefit); |
| } |
| |
| void mlir::vector::populateBubbleVectorBitCastOpPatterns( |
| RewritePatternSet &patterns, PatternBenefit benefit) { |
| patterns.add<BubbleDownVectorBitCastForExtract, |
| BubbleDownBitCastForStridedSliceExtract, |
| BubbleUpBitCastForInsert, BubbleUpBitCastForStridedSliceInsert>( |
| patterns.getContext(), benefit); |
| } |
| |
| void mlir::vector::populateBreakDownVectorBitCastOpPatterns( |
| RewritePatternSet &patterns, |
| std::function<bool(vector::BitCastOp)> controlFn, PatternBenefit benefit) { |
| patterns.add<BreakDownVectorBitCast>(patterns.getContext(), |
| std::move(controlFn), benefit); |
| } |
| |
| void mlir::vector::populateVectorContractCanonicalizeMatmulToMMT( |
| RewritePatternSet &patterns, |
| std::function<LogicalResult(vector::ContractionOp)> constraint, |
| PatternBenefit benefit) { |
| patterns.add<CanonicalizeContractMatmulToMMT>(patterns.getContext(), benefit, |
| std::move(constraint)); |
| } |
| |
| void mlir::vector::populateVectorReductionToContractPatterns( |
| RewritePatternSet &patterns, PatternBenefit benefit) { |
| patterns.add<MultiReduceToContract, CombineContractBroadcast, |
| CombineContractABTranspose, CombineContractResultTranspose>( |
| patterns.getContext(), benefit); |
| } |
| |
| void mlir::vector:: |
| populateVectorTransferCollapseInnerMostContiguousDimsPatterns( |
| RewritePatternSet &patterns, PatternBenefit benefit) { |
| patterns.add<DropInnerMostUnitDimsTransferRead, |
| DropInnerMostUnitDimsTransferWrite>(patterns.getContext(), |
| benefit); |
| } |
| |
| void mlir::vector::populateSinkVectorOpsPatterns(RewritePatternSet &patterns, |
| PatternBenefit benefit) { |
| patterns.add<ReorderElementwiseOpsOnTranspose, ReorderCastOpsOnBroadcast, |
| ReorderElementwiseOpsOnBroadcast, ExtractOpFromElementwise>( |
| patterns.getContext(), benefit); |
| } |
| |
| void mlir::vector::populateSinkVectorMemOpsPatterns(RewritePatternSet &patterns, |
| PatternBenefit benefit) { |
| // TODO: Consider converting these patterns to canonicalizations. |
| patterns.add<ExtractOpFromLoad, StoreOpFromSplatOrBroadcast>( |
| patterns.getContext(), benefit); |
| } |
| |
| void mlir::vector::populateChainedVectorReductionFoldingPatterns( |
| RewritePatternSet &patterns, PatternBenefit benefit) { |
| patterns.add<ChainedReduction>(patterns.getContext(), benefit); |
| patterns.add<ReduceRedundantZero>(patterns.getContext(), |
| PatternBenefit(benefit.getBenefit() + 1)); |
| } |
| |
| void mlir::vector::populateBreakDownVectorReductionPatterns( |
| RewritePatternSet &patterns, unsigned maxNumElementsToExtract, |
| PatternBenefit benefit) { |
| patterns.add<BreakDownVectorReduction>(patterns.getContext(), |
| maxNumElementsToExtract, benefit); |
| } |
| |
| void mlir::vector::populateElementwiseToVectorOpsPatterns( |
| RewritePatternSet &patterns) { |
| patterns.add<FoldArithToVectorOuterProduct<arith::MulFOp>, |
| FoldArithToVectorOuterProduct<arith::MulIOp>>( |
| patterns.getContext()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TableGen'd enum attribute definitions |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Vector/Transforms/VectorTransformsEnums.cpp.inc" |