| //===-- String to float conversion utils ------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LIBC_SRC_SUPPORT_STR_TO_FLOAT_H |
| #define LIBC_SRC_SUPPORT_STR_TO_FLOAT_H |
| |
| #include "src/__support/CPP/Limits.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/ctype_utils.h" |
| #include "src/__support/detailed_powers_of_ten.h" |
| #include "src/__support/high_precision_decimal.h" |
| #include "src/__support/str_to_integer.h" |
| #include <errno.h> |
| |
| namespace __llvm_libc { |
| namespace internal { |
| |
| template <class T> uint32_t inline leadingZeroes(T inputNumber) { |
| // TODO(michaelrj): investigate the portability of using something like |
| // __builtin_clz for specific types. |
| constexpr uint32_t bitsInT = sizeof(T) * 8; |
| if (inputNumber == 0) { |
| return bitsInT; |
| } |
| uint32_t curGuess = bitsInT / 2; |
| uint32_t rangeSize = bitsInT / 2; |
| // while either shifting by curGuess does not get rid of all of the bits or |
| // shifting by one less also gets rid of all of the bits then we have not |
| // found the first bit. |
| while (((inputNumber >> curGuess) > 0) || |
| ((inputNumber >> (curGuess - 1)) == 0)) { |
| // Binary search for the first set bit |
| rangeSize /= 2; |
| if (rangeSize == 0) { |
| break; |
| } |
| if ((inputNumber >> curGuess) > 0) { |
| curGuess += rangeSize; |
| } else { |
| curGuess -= rangeSize; |
| } |
| } |
| if (inputNumber >> curGuess > 0) { |
| curGuess++; |
| } |
| return bitsInT - curGuess; |
| } |
| |
| template <> uint32_t inline leadingZeroes<uint32_t>(uint32_t inputNumber) { |
| return inputNumber == 0 ? 32 : __builtin_clz(inputNumber); |
| } |
| |
| template <> uint32_t inline leadingZeroes<uint64_t>(uint64_t inputNumber) { |
| return inputNumber == 0 ? 64 : __builtin_clzll(inputNumber); |
| } |
| |
| static inline uint64_t low64(__uint128_t num) { |
| return static_cast<uint64_t>(num & 0xffffffffffffffff); |
| } |
| |
| static inline uint64_t high64(__uint128_t num) { |
| return static_cast<uint64_t>(num >> 64); |
| } |
| |
| // This Eisel-Lemire implementation is based on the algorithm described in the |
| // paper Number Parsing at a Gigabyte per Second, Software: Practice and |
| // Experience 51 (8), 2021 (https://arxiv.org/abs/2101.11408), as well as the |
| // description by Nigel Tao |
| // (https://nigeltao.github.io/blog/2020/eisel-lemire.html) and the golang |
| // implementation, also by Nigel Tao |
| // (https://github.com/golang/go/blob/release-branch.go1.16/src/strconv/eisel_lemire.go#L25) |
| // for some optimizations as well as handling 32 bit floats. |
| template <class T> |
| static inline bool |
| eiselLemire(typename fputil::FPBits<T>::UIntType mantissa, int32_t exp10, |
| typename fputil::FPBits<T>::UIntType *outputMantissa, |
| uint32_t *outputExp2) { |
| |
| using BitsType = typename fputil::FPBits<T>::UIntType; |
| constexpr uint32_t BITS_IN_MANTISSA = sizeof(mantissa) * 8; |
| |
| if (sizeof(T) > 8) { // This algorithm cannot handle anything longer than a |
| // double, so we skip straight to the fallback. |
| return false; |
| } |
| |
| // Exp10 Range |
| if (exp10 < DETAILED_POWERS_OF_TEN_MIN_EXP_10 || |
| exp10 > DETAILED_POWERS_OF_TEN_MAX_EXP_10) { |
| return false; |
| } |
| |
| // Normalization |
| uint32_t clz = leadingZeroes<BitsType>(mantissa); |
| mantissa <<= clz; |
| |
| uint32_t exp2 = exp10ToExp2(exp10) + BITS_IN_MANTISSA + |
| fputil::FloatProperties<T>::exponentBias - clz; |
| |
| // Multiplication |
| const uint64_t *powerOfTen = |
| DETAILED_POWERS_OF_TEN[exp10 - DETAILED_POWERS_OF_TEN_MIN_EXP_10]; |
| |
| __uint128_t firstApprox = static_cast<__uint128_t>(mantissa) * |
| static_cast<__uint128_t>(powerOfTen[1]); |
| |
| // Wider Approximation |
| __uint128_t finalApprox; |
| // The halfway constant is used to check if the bits that will be shifted away |
| // intially are all 1. For doubles this is 64 (bitstype size) - 52 (final |
| // mantissa size) - 3 (we shift away the last two bits separately for |
| // accuracy, and the most significant bit is ignored.) = 9. Similarly, it's 6 |
| // for floats in this case. |
| const uint64_t halfwayConstant = sizeof(T) == 8 ? 0x1FF : 0x3F; |
| if ((high64(firstApprox) & halfwayConstant) == halfwayConstant && |
| low64(firstApprox) + mantissa < mantissa) { |
| __uint128_t lowBits = static_cast<__uint128_t>(mantissa) * |
| static_cast<__uint128_t>(powerOfTen[0]); |
| __uint128_t secondApprox = |
| firstApprox + static_cast<__uint128_t>(high64(lowBits)); |
| |
| if ((high64(secondApprox) & halfwayConstant) == halfwayConstant && |
| low64(secondApprox) + 1 == 0 && low64(lowBits) + mantissa < mantissa) { |
| return false; |
| } |
| finalApprox = secondApprox; |
| } else { |
| finalApprox = firstApprox; |
| } |
| |
| // Shifting to 54 bits for doubles and 25 bits for floats |
| BitsType msb = high64(finalApprox) >> (BITS_IN_MANTISSA - 1); |
| BitsType finalMantissa = |
| high64(finalApprox) >> (msb + BITS_IN_MANTISSA - |
| (fputil::FloatProperties<T>::mantissaWidth + 3)); |
| exp2 -= 1 ^ msb; // same as !msb |
| |
| // Half-way ambiguity |
| if (low64(finalApprox) == 0 && (high64(finalApprox) & halfwayConstant) == 0 && |
| (finalMantissa & 3) == 1) { |
| return false; |
| } |
| |
| // From 54 to 53 bits for doubles and 25 to 24 bits for floats |
| finalMantissa += finalMantissa & 1; |
| finalMantissa >>= 1; |
| if ((finalMantissa >> (fputil::FloatProperties<T>::mantissaWidth + 1)) > 0) { |
| finalMantissa >>= 1; |
| ++exp2; |
| } |
| |
| // The if block is equivalent to (but has fewer branches than): |
| // if exp2 <= 0 || exp2 >= 0x7FF { etc } |
| if (exp2 - 1 >= (1 << fputil::FloatProperties<T>::exponentWidth) - 2) { |
| return false; |
| } |
| |
| *outputMantissa = finalMantissa; |
| *outputExp2 = exp2; |
| return true; |
| } |
| |
| // The nth item in POWERS_OF_TWO represents the greatest power of two less than |
| // 10^n. This tells us how much we can safely shift without overshooting. |
| constexpr uint8_t POWERS_OF_TWO[19] = { |
| 0, 3, 6, 9, 13, 16, 19, 23, 26, 29, 33, 36, 39, 43, 46, 49, 53, 56, 59, |
| }; |
| constexpr int32_t NUM_POWERS_OF_TWO = |
| sizeof(POWERS_OF_TWO) / sizeof(POWERS_OF_TWO[0]); |
| |
| // Takes a mantissa and base 10 exponent and converts it into its closest |
| // floating point type T equivalent. This is the fallback algorithm used when |
| // the Eisel-Lemire algorithm fails, it's slower but more accurate. It's based |
| // on the Simple Decimal Conversion algorithm by Nigel Tao, described at this |
| // link: https://nigeltao.github.io/blog/2020/parse-number-f64-simple.html |
| template <class T> |
| static inline void |
| simpleDecimalConversion(const char *__restrict numStart, |
| typename fputil::FPBits<T>::UIntType *outputMantissa, |
| uint32_t *outputExp2) { |
| |
| int32_t exp2 = 0; |
| HighPrecisionDecimal hpd = HighPrecisionDecimal(numStart); |
| |
| if (hpd.getNumDigits() == 0) { |
| *outputMantissa = 0; |
| *outputExp2 = 0; |
| return; |
| } |
| |
| // If the exponent is too large and can't be represented in this size of |
| // float, return inf. |
| if (hpd.getDecimalPoint() > 0 && |
| exp10ToExp2(hpd.getDecimalPoint() - 1) > |
| static_cast<int64_t>(fputil::FloatProperties<T>::exponentBias)) { |
| *outputMantissa = 0; |
| *outputExp2 = fputil::FPBits<T>::maxExponent; |
| errno = ERANGE; // NOLINT |
| return; |
| } |
| // If the exponent is too small even for a subnormal, return 0. |
| if (hpd.getDecimalPoint() < 0 && |
| exp10ToExp2(-hpd.getDecimalPoint()) > |
| static_cast<int64_t>(fputil::FloatProperties<T>::exponentBias + |
| fputil::FloatProperties<T>::mantissaWidth)) { |
| *outputMantissa = 0; |
| *outputExp2 = 0; |
| errno = ERANGE; // NOLINT |
| return; |
| } |
| |
| // Right shift until the number is smaller than 1. |
| while (hpd.getDecimalPoint() > 0) { |
| int32_t shiftAmount = 0; |
| if (hpd.getDecimalPoint() >= NUM_POWERS_OF_TWO) { |
| shiftAmount = 60; |
| } else { |
| shiftAmount = POWERS_OF_TWO[hpd.getDecimalPoint()]; |
| } |
| exp2 += shiftAmount; |
| hpd.shift(-shiftAmount); |
| } |
| |
| // Left shift until the number is between 1/2 and 1 |
| while (hpd.getDecimalPoint() < 0 || |
| (hpd.getDecimalPoint() == 0 && hpd.getDigits()[0] < 5)) { |
| int32_t shiftAmount = 0; |
| |
| if (-hpd.getDecimalPoint() >= NUM_POWERS_OF_TWO) { |
| shiftAmount = 60; |
| } else if (hpd.getDecimalPoint() != 0) { |
| shiftAmount = POWERS_OF_TWO[-hpd.getDecimalPoint()]; |
| } else { // This handles the case of the number being between .1 and .5 |
| shiftAmount = 1; |
| } |
| exp2 -= shiftAmount; |
| hpd.shift(shiftAmount); |
| } |
| |
| // Left shift once so that the number is between 1 and 2 |
| --exp2; |
| hpd.shift(1); |
| |
| // Get the biased exponent |
| exp2 += fputil::FloatProperties<T>::exponentBias; |
| |
| // Handle the exponent being too large (and return inf). |
| if (exp2 >= fputil::FPBits<T>::maxExponent) { |
| *outputMantissa = 0; |
| *outputExp2 = fputil::FPBits<T>::maxExponent; |
| errno = ERANGE; // NOLINT |
| return; |
| } |
| |
| // Shift left to fill the mantissa |
| hpd.shift(fputil::FloatProperties<T>::mantissaWidth); |
| typename fputil::FPBits<T>::UIntType finalMantissa = |
| hpd.roundToIntegerType<typename fputil::FPBits<T>::UIntType>(); |
| |
| // Handle subnormals |
| if (exp2 <= 0) { |
| // Shift right until there is a valid exponent |
| while (exp2 < 0) { |
| hpd.shift(-1); |
| ++exp2; |
| } |
| // Shift right one more time to compensate for the left shift to get it |
| // between 1 and 2. |
| hpd.shift(-1); |
| finalMantissa = |
| hpd.roundToIntegerType<typename fputil::FPBits<T>::UIntType>(); |
| |
| // Check if by shifting right we've caused this to round to a normal number. |
| if ((finalMantissa >> fputil::FloatProperties<T>::mantissaWidth) != 0) { |
| ++exp2; |
| } |
| } |
| |
| // Check if rounding added a bit, and shift down if that's the case. |
| if (finalMantissa == typename fputil::FPBits<T>::UIntType(2) |
| << fputil::FloatProperties<T>::mantissaWidth) { |
| finalMantissa >>= 1; |
| ++exp2; |
| } |
| |
| if (exp2 == 0) { |
| errno = ERANGE; // NOLINT |
| } |
| |
| *outputMantissa = finalMantissa; |
| *outputExp2 = exp2; |
| } |
| |
| // This class is used for templating the constants for Clinger's Fast Path, |
| // described as a method of approximation in |
| // Clinger WD. How to Read Floating Point Numbers Accurately. SIGPLAN Not 1990 |
| // Jun;25(6):92–101. https://doi.org/10.1145/93548.93557. |
| // As well as the additions by Gay that extend the useful range by the number of |
| // exact digits stored by the float type, described in |
| // Gay DM, Correctly rounded binary-decimal and decimal-binary conversions; |
| // 1990. AT&T Bell Laboratories Numerical Analysis Manuscript 90-10. |
| template <class T> class ClingerConsts; |
| |
| template <> class ClingerConsts<float> { |
| public: |
| static constexpr float powersOfTenArray[] = {1e0, 1e1, 1e2, 1e3, 1e4, 1e5, |
| 1e6, 1e7, 1e8, 1e9, 1e10}; |
| static constexpr int32_t exactPowersOfTen = 10; |
| static constexpr int32_t digitsInMantissa = 7; |
| static constexpr float maxExactInt = 16777215.0; |
| }; |
| |
| template <> class ClingerConsts<double> { |
| public: |
| static constexpr double powersOfTenArray[] = { |
| 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, |
| 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; |
| static constexpr int32_t exactPowersOfTen = 22; |
| static constexpr int32_t digitsInMantissa = 15; |
| static constexpr double maxExactInt = 9007199254740991.0; |
| }; |
| |
| // Take an exact mantissa and exponent and attempt to convert it using only |
| // exact floating point arithmetic. This only handles numbers with low |
| // exponents, but handles them quickly. This is an implementation of Clinger's |
| // Fast Path, as described above. |
| template <class T> |
| static inline bool |
| clingerFastPath(typename fputil::FPBits<T>::UIntType mantissa, int32_t exp10, |
| typename fputil::FPBits<T>::UIntType *outputMantissa, |
| uint32_t *outputExp2) { |
| if (mantissa >> fputil::FloatProperties<T>::mantissaWidth > 0) { |
| return false; |
| } |
| |
| fputil::FPBits<T> result; |
| T floatMantissa = static_cast<T>(mantissa); |
| |
| if (exp10 == 0) { |
| result = fputil::FPBits<T>(floatMantissa); |
| } |
| if (exp10 > 0) { |
| if (exp10 > ClingerConsts<T>::exactPowersOfTen + |
| ClingerConsts<T>::digitsInMantissa) { |
| return false; |
| } |
| if (exp10 > ClingerConsts<T>::exactPowersOfTen) { |
| floatMantissa = |
| floatMantissa * |
| ClingerConsts< |
| T>::powersOfTenArray[exp10 - ClingerConsts<T>::exactPowersOfTen]; |
| exp10 = ClingerConsts<T>::exactPowersOfTen; |
| } |
| if (floatMantissa > ClingerConsts<T>::maxExactInt) { |
| return false; |
| } |
| result = fputil::FPBits<T>(floatMantissa * |
| ClingerConsts<T>::powersOfTenArray[exp10]); |
| } else if (exp10 < 0) { |
| if (-exp10 > ClingerConsts<T>::exactPowersOfTen) { |
| return false; |
| } |
| result = fputil::FPBits<T>(floatMantissa / |
| ClingerConsts<T>::powersOfTenArray[-exp10]); |
| } |
| *outputMantissa = result.getMantissa(); |
| *outputExp2 = result.getUnbiasedExponent(); |
| return true; |
| } |
| |
| // Takes a mantissa and base 10 exponent and converts it into its closest |
| // floating point type T equivalient. First we try the Eisel-Lemire algorithm, |
| // then if that fails then we fall back to a more accurate algorithm for |
| // accuracy. The resulting mantissa and exponent are placed in outputMantissa |
| // and outputExp2. |
| template <class T> |
| static inline void |
| decimalExpToFloat(typename fputil::FPBits<T>::UIntType mantissa, int32_t exp10, |
| const char *__restrict numStart, bool truncated, |
| typename fputil::FPBits<T>::UIntType *outputMantissa, |
| uint32_t *outputExp2) { |
| // If the exponent is too large and can't be represented in this size of |
| // float, return inf. These bounds are very loose, but are mostly serving as a |
| // first pass. Some close numbers getting through is okay. |
| if (exp10 > |
| static_cast<int64_t>(fputil::FloatProperties<T>::exponentBias) / 3) { |
| *outputMantissa = 0; |
| *outputExp2 = fputil::FPBits<T>::maxExponent; |
| errno = ERANGE; // NOLINT |
| return; |
| } |
| // If the exponent is too small even for a subnormal, return 0. |
| if (exp10 < 0 && |
| -static_cast<int64_t>(exp10) > |
| static_cast<int64_t>(fputil::FloatProperties<T>::exponentBias + |
| fputil::FloatProperties<T>::mantissaWidth) / |
| 2) { |
| *outputMantissa = 0; |
| *outputExp2 = 0; |
| errno = ERANGE; // NOLINT |
| return; |
| } |
| |
| if (!truncated) { |
| if (clingerFastPath<T>(mantissa, exp10, outputMantissa, outputExp2)) { |
| return; |
| } |
| } |
| |
| // Try Eisel-Lemire |
| if (eiselLemire<T>(mantissa, exp10, outputMantissa, outputExp2)) { |
| if (!truncated) { |
| return; |
| } |
| // If the mantissa is truncated, then the result may be off by the LSB, so |
| // check if rounding the mantissa up changes the result. If not, then it's |
| // safe, else use the fallback. |
| typename fputil::FPBits<T>::UIntType firstMantissa = *outputMantissa; |
| uint32_t firstExp2 = *outputExp2; |
| if (eiselLemire<T>(mantissa + 1, exp10, outputMantissa, outputExp2)) { |
| if (*outputMantissa == firstMantissa && *outputExp2 == firstExp2) { |
| return; |
| } |
| } |
| } |
| |
| simpleDecimalConversion<T>(numStart, outputMantissa, outputExp2); |
| |
| return; |
| } |
| |
| // Takes a mantissa and base 2 exponent and converts it into its closest |
| // floating point type T equivalient. Since the exponent is already in the right |
| // form, this is mostly just shifting and rounding. This is used for hexadecimal |
| // numbers since a base 16 exponent multiplied by 4 is the base 2 exponent. |
| template <class T> |
| static inline void |
| binaryExpToFloat(typename fputil::FPBits<T>::UIntType mantissa, int32_t exp2, |
| bool truncated, |
| typename fputil::FPBits<T>::UIntType *outputMantissa, |
| uint32_t *outputExp2) { |
| using BitsType = typename fputil::FPBits<T>::UIntType; |
| |
| // This is the number of leading zeroes a properly normalized float of type T |
| // should have. |
| constexpr int32_t NUMBITS = sizeof(BitsType) * 8; |
| constexpr int32_t INF_EXP = |
| (1 << fputil::FloatProperties<T>::exponentWidth) - 1; |
| |
| // Normalization step 1: Bring the leading bit to the highest bit of BitsType. |
| uint32_t amountToShiftLeft = leadingZeroes<BitsType>(mantissa); |
| mantissa <<= amountToShiftLeft; |
| |
| // Keep exp2 representing the exponent of the lowest bit of BitsType. |
| exp2 -= amountToShiftLeft; |
| |
| // biasedExponent represents the biased exponent of the most significant bit. |
| int32_t biasedExponent = exp2 + NUMBITS + fputil::FPBits<T>::exponentBias - 1; |
| |
| // Handle numbers that're too large and get squashed to inf |
| if (biasedExponent >= INF_EXP) { |
| // This indicates an overflow, so we make the result INF and set errno. |
| *outputExp2 = (1 << fputil::FloatProperties<T>::exponentWidth) - 1; |
| *outputMantissa = 0; |
| errno = ERANGE; // NOLINT |
| return; |
| } |
| |
| uint32_t amountToShiftRight = |
| NUMBITS - fputil::FloatProperties<T>::mantissaWidth - 1; |
| |
| // Handle subnormals. |
| if (biasedExponent <= 0) { |
| amountToShiftRight += 1 - biasedExponent; |
| biasedExponent = 0; |
| |
| if (amountToShiftRight > NUMBITS) { |
| // Return 0 if the exponent is too small. |
| *outputMantissa = 0; |
| *outputExp2 = 0; |
| errno = ERANGE; // NOLINT |
| return; |
| } |
| } |
| |
| BitsType roundBitMask = BitsType(1) << (amountToShiftRight - 1); |
| BitsType stickyMask = roundBitMask - 1; |
| bool roundBit = mantissa & roundBitMask; |
| bool stickyBit = static_cast<bool>(mantissa & stickyMask) || truncated; |
| |
| if (amountToShiftRight < NUMBITS) { |
| // Shift the mantissa and clear the implicit bit. |
| mantissa >>= amountToShiftRight; |
| mantissa &= fputil::FloatProperties<T>::mantissaMask; |
| } else { |
| mantissa = 0; |
| } |
| bool leastSignificantBit = mantissa & BitsType(1); |
| // Perform rounding-to-nearest, tie-to-even. |
| if (roundBit && (leastSignificantBit || stickyBit)) { |
| ++mantissa; |
| } |
| |
| if (mantissa > fputil::FloatProperties<T>::mantissaMask) { |
| // Rounding causes the exponent to increase. |
| ++biasedExponent; |
| |
| if (biasedExponent == INF_EXP) { |
| errno = ERANGE; // NOLINT |
| } |
| } |
| |
| if (biasedExponent == 0) { |
| errno = ERANGE; // NOLINT |
| } |
| |
| *outputMantissa = mantissa & fputil::FloatProperties<T>::mantissaMask; |
| *outputExp2 = biasedExponent; |
| } |
| |
| // checks if the next 4 characters of the string pointer are the start of a |
| // hexadecimal floating point number. Does not advance the string pointer. |
| static inline bool is_float_hex_start(const char *__restrict src, |
| const char decimalPoint) { |
| if (!(*src == '0' && (*(src + 1) | 32) == 'x')) { |
| return false; |
| } |
| if (*(src + 2) == decimalPoint) { |
| return isalnum(*(src + 3)) && b36_char_to_int(*(src + 3)) < 16; |
| } else { |
| return isalnum(*(src + 2)) && b36_char_to_int(*(src + 2)) < 16; |
| } |
| } |
| |
| // Takes the start of a string representing a decimal float, as well as the |
| // local decimalPoint. It returns if it suceeded in parsing any digits, and if |
| // the return value is true then the outputs are pointer to the end of the |
| // number, and the mantissa and exponent for the closest float T representation. |
| // If the return value is false, then it is assumed that there is no number |
| // here. |
| template <class T> |
| static inline bool |
| decimalStringToFloat(const char *__restrict src, const char DECIMAL_POINT, |
| char **__restrict strEnd, |
| typename fputil::FPBits<T>::UIntType *outputMantissa, |
| uint32_t *outputExponent) { |
| using BitsType = typename fputil::FPBits<T>::UIntType; |
| constexpr uint32_t BASE = 10; |
| constexpr char EXPONENT_MARKER = 'e'; |
| |
| const char *__restrict numStart = src; |
| bool truncated = false; |
| bool seenDigit = false; |
| bool afterDecimal = false; |
| BitsType mantissa = 0; |
| int32_t exponent = 0; |
| |
| // The goal for the first step of parsing is to convert the number in src to |
| // the format mantissa * (base ^ exponent) |
| |
| // The loop fills the mantissa with as many digits as it can hold |
| const BitsType BITSTYPE_MAX_DIV_BY_BASE = |
| __llvm_libc::cpp::NumericLimits<BitsType>::max() / BASE; |
| while (true) { |
| if (isdigit(*src)) { |
| uint32_t digit = *src - '0'; |
| seenDigit = true; |
| |
| if (mantissa < BITSTYPE_MAX_DIV_BY_BASE) { |
| mantissa = (mantissa * BASE) + digit; |
| if (afterDecimal) { |
| --exponent; |
| } |
| } else { |
| if (digit > 0) |
| truncated = true; |
| if (!afterDecimal) |
| ++exponent; |
| } |
| |
| ++src; |
| continue; |
| } |
| if (*src == DECIMAL_POINT) { |
| if (afterDecimal) { |
| break; // this means that *src points to a second decimal point, ending |
| // the number. |
| } |
| afterDecimal = true; |
| ++src; |
| continue; |
| } |
| // The character is neither a digit nor a decimal point. |
| break; |
| } |
| |
| if (!seenDigit) |
| return false; |
| |
| if ((*src | 32) == EXPONENT_MARKER) { |
| if (*(src + 1) == '+' || *(src + 1) == '-' || isdigit(*(src + 1))) { |
| ++src; |
| char *tempStrEnd; |
| int32_t add_to_exponent = strtointeger<int32_t>(src, &tempStrEnd, 10); |
| if (add_to_exponent > 100000) |
| add_to_exponent = 100000; |
| else if (add_to_exponent < -100000) |
| add_to_exponent = -100000; |
| |
| src = tempStrEnd; |
| exponent += add_to_exponent; |
| } |
| } |
| |
| *strEnd = const_cast<char *>(src); |
| if (mantissa == 0) { // if we have a 0, then also 0 the exponent. |
| *outputMantissa = 0; |
| *outputExponent = 0; |
| } else { |
| decimalExpToFloat<T>(mantissa, exponent, numStart, truncated, |
| outputMantissa, outputExponent); |
| } |
| return true; |
| } |
| |
| // Takes the start of a string representing a hexadecimal float, as well as the |
| // local decimal point. It returns if it suceeded in parsing any digits, and if |
| // the return value is true then the outputs are pointer to the end of the |
| // number, and the mantissa and exponent for the closest float T representation. |
| // If the return value is false, then it is assumed that there is no number |
| // here. |
| template <class T> |
| static inline bool |
| hexadecimalStringToFloat(const char *__restrict src, const char DECIMAL_POINT, |
| char **__restrict strEnd, |
| typename fputil::FPBits<T>::UIntType *outputMantissa, |
| uint32_t *outputExponent) { |
| using BitsType = typename fputil::FPBits<T>::UIntType; |
| constexpr uint32_t BASE = 16; |
| constexpr char EXPONENT_MARKER = 'p'; |
| |
| bool truncated = false; |
| bool seenDigit = false; |
| bool afterDecimal = false; |
| BitsType mantissa = 0; |
| int32_t exponent = 0; |
| |
| // The goal for the first step of parsing is to convert the number in src to |
| // the format mantissa * (base ^ exponent) |
| |
| // The loop fills the mantissa with as many digits as it can hold |
| const BitsType BITSTYPE_MAX_DIV_BY_BASE = |
| __llvm_libc::cpp::NumericLimits<BitsType>::max() / BASE; |
| while (true) { |
| if (isalnum(*src)) { |
| uint32_t digit = b36_char_to_int(*src); |
| if (digit < BASE) |
| seenDigit = true; |
| else |
| break; |
| |
| if (mantissa < BITSTYPE_MAX_DIV_BY_BASE) { |
| mantissa = (mantissa * BASE) + digit; |
| if (afterDecimal) |
| --exponent; |
| } else { |
| if (digit > 0) |
| truncated = true; |
| if (!afterDecimal) |
| ++exponent; |
| } |
| ++src; |
| continue; |
| } |
| if (*src == DECIMAL_POINT) { |
| if (afterDecimal) { |
| break; // this means that *src points to a second decimal point, ending |
| // the number. |
| } |
| afterDecimal = true; |
| ++src; |
| continue; |
| } |
| // The character is neither a hexadecimal digit nor a decimal point. |
| break; |
| } |
| |
| if (!seenDigit) |
| return false; |
| |
| // Convert the exponent from having a base of 16 to having a base of 2. |
| exponent *= 4; |
| |
| if ((*src | 32) == EXPONENT_MARKER) { |
| if (*(src + 1) == '+' || *(src + 1) == '-' || isdigit(*(src + 1))) { |
| ++src; |
| char *tempStrEnd; |
| int32_t add_to_exponent = strtointeger<int32_t>(src, &tempStrEnd, 10); |
| if (add_to_exponent > 100000) |
| add_to_exponent = 100000; |
| else if (add_to_exponent < -100000) |
| add_to_exponent = -100000; |
| src = tempStrEnd; |
| exponent += add_to_exponent; |
| } |
| } |
| *strEnd = const_cast<char *>(src); |
| if (mantissa == 0) { // if we have a 0, then also 0 the exponent. |
| *outputMantissa = 0; |
| *outputExponent = 0; |
| } else { |
| binaryExpToFloat<T>(mantissa, exponent, truncated, outputMantissa, |
| outputExponent); |
| } |
| return true; |
| } |
| |
| // Takes a pointer to a string and a pointer to a string pointer. This function |
| // is used as the backend for all of the string to float functions. |
| template <class T> |
| static inline T strtofloatingpoint(const char *__restrict src, |
| char **__restrict strEnd) { |
| using BitsType = typename fputil::FPBits<T>::UIntType; |
| fputil::FPBits<T> result = fputil::FPBits<T>(); |
| const char *originalSrc = src; |
| bool seenDigit = false; |
| src = first_non_whitespace(src); |
| |
| if (*src == '+' || *src == '-') { |
| if (*src == '-') { |
| result.setSign(true); |
| } |
| ++src; |
| } |
| |
| static constexpr char DECIMAL_POINT = '.'; |
| static const char *INF_STRING = "infinity"; |
| static const char *NAN_STRING = "nan"; |
| |
| // bool truncated = false; |
| |
| if (isdigit(*src) || *src == DECIMAL_POINT) { // regular number |
| int base = 10; |
| if (is_float_hex_start(src, DECIMAL_POINT)) { |
| base = 16; |
| src += 2; |
| seenDigit = true; |
| } |
| char *newStrEnd = nullptr; |
| |
| BitsType outputMantissa = 0; |
| uint32_t outputExponent = 0; |
| if (base == 16) { |
| seenDigit = hexadecimalStringToFloat<T>(src, DECIMAL_POINT, &newStrEnd, |
| &outputMantissa, &outputExponent); |
| } else { // base is 10 |
| seenDigit = decimalStringToFloat<T>(src, DECIMAL_POINT, &newStrEnd, |
| &outputMantissa, &outputExponent); |
| } |
| |
| if (seenDigit) { |
| src += newStrEnd - src; |
| result.setMantissa(outputMantissa); |
| result.setUnbiasedExponent(outputExponent); |
| } |
| } else if ((*src | 32) == 'n') { // NaN |
| if ((src[1] | 32) == NAN_STRING[1] && (src[2] | 32) == NAN_STRING[2]) { |
| seenDigit = true; |
| src += 3; |
| BitsType NaNMantissa = 0; |
| // this handles the case of `NaN(n-character-sequence)`, where the |
| // n-character-sequence is made of 0 or more letters and numbers in any |
| // order. |
| if (*src == '(') { |
| const char *leftParen = src; |
| ++src; |
| while (isalnum(*src)) |
| ++src; |
| if (*src == ')') { |
| ++src; |
| char *tempSrc = 0; |
| if (isdigit(*(leftParen + 1))) { |
| // This is to prevent errors when BitsType is larger than 64 bits, |
| // since strtointeger only supports up to 64 bits. This is actually |
| // more than is required by the specification, which says for the |
| // input type "NAN(n-char-sequence)" that "the meaning of |
| // the n-char sequence is implementation-defined." |
| NaNMantissa = static_cast<BitsType>( |
| strtointeger<uint64_t>(leftParen + 1, &tempSrc, 0)); |
| if (*tempSrc != ')') |
| NaNMantissa = 0; |
| } |
| } else |
| src = leftParen; |
| } |
| NaNMantissa |= fputil::FloatProperties<T>::quietNaNMask; |
| if (result.getSign()) { |
| result = fputil::FPBits<T>(result.buildNaN(NaNMantissa)); |
| result.setSign(true); |
| } else { |
| result.setSign(false); |
| result = fputil::FPBits<T>(result.buildNaN(NaNMantissa)); |
| } |
| } |
| } else if ((*src | 32) == 'i') { // INF |
| if ((src[1] | 32) == INF_STRING[1] && (src[2] | 32) == INF_STRING[2]) { |
| seenDigit = true; |
| if (result.getSign()) |
| result = result.negInf(); |
| else |
| result = result.inf(); |
| if ((src[3] | 32) == INF_STRING[3] && (src[4] | 32) == INF_STRING[4] && |
| (src[5] | 32) == INF_STRING[5] && (src[6] | 32) == INF_STRING[6] && |
| (src[7] | 32) == INF_STRING[7]) { |
| // if the string is "INFINITY" then strEnd needs to be set to src + 8. |
| src += 8; |
| } else { |
| src += 3; |
| } |
| } |
| } |
| if (!seenDigit) { // If there is nothing to actually parse, then return 0. |
| if (strEnd != nullptr) |
| *strEnd = const_cast<char *>(originalSrc); |
| return T(0); |
| } |
| |
| if (strEnd != nullptr) |
| *strEnd = const_cast<char *>(src); |
| |
| return T(result); |
| } |
| |
| } // namespace internal |
| } // namespace __llvm_libc |
| |
| #endif // LIBC_SRC_SUPPORT_STR_TO_FLOAT_H |