blob: a48aa90fa5836af54c1d3fcd5bae105b6974fa2d [file] [log] [blame]
# RUN: %PYTHON %s
from mlir.dialects import arith, func, linalg
from mlir.dialects.linalg.opdsl.lang import *
from mlir.ir import *
def run(f):
print("\nTEST:", f.__name__)
f()
return f
@run
def test_infer_contraction_dimensions_from_ops():
with Context(), Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
# === Static shapes ===
m, n, k = 4, 4, 4
a_type = RankedTensorType.get((m, k), f32)
b_type = RankedTensorType.get((k, n), f32)
c_type = RankedTensorType.get((m, n), f32)
@func.FuncOp.from_py_func(a_type, b_type, c_type)
def contraction_fn(a, b, c):
zero = arith.ConstantOp(value=FloatAttr.get(f32, 0.0), result=f32)
filled = linalg.fill(zero, outs=[c])
fill_op = filled.owner
assert not linalg.isa_contraction_op(zero.operation)
assert not linalg.isa_contraction_op(fill_op)
assert linalg.infer_contraction_dimensions(fill_op) is None
dim_m = AffineDimExpr.get(0)
dim_n = AffineDimExpr.get(1)
dim_k = AffineDimExpr.get(2)
a_map = AffineMap.get(3, 0, [dim_m, dim_k])
b_map = AffineMap.get(3, 0, [dim_k, dim_n])
c_map = AffineMap.get(3, 0, [dim_m, dim_n])
result = linalg.contract(
a,
b,
outs=(filled,),
indexing_maps=[a_map, b_map, c_map],
)
contraction_op = result.owner
assert linalg.isa_contraction_op(contraction_op)
dims = linalg.infer_contraction_dimensions(contraction_op)
assert dims is not None
# Expect m=[0], n=[1], k=[2] as per standard matmul
assert list(dims.m) == [0], f"Expected m=[0], got {list(dims.m)}"
assert list(dims.n) == [1], f"Expected n=[1], got {list(dims.n)}"
assert list(dims.k) == [2], f"Expected k=[2], got {list(dims.k)}"
assert (
list(dims.batch) == []
), f"Expected batch=[], got {list(dims.batch)}"
# === Dynamic shape case ===
dyn = ShapedType.get_dynamic_size()
a_dyn_type = RankedTensorType.get((4, dyn), f32)
b_dyn_type = RankedTensorType.get((dyn, 4), f32)
c_type = RankedTensorType.get((4, 4), f32)
@func.FuncOp.from_py_func(a_dyn_type, b_dyn_type, c_type)
def dynamic_contraction_fn(a, b, c):
zero = arith.ConstantOp(value=FloatAttr.get(f32, 0.0), result=f32)
filled = linalg.fill(zero, outs=[c])
dim_m = AffineDimExpr.get(0)
dim_n = AffineDimExpr.get(1)
dim_k = AffineDimExpr.get(2)
a_map = AffineMap.get(3, 0, [dim_m, dim_k])
b_map = AffineMap.get(3, 0, [dim_k, dim_n])
c_map = AffineMap.get(3, 0, [dim_m, dim_n])
result = linalg.contract(
a,
b,
outs=(filled,),
indexing_maps=[a_map, b_map, c_map],
)
contraction_op = result.owner
assert linalg.isa_contraction_op(contraction_op)
dims = linalg.infer_contraction_dimensions(contraction_op)
assert dims is not None
assert list(dims.m) == [0], f"Expected m=[0], got {list(dims.m)}"
assert list(dims.n) == [1], f"Expected n=[1], got {list(dims.n)}"
assert list(dims.k) == [2], f"Expected k=[2], got {list(dims.k)}"
assert (
list(dims.batch) == []
), f"Expected batch=[], got {list(dims.batch)}"