| //===- VectorToXeGPU.cpp - Convert vector to XeGPU dialect ------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements lowering of vector operations to XeGPU dialect ops. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Conversion/VectorToXeGPU/VectorToXeGPU.h" |
| |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| #include "mlir/Dialect/XeGPU/IR/XeGPU.h" |
| #include "mlir/Pass/Pass.h" |
| #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| #include "mlir/Transforms/Passes.h" |
| #include "llvm/ADT/TypeSwitch.h" |
| |
| #include <algorithm> |
| #include <optional> |
| |
| namespace mlir { |
| #define GEN_PASS_DEF_CONVERTVECTORTOXEGPU |
| #include "mlir/Conversion/Passes.h.inc" |
| } // namespace mlir |
| |
| using namespace mlir; |
| |
| namespace { |
| |
| // Return true if value represents a zero constant. |
| static bool isZeroConstant(Value val) { |
| auto constant = val.getDefiningOp<arith::ConstantOp>(); |
| if (!constant) |
| return false; |
| |
| return TypeSwitch<Attribute, bool>(constant.getValue()) |
| .Case<FloatAttr>( |
| [](auto floatAttr) { return floatAttr.getValue().isZero(); }) |
| .Case<IntegerAttr>( |
| [](auto intAttr) { return intAttr.getValue().isZero(); }) |
| .Default([](auto) { return false; }); |
| } |
| |
| static LogicalResult storeLoadPreconditions(PatternRewriter &rewriter, |
| Operation *op, VectorType vecTy) { |
| // Validate only vector as the basic vector store and load ops guarantee |
| // XeGPU-compatible memref source. |
| unsigned vecRank = vecTy.getRank(); |
| if (!(vecRank == 1 || vecRank == 2)) |
| return rewriter.notifyMatchFailure(op, "Expects 1D or 2D vector"); |
| |
| return success(); |
| } |
| |
| static LogicalResult transferPreconditions(PatternRewriter &rewriter, |
| VectorTransferOpInterface xferOp) { |
| if (xferOp.getMask()) |
| return rewriter.notifyMatchFailure(xferOp, |
| "Masked transfer is not supported"); |
| |
| auto srcTy = dyn_cast<MemRefType>(xferOp.getShapedType()); |
| if (!srcTy) |
| return rewriter.notifyMatchFailure(xferOp, "Expects memref source"); |
| |
| // Perform common data transfer checks. |
| VectorType vecTy = xferOp.getVectorType(); |
| if (failed(storeLoadPreconditions(rewriter, xferOp, vecTy))) |
| return failure(); |
| |
| // Validate further transfer op semantics. |
| SmallVector<int64_t> strides; |
| int64_t offset; |
| if (failed(srcTy.getStridesAndOffset(strides, offset)) || strides.back() != 1) |
| return rewriter.notifyMatchFailure( |
| xferOp, "Buffer must be contiguous in the innermost dimension"); |
| |
| unsigned vecRank = vecTy.getRank(); |
| if (xferOp.hasOutOfBoundsDim() && vecRank < 2) |
| return rewriter.notifyMatchFailure( |
| xferOp, "Boundary check is available only for block instructions."); |
| |
| AffineMap map = xferOp.getPermutationMap(); |
| if (!map.isProjectedPermutation(/*allowZeroInResults=*/false)) |
| return rewriter.notifyMatchFailure(xferOp, "Unsupported permutation map"); |
| unsigned numInputDims = map.getNumInputs(); |
| for (AffineExpr expr : map.getResults().take_back(vecRank)) { |
| auto dim = dyn_cast<AffineDimExpr>(expr); |
| if (dim.getPosition() < (numInputDims - vecRank)) |
| return rewriter.notifyMatchFailure( |
| xferOp, "Only the innermost dimensions can be accessed"); |
| } |
| |
| return success(); |
| } |
| |
| static xegpu::CreateNdDescOp |
| createNdDescriptor(PatternRewriter &rewriter, Location loc, |
| xegpu::TensorDescType descType, TypedValue<MemRefType> src, |
| Operation::operand_range offsets) { |
| MemRefType srcTy = src.getType(); |
| auto [strides, offset] = srcTy.getStridesAndOffset(); |
| |
| xegpu::CreateNdDescOp ndDesc; |
| if (srcTy.hasStaticShape()) { |
| ndDesc = rewriter.create<xegpu::CreateNdDescOp>(loc, descType, src, |
| getAsOpFoldResult(offsets)); |
| } else { |
| // In case of any dynamic shapes, source's shape and strides have to be |
| // explicitly provided. |
| SmallVector<Value> sourceDims; |
| unsigned srcRank = srcTy.getRank(); |
| for (unsigned i = 0; i < srcRank; ++i) |
| sourceDims.push_back(rewriter.create<memref::DimOp>(loc, src, i)); |
| |
| SmallVector<int64_t> constOffsets; |
| SmallVector<Value> dynOffsets; |
| for (Value offset : offsets) { |
| std::optional<int64_t> staticVal = getConstantIntValue(offset); |
| if (!staticVal) |
| dynOffsets.push_back(offset); |
| constOffsets.push_back(staticVal.value_or(ShapedType::kDynamic)); |
| } |
| |
| SmallVector<Value> dynShapes; |
| for (auto [idx, shape] : llvm::enumerate(srcTy.getShape())) { |
| if (shape == ShapedType::kDynamic) |
| dynShapes.push_back(sourceDims[idx]); |
| } |
| |
| // Compute strides in reverse order. |
| SmallVector<Value> dynStrides; |
| Value accStride = rewriter.create<arith::ConstantIndexOp>(loc, 1); |
| // Last stride is guaranteed to be static and unit. |
| for (int i = static_cast<int>(strides.size()) - 2; i >= 0; --i) { |
| accStride = |
| rewriter.create<arith::MulIOp>(loc, accStride, sourceDims[i + 1]); |
| if (strides[i] == ShapedType::kDynamic) |
| dynStrides.push_back(accStride); |
| } |
| std::reverse(dynStrides.begin(), dynStrides.end()); |
| |
| ndDesc = rewriter.create<xegpu::CreateNdDescOp>( |
| loc, descType, src, dynOffsets, dynShapes, dynStrides, |
| DenseI64ArrayAttr::get(rewriter.getContext(), constOffsets), |
| DenseI64ArrayAttr::get(rewriter.getContext(), srcTy.getShape()), |
| DenseI64ArrayAttr::get(rewriter.getContext(), strides)); |
| } |
| |
| return ndDesc; |
| } |
| |
| struct TransferReadLowering : public OpRewritePattern<vector::TransferReadOp> { |
| using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::TransferReadOp readOp, |
| PatternRewriter &rewriter) const override { |
| Location loc = readOp.getLoc(); |
| |
| if (failed(transferPreconditions(rewriter, readOp))) |
| return failure(); |
| |
| bool isOutOfBounds = readOp.hasOutOfBoundsDim(); |
| if (isOutOfBounds && !isZeroConstant(readOp.getPadding())) |
| return rewriter.notifyMatchFailure( |
| readOp, "Unsupported non-zero padded out-of-bounds read"); |
| |
| AffineMap readMap = readOp.getPermutationMap(); |
| bool isTransposeLoad = !readMap.isMinorIdentity(); |
| |
| VectorType vecTy = readOp.getVectorType(); |
| Type elementType = vecTy.getElementType(); |
| unsigned minTransposeBitWidth = 32; |
| if (isTransposeLoad && |
| elementType.getIntOrFloatBitWidth() < minTransposeBitWidth) |
| return rewriter.notifyMatchFailure( |
| readOp, "Unsupported data type for transposition"); |
| |
| // If load is transposed, get the base shape for the tensor descriptor. |
| SmallVector<int64_t> descShape(vecTy.getShape()); |
| if (isTransposeLoad) |
| std::reverse(descShape.begin(), descShape.end()); |
| auto descType = xegpu::TensorDescType::get( |
| descShape, elementType, /*array_length=*/1, |
| /*boundary_check=*/isOutOfBounds, xegpu::MemorySpace::Global); |
| |
| xegpu::CreateNdDescOp ndDesc = |
| createNdDescriptor(rewriter, loc, descType, |
| dyn_cast<TypedValue<MemRefType>>(readOp.getSource()), |
| readOp.getIndices()); |
| |
| DenseI64ArrayAttr transposeAttr = |
| !isTransposeLoad ? nullptr |
| : DenseI64ArrayAttr::get(rewriter.getContext(), |
| ArrayRef<int64_t>{1, 0}); |
| // By default, no specific caching policy is assigned. |
| xegpu::CachePolicyAttr hint = nullptr; |
| auto loadOp = rewriter.create<xegpu::LoadNdOp>( |
| loc, vecTy, ndDesc, /*packed=*/nullptr, transposeAttr, |
| /*l1_hint=*/hint, |
| /*l2_hint=*/hint, /*l3_hint=*/hint); |
| rewriter.replaceOp(readOp, loadOp); |
| |
| return success(); |
| } |
| }; |
| |
| struct TransferWriteLowering |
| : public OpRewritePattern<vector::TransferWriteOp> { |
| using OpRewritePattern<vector::TransferWriteOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::TransferWriteOp writeOp, |
| PatternRewriter &rewriter) const override { |
| Location loc = writeOp.getLoc(); |
| |
| if (failed(transferPreconditions(rewriter, writeOp))) |
| return failure(); |
| |
| AffineMap map = writeOp.getPermutationMap(); |
| if (!map.isMinorIdentity()) |
| return rewriter.notifyMatchFailure(writeOp, "Expects identity map"); |
| |
| VectorType vecTy = writeOp.getVectorType(); |
| auto descType = xegpu::TensorDescType::get( |
| vecTy.getShape(), vecTy.getElementType(), |
| /*array_length=*/1, /*boundary_check=*/writeOp.hasOutOfBoundsDim(), |
| xegpu::MemorySpace::Global); |
| xegpu::CreateNdDescOp ndDesc = createNdDescriptor( |
| rewriter, loc, descType, |
| dyn_cast<TypedValue<MemRefType>>(writeOp.getSource()), |
| writeOp.getIndices()); |
| |
| // By default, no specific caching policy is assigned. |
| xegpu::CachePolicyAttr hint = nullptr; |
| auto storeOp = |
| rewriter.create<xegpu::StoreNdOp>(loc, writeOp.getVector(), ndDesc, |
| /*l1_hint=*/hint, |
| /*l2_hint=*/hint, /*l3_hint=*/hint); |
| rewriter.replaceOp(writeOp, storeOp); |
| |
| return success(); |
| } |
| }; |
| |
| struct LoadLowering : public OpRewritePattern<vector::LoadOp> { |
| using OpRewritePattern<vector::LoadOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::LoadOp loadOp, |
| PatternRewriter &rewriter) const override { |
| Location loc = loadOp.getLoc(); |
| |
| VectorType vecTy = loadOp.getResult().getType(); |
| if (failed(storeLoadPreconditions(rewriter, loadOp, vecTy))) |
| return failure(); |
| |
| // Boundary check is available only for block instructions. |
| bool boundaryCheck = vecTy.getRank() > 1; |
| |
| auto descType = xegpu::TensorDescType::get( |
| vecTy.getShape(), vecTy.getElementType(), /*array_length=*/1, |
| boundaryCheck, xegpu::MemorySpace::Global); |
| xegpu::CreateNdDescOp ndDesc = createNdDescriptor( |
| rewriter, loc, descType, loadOp.getBase(), loadOp.getIndices()); |
| |
| // By default, no specific caching policy is assigned. |
| xegpu::CachePolicyAttr hint = nullptr; |
| auto loadNdOp = rewriter.create<xegpu::LoadNdOp>( |
| loc, vecTy, ndDesc, /*packed=*/nullptr, /*transpose=*/nullptr, |
| /*l1_hint=*/hint, |
| /*l2_hint=*/hint, /*l3_hint=*/hint); |
| rewriter.replaceOp(loadOp, loadNdOp); |
| |
| return success(); |
| } |
| }; |
| |
| struct StoreLowering : public OpRewritePattern<vector::StoreOp> { |
| using OpRewritePattern<vector::StoreOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::StoreOp storeOp, |
| PatternRewriter &rewriter) const override { |
| Location loc = storeOp.getLoc(); |
| |
| TypedValue<VectorType> vector = storeOp.getValueToStore(); |
| VectorType vecTy = vector.getType(); |
| if (failed(storeLoadPreconditions(rewriter, storeOp, vecTy))) |
| return failure(); |
| |
| // Boundary check is available only for block instructions. |
| bool boundaryCheck = vecTy.getRank() > 1; |
| |
| auto descType = xegpu::TensorDescType::get( |
| vecTy.getShape(), vecTy.getElementType(), |
| /*array_length=*/1, boundaryCheck, xegpu::MemorySpace::Global); |
| xegpu::CreateNdDescOp ndDesc = createNdDescriptor( |
| rewriter, loc, descType, storeOp.getBase(), storeOp.getIndices()); |
| |
| // By default, no specific caching policy is assigned. |
| xegpu::CachePolicyAttr hint = nullptr; |
| auto storeNdOp = |
| rewriter.create<xegpu::StoreNdOp>(loc, vector, ndDesc, |
| /*l1_hint=*/hint, |
| /*l2_hint=*/hint, /*l3_hint=*/hint); |
| rewriter.replaceOp(storeOp, storeNdOp); |
| |
| return success(); |
| } |
| }; |
| |
| struct ConvertVectorToXeGPUPass |
| : public impl::ConvertVectorToXeGPUBase<ConvertVectorToXeGPUPass> { |
| void runOnOperation() override { |
| RewritePatternSet patterns(&getContext()); |
| populateVectorToXeGPUConversionPatterns(patterns); |
| if (failed(applyPatternsGreedily(getOperation(), std::move(patterns)))) |
| return signalPassFailure(); |
| } |
| }; |
| |
| } // namespace |
| |
| void mlir::populateVectorToXeGPUConversionPatterns( |
| RewritePatternSet &patterns) { |
| patterns.add<TransferReadLowering, TransferWriteLowering, LoadLowering, |
| StoreLowering>(patterns.getContext()); |
| } |