|  | //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the SystemZTargetLowering class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "SystemZISelLowering.h" | 
|  | #include "SystemZCallingConv.h" | 
|  | #include "SystemZConstantPoolValue.h" | 
|  | #include "SystemZMachineFunctionInfo.h" | 
|  | #include "SystemZTargetMachine.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/IntrinsicsS390.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include <cctype> | 
|  | #include <optional> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "systemz-lower" | 
|  |  | 
|  | namespace { | 
|  | // Represents information about a comparison. | 
|  | struct Comparison { | 
|  | Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) | 
|  | : Op0(Op0In), Op1(Op1In), Chain(ChainIn), | 
|  | Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} | 
|  |  | 
|  | // The operands to the comparison. | 
|  | SDValue Op0, Op1; | 
|  |  | 
|  | // Chain if this is a strict floating-point comparison. | 
|  | SDValue Chain; | 
|  |  | 
|  | // The opcode that should be used to compare Op0 and Op1. | 
|  | unsigned Opcode; | 
|  |  | 
|  | // A SystemZICMP value.  Only used for integer comparisons. | 
|  | unsigned ICmpType; | 
|  |  | 
|  | // The mask of CC values that Opcode can produce. | 
|  | unsigned CCValid; | 
|  |  | 
|  | // The mask of CC values for which the original condition is true. | 
|  | unsigned CCMask; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // Classify VT as either 32 or 64 bit. | 
|  | static bool is32Bit(EVT VT) { | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | case MVT::i32: | 
|  | return true; | 
|  | case MVT::i64: | 
|  | return false; | 
|  | default: | 
|  | llvm_unreachable("Unsupported type"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return a version of MachineOperand that can be safely used before the | 
|  | // final use. | 
|  | static MachineOperand earlyUseOperand(MachineOperand Op) { | 
|  | if (Op.isReg()) | 
|  | Op.setIsKill(false); | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, | 
|  | const SystemZSubtarget &STI) | 
|  | : TargetLowering(TM), Subtarget(STI) { | 
|  | MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); | 
|  |  | 
|  | auto *Regs = STI.getSpecialRegisters(); | 
|  |  | 
|  | // Set up the register classes. | 
|  | if (Subtarget.hasHighWord()) | 
|  | addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); | 
|  | else | 
|  | addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); | 
|  | addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); | 
|  | if (!useSoftFloat()) { | 
|  | if (Subtarget.hasVector()) { | 
|  | addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); | 
|  | addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); | 
|  | } else { | 
|  | addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); | 
|  | addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); | 
|  | } | 
|  | if (Subtarget.hasVectorEnhancements1()) | 
|  | addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); | 
|  | else | 
|  | addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); | 
|  |  | 
|  | if (Subtarget.hasVector()) { | 
|  | addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); | 
|  | addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); | 
|  | addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); | 
|  | addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); | 
|  | addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); | 
|  | addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute derived properties from the register classes | 
|  | computeRegisterProperties(Subtarget.getRegisterInfo()); | 
|  |  | 
|  | // Set up special registers. | 
|  | setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister()); | 
|  |  | 
|  | // TODO: It may be better to default to latency-oriented scheduling, however | 
|  | // LLVM's current latency-oriented scheduler can't handle physreg definitions | 
|  | // such as SystemZ has with CC, so set this to the register-pressure | 
|  | // scheduler, because it can. | 
|  | setSchedulingPreference(Sched::RegPressure); | 
|  |  | 
|  | setBooleanContents(ZeroOrOneBooleanContent); | 
|  | setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); | 
|  |  | 
|  | // Instructions are strings of 2-byte aligned 2-byte values. | 
|  | setMinFunctionAlignment(Align(2)); | 
|  | // For performance reasons we prefer 16-byte alignment. | 
|  | setPrefFunctionAlignment(Align(16)); | 
|  |  | 
|  | // Handle operations that are handled in a similar way for all types. | 
|  | for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; | 
|  | I <= MVT::LAST_FP_VALUETYPE; | 
|  | ++I) { | 
|  | MVT VT = MVT::SimpleValueType(I); | 
|  | if (isTypeLegal(VT)) { | 
|  | // Lower SET_CC into an IPM-based sequence. | 
|  | setOperationAction(ISD::SETCC, VT, Custom); | 
|  | setOperationAction(ISD::STRICT_FSETCC, VT, Custom); | 
|  | setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); | 
|  |  | 
|  | // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). | 
|  | setOperationAction(ISD::SELECT, VT, Expand); | 
|  |  | 
|  | // Lower SELECT_CC and BR_CC into separate comparisons and branches. | 
|  | setOperationAction(ISD::SELECT_CC, VT, Custom); | 
|  | setOperationAction(ISD::BR_CC,     VT, Custom); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Expand jump table branches as address arithmetic followed by an | 
|  | // indirect jump. | 
|  | setOperationAction(ISD::BR_JT, MVT::Other, Expand); | 
|  |  | 
|  | // Expand BRCOND into a BR_CC (see above). | 
|  | setOperationAction(ISD::BRCOND, MVT::Other, Expand); | 
|  |  | 
|  | // Handle integer types. | 
|  | for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; | 
|  | I <= MVT::LAST_INTEGER_VALUETYPE; | 
|  | ++I) { | 
|  | MVT VT = MVT::SimpleValueType(I); | 
|  | if (isTypeLegal(VT)) { | 
|  | setOperationAction(ISD::ABS, VT, Legal); | 
|  |  | 
|  | // Expand individual DIV and REMs into DIVREMs. | 
|  | setOperationAction(ISD::SDIV, VT, Expand); | 
|  | setOperationAction(ISD::UDIV, VT, Expand); | 
|  | setOperationAction(ISD::SREM, VT, Expand); | 
|  | setOperationAction(ISD::UREM, VT, Expand); | 
|  | setOperationAction(ISD::SDIVREM, VT, Custom); | 
|  | setOperationAction(ISD::UDIVREM, VT, Custom); | 
|  |  | 
|  | // Support addition/subtraction with overflow. | 
|  | setOperationAction(ISD::SADDO, VT, Custom); | 
|  | setOperationAction(ISD::SSUBO, VT, Custom); | 
|  |  | 
|  | // Support addition/subtraction with carry. | 
|  | setOperationAction(ISD::UADDO, VT, Custom); | 
|  | setOperationAction(ISD::USUBO, VT, Custom); | 
|  |  | 
|  | // Support carry in as value rather than glue. | 
|  | setOperationAction(ISD::UADDO_CARRY, VT, Custom); | 
|  | setOperationAction(ISD::USUBO_CARRY, VT, Custom); | 
|  |  | 
|  | // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and | 
|  | // stores, putting a serialization instruction after the stores. | 
|  | setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom); | 
|  | setOperationAction(ISD::ATOMIC_STORE, VT, Custom); | 
|  |  | 
|  | // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are | 
|  | // available, or if the operand is constant. | 
|  | setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); | 
|  |  | 
|  | // Use POPCNT on z196 and above. | 
|  | if (Subtarget.hasPopulationCount()) | 
|  | setOperationAction(ISD::CTPOP, VT, Custom); | 
|  | else | 
|  | setOperationAction(ISD::CTPOP, VT, Expand); | 
|  |  | 
|  | // No special instructions for these. | 
|  | setOperationAction(ISD::CTTZ,            VT, Expand); | 
|  | setOperationAction(ISD::ROTR,            VT, Expand); | 
|  |  | 
|  | // Use *MUL_LOHI where possible instead of MULH*. | 
|  | setOperationAction(ISD::MULHS, VT, Expand); | 
|  | setOperationAction(ISD::MULHU, VT, Expand); | 
|  | setOperationAction(ISD::SMUL_LOHI, VT, Custom); | 
|  | setOperationAction(ISD::UMUL_LOHI, VT, Custom); | 
|  |  | 
|  | // Only z196 and above have native support for conversions to unsigned. | 
|  | // On z10, promoting to i64 doesn't generate an inexact condition for | 
|  | // values that are outside the i32 range but in the i64 range, so use | 
|  | // the default expansion. | 
|  | if (!Subtarget.hasFPExtension()) | 
|  | setOperationAction(ISD::FP_TO_UINT, VT, Expand); | 
|  |  | 
|  | // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all | 
|  | // default to Expand, so need to be modified to Legal where appropriate. | 
|  | setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); | 
|  | if (Subtarget.hasFPExtension()) | 
|  | setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); | 
|  |  | 
|  | // And similarly for STRICT_[SU]INT_TO_FP. | 
|  | setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); | 
|  | if (Subtarget.hasFPExtension()) | 
|  | setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Type legalization will convert 8- and 16-bit atomic operations into | 
|  | // forms that operate on i32s (but still keeping the original memory VT). | 
|  | // Lower them into full i32 operations. | 
|  | setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); | 
|  |  | 
|  | // Even though i128 is not a legal type, we still need to custom lower | 
|  | // the atomic operations in order to exploit SystemZ instructions. | 
|  | setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom); | 
|  | setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom); | 
|  |  | 
|  | // We can use the CC result of compare-and-swap to implement | 
|  | // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); | 
|  |  | 
|  | setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); | 
|  |  | 
|  | // Traps are legal, as we will convert them to "j .+2". | 
|  | setOperationAction(ISD::TRAP, MVT::Other, Legal); | 
|  |  | 
|  | // z10 has instructions for signed but not unsigned FP conversion. | 
|  | // Handle unsigned 32-bit types as signed 64-bit types. | 
|  | if (!Subtarget.hasFPExtension()) { | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); | 
|  | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); | 
|  | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); | 
|  | } | 
|  |  | 
|  | // We have native support for a 64-bit CTLZ, via FLOGR. | 
|  | setOperationAction(ISD::CTLZ, MVT::i32, Promote); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); | 
|  | setOperationAction(ISD::CTLZ, MVT::i64, Legal); | 
|  |  | 
|  | // On z15 we have native support for a 64-bit CTPOP. | 
|  | if (Subtarget.hasMiscellaneousExtensions3()) { | 
|  | setOperationAction(ISD::CTPOP, MVT::i32, Promote); | 
|  | setOperationAction(ISD::CTPOP, MVT::i64, Legal); | 
|  | } | 
|  |  | 
|  | // Give LowerOperation the chance to replace 64-bit ORs with subregs. | 
|  | setOperationAction(ISD::OR, MVT::i64, Custom); | 
|  |  | 
|  | // Expand 128 bit shifts without using a libcall. | 
|  | setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); | 
|  | setLibcallName(RTLIB::SRL_I128, nullptr); | 
|  | setLibcallName(RTLIB::SHL_I128, nullptr); | 
|  | setLibcallName(RTLIB::SRA_I128, nullptr); | 
|  |  | 
|  | // Handle bitcast from fp128 to i128. | 
|  | setOperationAction(ISD::BITCAST, MVT::i128, Custom); | 
|  |  | 
|  | // We have native instructions for i8, i16 and i32 extensions, but not i1. | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); | 
|  | for (MVT VT : MVT::integer_valuetypes()) { | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); | 
|  | setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote); | 
|  | } | 
|  |  | 
|  | // Handle the various types of symbolic address. | 
|  | setOperationAction(ISD::ConstantPool,     PtrVT, Custom); | 
|  | setOperationAction(ISD::GlobalAddress,    PtrVT, Custom); | 
|  | setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); | 
|  | setOperationAction(ISD::BlockAddress,     PtrVT, Custom); | 
|  | setOperationAction(ISD::JumpTable,        PtrVT, Custom); | 
|  |  | 
|  | // We need to handle dynamic allocations specially because of the | 
|  | // 160-byte area at the bottom of the stack. | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); | 
|  | setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); | 
|  |  | 
|  | setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom); | 
|  | setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); | 
|  |  | 
|  | // Handle prefetches with PFD or PFDRL. | 
|  | setOperationAction(ISD::PREFETCH, MVT::Other, Custom); | 
|  |  | 
|  | for (MVT VT : MVT::fixedlen_vector_valuetypes()) { | 
|  | // Assume by default that all vector operations need to be expanded. | 
|  | for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) | 
|  | if (getOperationAction(Opcode, VT) == Legal) | 
|  | setOperationAction(Opcode, VT, Expand); | 
|  |  | 
|  | // Likewise all truncating stores and extending loads. | 
|  | for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { | 
|  | setTruncStoreAction(VT, InnerVT, Expand); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); | 
|  | } | 
|  |  | 
|  | if (isTypeLegal(VT)) { | 
|  | // These operations are legal for anything that can be stored in a | 
|  | // vector register, even if there is no native support for the format | 
|  | // as such.  In particular, we can do these for v4f32 even though there | 
|  | // are no specific instructions for that format. | 
|  | setOperationAction(ISD::LOAD, VT, Legal); | 
|  | setOperationAction(ISD::STORE, VT, Legal); | 
|  | setOperationAction(ISD::VSELECT, VT, Legal); | 
|  | setOperationAction(ISD::BITCAST, VT, Legal); | 
|  | setOperationAction(ISD::UNDEF, VT, Legal); | 
|  |  | 
|  | // Likewise, except that we need to replace the nodes with something | 
|  | // more specific. | 
|  | setOperationAction(ISD::BUILD_VECTOR, VT, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle integer vector types. | 
|  | for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { | 
|  | if (isTypeLegal(VT)) { | 
|  | // These operations have direct equivalents. | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); | 
|  | setOperationAction(ISD::ADD, VT, Legal); | 
|  | setOperationAction(ISD::SUB, VT, Legal); | 
|  | if (VT != MVT::v2i64) | 
|  | setOperationAction(ISD::MUL, VT, Legal); | 
|  | setOperationAction(ISD::ABS, VT, Legal); | 
|  | setOperationAction(ISD::AND, VT, Legal); | 
|  | setOperationAction(ISD::OR, VT, Legal); | 
|  | setOperationAction(ISD::XOR, VT, Legal); | 
|  | if (Subtarget.hasVectorEnhancements1()) | 
|  | setOperationAction(ISD::CTPOP, VT, Legal); | 
|  | else | 
|  | setOperationAction(ISD::CTPOP, VT, Custom); | 
|  | setOperationAction(ISD::CTTZ, VT, Legal); | 
|  | setOperationAction(ISD::CTLZ, VT, Legal); | 
|  |  | 
|  | // Convert a GPR scalar to a vector by inserting it into element 0. | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); | 
|  |  | 
|  | // Use a series of unpacks for extensions. | 
|  | setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); | 
|  | setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); | 
|  |  | 
|  | // Detect shifts by a scalar amount and convert them into | 
|  | // V*_BY_SCALAR. | 
|  | setOperationAction(ISD::SHL, VT, Custom); | 
|  | setOperationAction(ISD::SRA, VT, Custom); | 
|  | setOperationAction(ISD::SRL, VT, Custom); | 
|  |  | 
|  | // At present ROTL isn't matched by DAGCombiner.  ROTR should be | 
|  | // converted into ROTL. | 
|  | setOperationAction(ISD::ROTL, VT, Expand); | 
|  | setOperationAction(ISD::ROTR, VT, Expand); | 
|  |  | 
|  | // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands | 
|  | // and inverting the result as necessary. | 
|  | setOperationAction(ISD::SETCC, VT, Custom); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Subtarget.hasVector()) { | 
|  | // There should be no need to check for float types other than v2f64 | 
|  | // since <2 x f32> isn't a legal type. | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); | 
|  | } | 
|  |  | 
|  | if (Subtarget.hasVectorEnhancements2()) { | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); | 
|  | } | 
|  |  | 
|  | // Handle floating-point types. | 
|  | for (unsigned I = MVT::FIRST_FP_VALUETYPE; | 
|  | I <= MVT::LAST_FP_VALUETYPE; | 
|  | ++I) { | 
|  | MVT VT = MVT::SimpleValueType(I); | 
|  | if (isTypeLegal(VT)) { | 
|  | // We can use FI for FRINT. | 
|  | setOperationAction(ISD::FRINT, VT, Legal); | 
|  |  | 
|  | // We can use the extended form of FI for other rounding operations. | 
|  | if (Subtarget.hasFPExtension()) { | 
|  | setOperationAction(ISD::FNEARBYINT, VT, Legal); | 
|  | setOperationAction(ISD::FFLOOR, VT, Legal); | 
|  | setOperationAction(ISD::FCEIL, VT, Legal); | 
|  | setOperationAction(ISD::FTRUNC, VT, Legal); | 
|  | setOperationAction(ISD::FROUND, VT, Legal); | 
|  | } | 
|  |  | 
|  | // No special instructions for these. | 
|  | setOperationAction(ISD::FSIN, VT, Expand); | 
|  | setOperationAction(ISD::FCOS, VT, Expand); | 
|  | setOperationAction(ISD::FSINCOS, VT, Expand); | 
|  | setOperationAction(ISD::FREM, VT, Expand); | 
|  | setOperationAction(ISD::FPOW, VT, Expand); | 
|  |  | 
|  | // Special treatment. | 
|  | setOperationAction(ISD::IS_FPCLASS, VT, Custom); | 
|  |  | 
|  | // Handle constrained floating-point operations. | 
|  | setOperationAction(ISD::STRICT_FADD, VT, Legal); | 
|  | setOperationAction(ISD::STRICT_FSUB, VT, Legal); | 
|  | setOperationAction(ISD::STRICT_FMUL, VT, Legal); | 
|  | setOperationAction(ISD::STRICT_FDIV, VT, Legal); | 
|  | setOperationAction(ISD::STRICT_FMA, VT, Legal); | 
|  | setOperationAction(ISD::STRICT_FSQRT, VT, Legal); | 
|  | setOperationAction(ISD::STRICT_FRINT, VT, Legal); | 
|  | setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); | 
|  | setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); | 
|  | if (Subtarget.hasFPExtension()) { | 
|  | setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); | 
|  | setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); | 
|  | setOperationAction(ISD::STRICT_FCEIL, VT, Legal); | 
|  | setOperationAction(ISD::STRICT_FROUND, VT, Legal); | 
|  | setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle floating-point vector types. | 
|  | if (Subtarget.hasVector()) { | 
|  | // Scalar-to-vector conversion is just a subreg. | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); | 
|  |  | 
|  | // Some insertions and extractions can be done directly but others | 
|  | // need to go via integers. | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); | 
|  |  | 
|  | // These operations have direct equivalents. | 
|  | setOperationAction(ISD::FADD, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FNEG, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FSUB, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FMUL, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FMA, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FDIV, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FABS, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FRINT, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FROUND, MVT::v2f64, Legal); | 
|  |  | 
|  | // Handle constrained floating-point operations. | 
|  | setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SETCC, MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::SETCC, MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::STRICT_FSETCC, MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::STRICT_FSETCC, MVT::v4f32, Custom); | 
|  | if (Subtarget.hasVectorEnhancements1()) { | 
|  | setOperationAction(ISD::STRICT_FSETCCS, MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::STRICT_FSETCCS, MVT::v4f32, Custom); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The vector enhancements facility 1 has instructions for these. | 
|  | if (Subtarget.hasVectorEnhancements1()) { | 
|  | setOperationAction(ISD::FADD, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FNEG, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FSUB, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FMUL, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FMA, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FDIV, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FABS, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FRINT, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FROUND, MVT::v4f32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); | 
|  | setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); | 
|  | setOperationAction(ISD::FMINNUM, MVT::f64, Legal); | 
|  | setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); | 
|  | setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); | 
|  | setOperationAction(ISD::FMINNUM, MVT::f32, Legal); | 
|  | setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); | 
|  | setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); | 
|  | setOperationAction(ISD::FMINNUM, MVT::f128, Legal); | 
|  | setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); | 
|  |  | 
|  | // Handle constrained floating-point operations. | 
|  | setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); | 
|  | for (auto VT : { MVT::f32, MVT::f64, MVT::f128, | 
|  | MVT::v4f32, MVT::v2f64 }) { | 
|  | setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); | 
|  | setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); | 
|  | setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); | 
|  | setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We only have fused f128 multiply-addition on vector registers. | 
|  | if (!Subtarget.hasVectorEnhancements1()) { | 
|  | setOperationAction(ISD::FMA, MVT::f128, Expand); | 
|  | setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); | 
|  | } | 
|  |  | 
|  | // We don't have a copysign instruction on vector registers. | 
|  | if (Subtarget.hasVectorEnhancements1()) | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); | 
|  |  | 
|  | // Needed so that we don't try to implement f128 constant loads using | 
|  | // a load-and-extend of a f80 constant (in cases where the constant | 
|  | // would fit in an f80). | 
|  | for (MVT VT : MVT::fp_valuetypes()) | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); | 
|  |  | 
|  | // We don't have extending load instruction on vector registers. | 
|  | if (Subtarget.hasVectorEnhancements1()) { | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); | 
|  | } | 
|  |  | 
|  | // Floating-point truncation and stores need to be done separately. | 
|  | setTruncStoreAction(MVT::f64,  MVT::f32, Expand); | 
|  | setTruncStoreAction(MVT::f128, MVT::f32, Expand); | 
|  | setTruncStoreAction(MVT::f128, MVT::f64, Expand); | 
|  |  | 
|  | // We have 64-bit FPR<->GPR moves, but need special handling for | 
|  | // 32-bit forms. | 
|  | if (!Subtarget.hasVector()) { | 
|  | setOperationAction(ISD::BITCAST, MVT::i32, Custom); | 
|  | setOperationAction(ISD::BITCAST, MVT::f32, Custom); | 
|  | } | 
|  |  | 
|  | // VASTART and VACOPY need to deal with the SystemZ-specific varargs | 
|  | // structure, but VAEND is a no-op. | 
|  | setOperationAction(ISD::VASTART, MVT::Other, Custom); | 
|  | setOperationAction(ISD::VACOPY,  MVT::Other, Custom); | 
|  | setOperationAction(ISD::VAEND,   MVT::Other, Expand); | 
|  |  | 
|  | setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); | 
|  |  | 
|  | // Codes for which we want to perform some z-specific combinations. | 
|  | setTargetDAGCombine({ISD::ZERO_EXTEND, | 
|  | ISD::SIGN_EXTEND, | 
|  | ISD::SIGN_EXTEND_INREG, | 
|  | ISD::LOAD, | 
|  | ISD::STORE, | 
|  | ISD::VECTOR_SHUFFLE, | 
|  | ISD::EXTRACT_VECTOR_ELT, | 
|  | ISD::FP_ROUND, | 
|  | ISD::STRICT_FP_ROUND, | 
|  | ISD::FP_EXTEND, | 
|  | ISD::SINT_TO_FP, | 
|  | ISD::UINT_TO_FP, | 
|  | ISD::STRICT_FP_EXTEND, | 
|  | ISD::BSWAP, | 
|  | ISD::SDIV, | 
|  | ISD::UDIV, | 
|  | ISD::SREM, | 
|  | ISD::UREM, | 
|  | ISD::INTRINSIC_VOID, | 
|  | ISD::INTRINSIC_W_CHAIN}); | 
|  |  | 
|  | // Handle intrinsics. | 
|  | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
|  |  | 
|  | // We want to use MVC in preference to even a single load/store pair. | 
|  | MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0; | 
|  | MaxStoresPerMemcpyOptSize = 0; | 
|  |  | 
|  | // The main memset sequence is a byte store followed by an MVC. | 
|  | // Two STC or MV..I stores win over that, but the kind of fused stores | 
|  | // generated by target-independent code don't when the byte value is | 
|  | // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better | 
|  | // than "STC;MVC".  Handle the choice in target-specific code instead. | 
|  | MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0; | 
|  | MaxStoresPerMemsetOptSize = 0; | 
|  |  | 
|  | // Default to having -disable-strictnode-mutation on | 
|  | IsStrictFPEnabled = true; | 
|  | } | 
|  |  | 
|  | bool SystemZTargetLowering::useSoftFloat() const { | 
|  | return Subtarget.hasSoftFloat(); | 
|  | } | 
|  |  | 
|  | EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, | 
|  | LLVMContext &, EVT VT) const { | 
|  | if (!VT.isVector()) | 
|  | return MVT::i32; | 
|  | return VT.changeVectorElementTypeToInteger(); | 
|  | } | 
|  |  | 
|  | bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( | 
|  | const MachineFunction &MF, EVT VT) const { | 
|  | VT = VT.getScalarType(); | 
|  |  | 
|  | if (!VT.isSimple()) | 
|  | return false; | 
|  |  | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | return true; | 
|  | case MVT::f128: | 
|  | return Subtarget.hasVectorEnhancements1(); | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return true if the constant can be generated with a vector instruction, | 
|  | // such as VGM, VGMB or VREPI. | 
|  | bool SystemZVectorConstantInfo::isVectorConstantLegal( | 
|  | const SystemZSubtarget &Subtarget) { | 
|  | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | if (!Subtarget.hasVector() || | 
|  | (isFP128 && !Subtarget.hasVectorEnhancements1())) | 
|  | return false; | 
|  |  | 
|  | // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally- | 
|  | // preferred way of creating all-zero and all-one vectors so give it | 
|  | // priority over other methods below. | 
|  | unsigned Mask = 0; | 
|  | unsigned I = 0; | 
|  | for (; I < SystemZ::VectorBytes; ++I) { | 
|  | uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); | 
|  | if (Byte == 0xff) | 
|  | Mask |= 1ULL << I; | 
|  | else if (Byte != 0) | 
|  | break; | 
|  | } | 
|  | if (I == SystemZ::VectorBytes) { | 
|  | Opcode = SystemZISD::BYTE_MASK; | 
|  | OpVals.push_back(Mask); | 
|  | VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (SplatBitSize > 64) | 
|  | return false; | 
|  |  | 
|  | auto tryValue = [&](uint64_t Value) -> bool { | 
|  | // Try VECTOR REPLICATE IMMEDIATE | 
|  | int64_t SignedValue = SignExtend64(Value, SplatBitSize); | 
|  | if (isInt<16>(SignedValue)) { | 
|  | OpVals.push_back(((unsigned) SignedValue)); | 
|  | Opcode = SystemZISD::REPLICATE; | 
|  | VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), | 
|  | SystemZ::VectorBits / SplatBitSize); | 
|  | return true; | 
|  | } | 
|  | // Try VECTOR GENERATE MASK | 
|  | unsigned Start, End; | 
|  | if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { | 
|  | // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 | 
|  | // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for | 
|  | // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). | 
|  | OpVals.push_back(Start - (64 - SplatBitSize)); | 
|  | OpVals.push_back(End - (64 - SplatBitSize)); | 
|  | Opcode = SystemZISD::ROTATE_MASK; | 
|  | VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), | 
|  | SystemZ::VectorBits / SplatBitSize); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | // First try assuming that any undefined bits above the highest set bit | 
|  | // and below the lowest set bit are 1s.  This increases the likelihood of | 
|  | // being able to use a sign-extended element value in VECTOR REPLICATE | 
|  | // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. | 
|  | uint64_t SplatBitsZ = SplatBits.getZExtValue(); | 
|  | uint64_t SplatUndefZ = SplatUndef.getZExtValue(); | 
|  | unsigned LowerBits = llvm::countr_zero(SplatBitsZ); | 
|  | unsigned UpperBits = llvm::countl_zero(SplatBitsZ); | 
|  | uint64_t Lower = SplatUndefZ & maskTrailingOnes<uint64_t>(LowerBits); | 
|  | uint64_t Upper = SplatUndefZ & maskLeadingOnes<uint64_t>(UpperBits); | 
|  | if (tryValue(SplatBitsZ | Upper | Lower)) | 
|  | return true; | 
|  |  | 
|  | // Now try assuming that any undefined bits between the first and | 
|  | // last defined set bits are set.  This increases the chances of | 
|  | // using a non-wraparound mask. | 
|  | uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; | 
|  | return tryValue(SplatBitsZ | Middle); | 
|  | } | 
|  |  | 
|  | SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) { | 
|  | if (IntImm.isSingleWord()) { | 
|  | IntBits = APInt(128, IntImm.getZExtValue()); | 
|  | IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth()); | 
|  | } else | 
|  | IntBits = IntImm; | 
|  | assert(IntBits.getBitWidth() == 128 && "Unsupported APInt."); | 
|  |  | 
|  | // Find the smallest splat. | 
|  | SplatBits = IntImm; | 
|  | unsigned Width = SplatBits.getBitWidth(); | 
|  | while (Width > 8) { | 
|  | unsigned HalfSize = Width / 2; | 
|  | APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); | 
|  | APInt LowValue = SplatBits.trunc(HalfSize); | 
|  |  | 
|  | // If the two halves do not match, stop here. | 
|  | if (HighValue != LowValue || 8 > HalfSize) | 
|  | break; | 
|  |  | 
|  | SplatBits = HighValue; | 
|  | Width = HalfSize; | 
|  | } | 
|  | SplatUndef = 0; | 
|  | SplatBitSize = Width; | 
|  | } | 
|  |  | 
|  | SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { | 
|  | assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); | 
|  | bool HasAnyUndefs; | 
|  |  | 
|  | // Get IntBits by finding the 128 bit splat. | 
|  | BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, | 
|  | true); | 
|  |  | 
|  | // Get SplatBits by finding the 8 bit or greater splat. | 
|  | BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, | 
|  | true); | 
|  | } | 
|  |  | 
|  | bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, | 
|  | bool ForCodeSize) const { | 
|  | // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. | 
|  | if (Imm.isZero() || Imm.isNegZero()) | 
|  | return true; | 
|  |  | 
|  | return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); | 
|  | } | 
|  |  | 
|  | /// Returns true if stack probing through inline assembly is requested. | 
|  | bool SystemZTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const { | 
|  | // If the function specifically requests inline stack probes, emit them. | 
|  | if (MF.getFunction().hasFnAttribute("probe-stack")) | 
|  | return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == | 
|  | "inline-asm"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { | 
|  | // We can use CGFI or CLGFI. | 
|  | return isInt<32>(Imm) || isUInt<32>(Imm); | 
|  | } | 
|  |  | 
|  | bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { | 
|  | // We can use ALGFI or SLGFI. | 
|  | return isUInt<32>(Imm) || isUInt<32>(-Imm); | 
|  | } | 
|  |  | 
|  | bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( | 
|  | EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const { | 
|  | // Unaligned accesses should never be slower than the expanded version. | 
|  | // We check specifically for aligned accesses in the few cases where | 
|  | // they are required. | 
|  | if (Fast) | 
|  | *Fast = 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Information about the addressing mode for a memory access. | 
|  | struct AddressingMode { | 
|  | // True if a long displacement is supported. | 
|  | bool LongDisplacement; | 
|  |  | 
|  | // True if use of index register is supported. | 
|  | bool IndexReg; | 
|  |  | 
|  | AddressingMode(bool LongDispl, bool IdxReg) : | 
|  | LongDisplacement(LongDispl), IndexReg(IdxReg) {} | 
|  | }; | 
|  |  | 
|  | // Return the desired addressing mode for a Load which has only one use (in | 
|  | // the same block) which is a Store. | 
|  | static AddressingMode getLoadStoreAddrMode(bool HasVector, | 
|  | Type *Ty) { | 
|  | // With vector support a Load->Store combination may be combined to either | 
|  | // an MVC or vector operations and it seems to work best to allow the | 
|  | // vector addressing mode. | 
|  | if (HasVector) | 
|  | return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); | 
|  |  | 
|  | // Otherwise only the MVC case is special. | 
|  | bool MVC = Ty->isIntegerTy(8); | 
|  | return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); | 
|  | } | 
|  |  | 
|  | // Return the addressing mode which seems most desirable given an LLVM | 
|  | // Instruction pointer. | 
|  | static AddressingMode | 
|  | supportedAddressingMode(Instruction *I, bool HasVector) { | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::memset: | 
|  | case Intrinsic::memmove: | 
|  | case Intrinsic::memcpy: | 
|  | return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<LoadInst>(I) && I->hasOneUse()) { | 
|  | auto *SingleUser = cast<Instruction>(*I->user_begin()); | 
|  | if (SingleUser->getParent() == I->getParent()) { | 
|  | if (isa<ICmpInst>(SingleUser)) { | 
|  | if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) | 
|  | if (C->getBitWidth() <= 64 && | 
|  | (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) | 
|  | // Comparison of memory with 16 bit signed / unsigned immediate | 
|  | return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); | 
|  | } else if (isa<StoreInst>(SingleUser)) | 
|  | // Load->Store | 
|  | return getLoadStoreAddrMode(HasVector, I->getType()); | 
|  | } | 
|  | } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { | 
|  | if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) | 
|  | if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) | 
|  | // Load->Store | 
|  | return getLoadStoreAddrMode(HasVector, LoadI->getType()); | 
|  | } | 
|  |  | 
|  | if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { | 
|  |  | 
|  | // * Use LDE instead of LE/LEY for z13 to avoid partial register | 
|  | //   dependencies (LDE only supports small offsets). | 
|  | // * Utilize the vector registers to hold floating point | 
|  | //   values (vector load / store instructions only support small | 
|  | //   offsets). | 
|  |  | 
|  | Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : | 
|  | I->getOperand(0)->getType()); | 
|  | bool IsFPAccess = MemAccessTy->isFloatingPointTy(); | 
|  | bool IsVectorAccess = MemAccessTy->isVectorTy(); | 
|  |  | 
|  | // A store of an extracted vector element will be combined into a VSTE type | 
|  | // instruction. | 
|  | if (!IsVectorAccess && isa<StoreInst>(I)) { | 
|  | Value *DataOp = I->getOperand(0); | 
|  | if (isa<ExtractElementInst>(DataOp)) | 
|  | IsVectorAccess = true; | 
|  | } | 
|  |  | 
|  | // A load which gets inserted into a vector element will be combined into a | 
|  | // VLE type instruction. | 
|  | if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { | 
|  | User *LoadUser = *I->user_begin(); | 
|  | if (isa<InsertElementInst>(LoadUser)) | 
|  | IsVectorAccess = true; | 
|  | } | 
|  |  | 
|  | if (IsFPAccess || IsVectorAccess) | 
|  | return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); | 
|  | } | 
|  |  | 
|  | return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); | 
|  | } | 
|  |  | 
|  | bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, | 
|  | const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { | 
|  | // Punt on globals for now, although they can be used in limited | 
|  | // RELATIVE LONG cases. | 
|  | if (AM.BaseGV) | 
|  | return false; | 
|  |  | 
|  | // Require a 20-bit signed offset. | 
|  | if (!isInt<20>(AM.BaseOffs)) | 
|  | return false; | 
|  |  | 
|  | bool RequireD12 = Subtarget.hasVector() && Ty->isVectorTy(); | 
|  | AddressingMode SupportedAM(!RequireD12, true); | 
|  | if (I != nullptr) | 
|  | SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); | 
|  |  | 
|  | if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) | 
|  | return false; | 
|  |  | 
|  | if (!SupportedAM.IndexReg) | 
|  | // No indexing allowed. | 
|  | return AM.Scale == 0; | 
|  | else | 
|  | // Indexing is OK but no scale factor can be applied. | 
|  | return AM.Scale == 0 || AM.Scale == 1; | 
|  | } | 
|  |  | 
|  | bool SystemZTargetLowering::findOptimalMemOpLowering( | 
|  | std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, | 
|  | unsigned SrcAS, const AttributeList &FuncAttributes) const { | 
|  | const int MVCFastLen = 16; | 
|  |  | 
|  | if (Limit != ~unsigned(0)) { | 
|  | // Don't expand Op into scalar loads/stores in these cases: | 
|  | if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen) | 
|  | return false; // Small memcpy: Use MVC | 
|  | if (Op.isMemset() && Op.size() - 1 <= MVCFastLen) | 
|  | return false; // Small memset (first byte with STC/MVI): Use MVC | 
|  | if (Op.isZeroMemset()) | 
|  | return false; // Memset zero: Use XC | 
|  | } | 
|  |  | 
|  | return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS, | 
|  | SrcAS, FuncAttributes); | 
|  | } | 
|  |  | 
|  | EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op, | 
|  | const AttributeList &FuncAttributes) const { | 
|  | return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other; | 
|  | } | 
|  |  | 
|  | bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { | 
|  | if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) | 
|  | return false; | 
|  | unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedValue(); | 
|  | unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedValue(); | 
|  | return FromBits > ToBits; | 
|  | } | 
|  |  | 
|  | bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { | 
|  | if (!FromVT.isInteger() || !ToVT.isInteger()) | 
|  | return false; | 
|  | unsigned FromBits = FromVT.getFixedSizeInBits(); | 
|  | unsigned ToBits = ToVT.getFixedSizeInBits(); | 
|  | return FromBits > ToBits; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Inline asm support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | TargetLowering::ConstraintType | 
|  | SystemZTargetLowering::getConstraintType(StringRef Constraint) const { | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | case 'a': // Address register | 
|  | case 'd': // Data register (equivalent to 'r') | 
|  | case 'f': // Floating-point register | 
|  | case 'h': // High-part register | 
|  | case 'r': // General-purpose register | 
|  | case 'v': // Vector register | 
|  | return C_RegisterClass; | 
|  |  | 
|  | case 'Q': // Memory with base and unsigned 12-bit displacement | 
|  | case 'R': // Likewise, plus an index | 
|  | case 'S': // Memory with base and signed 20-bit displacement | 
|  | case 'T': // Likewise, plus an index | 
|  | case 'm': // Equivalent to 'T'. | 
|  | return C_Memory; | 
|  |  | 
|  | case 'I': // Unsigned 8-bit constant | 
|  | case 'J': // Unsigned 12-bit constant | 
|  | case 'K': // Signed 16-bit constant | 
|  | case 'L': // Signed 20-bit displacement (on all targets we support) | 
|  | case 'M': // 0x7fffffff | 
|  | return C_Immediate; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } else if (Constraint.size() == 2 && Constraint[0] == 'Z') { | 
|  | switch (Constraint[1]) { | 
|  | case 'Q': // Address with base and unsigned 12-bit displacement | 
|  | case 'R': // Likewise, plus an index | 
|  | case 'S': // Address with base and signed 20-bit displacement | 
|  | case 'T': // Likewise, plus an index | 
|  | return C_Address; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | return TargetLowering::getConstraintType(Constraint); | 
|  | } | 
|  |  | 
|  | TargetLowering::ConstraintWeight SystemZTargetLowering:: | 
|  | getSingleConstraintMatchWeight(AsmOperandInfo &info, | 
|  | const char *constraint) const { | 
|  | ConstraintWeight weight = CW_Invalid; | 
|  | Value *CallOperandVal = info.CallOperandVal; | 
|  | // If we don't have a value, we can't do a match, | 
|  | // but allow it at the lowest weight. | 
|  | if (!CallOperandVal) | 
|  | return CW_Default; | 
|  | Type *type = CallOperandVal->getType(); | 
|  | // Look at the constraint type. | 
|  | switch (*constraint) { | 
|  | default: | 
|  | weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); | 
|  | break; | 
|  |  | 
|  | case 'a': // Address register | 
|  | case 'd': // Data register (equivalent to 'r') | 
|  | case 'h': // High-part register | 
|  | case 'r': // General-purpose register | 
|  | weight = CallOperandVal->getType()->isIntegerTy() ? CW_Register : CW_Default; | 
|  | break; | 
|  |  | 
|  | case 'f': // Floating-point register | 
|  | if (!useSoftFloat()) | 
|  | weight = type->isFloatingPointTy() ? CW_Register : CW_Default; | 
|  | break; | 
|  |  | 
|  | case 'v': // Vector register | 
|  | if (Subtarget.hasVector()) | 
|  | weight = (type->isVectorTy() || type->isFloatingPointTy()) ? CW_Register | 
|  | : CW_Default; | 
|  | break; | 
|  |  | 
|  | case 'I': // Unsigned 8-bit constant | 
|  | if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) | 
|  | if (isUInt<8>(C->getZExtValue())) | 
|  | weight = CW_Constant; | 
|  | break; | 
|  |  | 
|  | case 'J': // Unsigned 12-bit constant | 
|  | if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) | 
|  | if (isUInt<12>(C->getZExtValue())) | 
|  | weight = CW_Constant; | 
|  | break; | 
|  |  | 
|  | case 'K': // Signed 16-bit constant | 
|  | if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) | 
|  | if (isInt<16>(C->getSExtValue())) | 
|  | weight = CW_Constant; | 
|  | break; | 
|  |  | 
|  | case 'L': // Signed 20-bit displacement (on all targets we support) | 
|  | if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) | 
|  | if (isInt<20>(C->getSExtValue())) | 
|  | weight = CW_Constant; | 
|  | break; | 
|  |  | 
|  | case 'M': // 0x7fffffff | 
|  | if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) | 
|  | if (C->getZExtValue() == 0x7fffffff) | 
|  | weight = CW_Constant; | 
|  | break; | 
|  | } | 
|  | return weight; | 
|  | } | 
|  |  | 
|  | // Parse a "{tNNN}" register constraint for which the register type "t" | 
|  | // has already been verified.  MC is the class associated with "t" and | 
|  | // Map maps 0-based register numbers to LLVM register numbers. | 
|  | static std::pair<unsigned, const TargetRegisterClass *> | 
|  | parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, | 
|  | const unsigned *Map, unsigned Size) { | 
|  | assert(*(Constraint.end()-1) == '}' && "Missing '}'"); | 
|  | if (isdigit(Constraint[2])) { | 
|  | unsigned Index; | 
|  | bool Failed = | 
|  | Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); | 
|  | if (!Failed && Index < Size && Map[Index]) | 
|  | return std::make_pair(Map[Index], RC); | 
|  | } | 
|  | return std::make_pair(0U, nullptr); | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass *> | 
|  | SystemZTargetLowering::getRegForInlineAsmConstraint( | 
|  | const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { | 
|  | if (Constraint.size() == 1) { | 
|  | // GCC Constraint Letters | 
|  | switch (Constraint[0]) { | 
|  | default: break; | 
|  | case 'd': // Data register (equivalent to 'r') | 
|  | case 'r': // General-purpose register | 
|  | if (VT.getSizeInBits() == 64) | 
|  | return std::make_pair(0U, &SystemZ::GR64BitRegClass); | 
|  | else if (VT.getSizeInBits() == 128) | 
|  | return std::make_pair(0U, &SystemZ::GR128BitRegClass); | 
|  | return std::make_pair(0U, &SystemZ::GR32BitRegClass); | 
|  |  | 
|  | case 'a': // Address register | 
|  | if (VT == MVT::i64) | 
|  | return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); | 
|  | else if (VT == MVT::i128) | 
|  | return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); | 
|  | return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); | 
|  |  | 
|  | case 'h': // High-part register (an LLVM extension) | 
|  | return std::make_pair(0U, &SystemZ::GRH32BitRegClass); | 
|  |  | 
|  | case 'f': // Floating-point register | 
|  | if (!useSoftFloat()) { | 
|  | if (VT.getSizeInBits() == 64) | 
|  | return std::make_pair(0U, &SystemZ::FP64BitRegClass); | 
|  | else if (VT.getSizeInBits() == 128) | 
|  | return std::make_pair(0U, &SystemZ::FP128BitRegClass); | 
|  | return std::make_pair(0U, &SystemZ::FP32BitRegClass); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 'v': // Vector register | 
|  | if (Subtarget.hasVector()) { | 
|  | if (VT.getSizeInBits() == 32) | 
|  | return std::make_pair(0U, &SystemZ::VR32BitRegClass); | 
|  | if (VT.getSizeInBits() == 64) | 
|  | return std::make_pair(0U, &SystemZ::VR64BitRegClass); | 
|  | return std::make_pair(0U, &SystemZ::VR128BitRegClass); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (Constraint.size() > 0 && Constraint[0] == '{') { | 
|  |  | 
|  | // A clobber constraint (e.g. ~{f0}) will have MVT::Other which is illegal | 
|  | // to check the size on. | 
|  | auto getVTSizeInBits = [&VT]() { | 
|  | return VT == MVT::Other ? 0 : VT.getSizeInBits(); | 
|  | }; | 
|  |  | 
|  | // We need to override the default register parsing for GPRs and FPRs | 
|  | // because the interpretation depends on VT.  The internal names of | 
|  | // the registers are also different from the external names | 
|  | // (F0D and F0S instead of F0, etc.). | 
|  | if (Constraint[1] == 'r') { | 
|  | if (getVTSizeInBits() == 32) | 
|  | return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, | 
|  | SystemZMC::GR32Regs, 16); | 
|  | if (getVTSizeInBits() == 128) | 
|  | return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, | 
|  | SystemZMC::GR128Regs, 16); | 
|  | return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, | 
|  | SystemZMC::GR64Regs, 16); | 
|  | } | 
|  | if (Constraint[1] == 'f') { | 
|  | if (useSoftFloat()) | 
|  | return std::make_pair( | 
|  | 0u, static_cast<const TargetRegisterClass *>(nullptr)); | 
|  | if (getVTSizeInBits() == 32) | 
|  | return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, | 
|  | SystemZMC::FP32Regs, 16); | 
|  | if (getVTSizeInBits() == 128) | 
|  | return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, | 
|  | SystemZMC::FP128Regs, 16); | 
|  | return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, | 
|  | SystemZMC::FP64Regs, 16); | 
|  | } | 
|  | if (Constraint[1] == 'v') { | 
|  | if (!Subtarget.hasVector()) | 
|  | return std::make_pair( | 
|  | 0u, static_cast<const TargetRegisterClass *>(nullptr)); | 
|  | if (getVTSizeInBits() == 32) | 
|  | return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, | 
|  | SystemZMC::VR32Regs, 32); | 
|  | if (getVTSizeInBits() == 64) | 
|  | return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, | 
|  | SystemZMC::VR64Regs, 32); | 
|  | return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, | 
|  | SystemZMC::VR128Regs, 32); | 
|  | } | 
|  | } | 
|  | return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); | 
|  | } | 
|  |  | 
|  | // FIXME? Maybe this could be a TableGen attribute on some registers and | 
|  | // this table could be generated automatically from RegInfo. | 
|  | Register | 
|  | SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, | 
|  | const MachineFunction &MF) const { | 
|  | Register Reg = | 
|  | StringSwitch<Register>(RegName) | 
|  | .Case("r4", Subtarget.isTargetXPLINK64() ? SystemZ::R4D : 0) | 
|  | .Case("r15", Subtarget.isTargetELF() ? SystemZ::R15D : 0) | 
|  | .Default(0); | 
|  |  | 
|  | if (Reg) | 
|  | return Reg; | 
|  | report_fatal_error("Invalid register name global variable"); | 
|  | } | 
|  |  | 
|  | void SystemZTargetLowering:: | 
|  | LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, | 
|  | std::vector<SDValue> &Ops, | 
|  | SelectionDAG &DAG) const { | 
|  | // Only support length 1 constraints for now. | 
|  | if (Constraint.length() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | case 'I': // Unsigned 8-bit constant | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(Op)) | 
|  | if (isUInt<8>(C->getZExtValue())) | 
|  | Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), | 
|  | Op.getValueType())); | 
|  | return; | 
|  |  | 
|  | case 'J': // Unsigned 12-bit constant | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(Op)) | 
|  | if (isUInt<12>(C->getZExtValue())) | 
|  | Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), | 
|  | Op.getValueType())); | 
|  | return; | 
|  |  | 
|  | case 'K': // Signed 16-bit constant | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(Op)) | 
|  | if (isInt<16>(C->getSExtValue())) | 
|  | Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), | 
|  | Op.getValueType())); | 
|  | return; | 
|  |  | 
|  | case 'L': // Signed 20-bit displacement (on all targets we support) | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(Op)) | 
|  | if (isInt<20>(C->getSExtValue())) | 
|  | Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), | 
|  | Op.getValueType())); | 
|  | return; | 
|  |  | 
|  | case 'M': // 0x7fffffff | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(Op)) | 
|  | if (C->getZExtValue() == 0x7fffffff) | 
|  | Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), | 
|  | Op.getValueType())); | 
|  | return; | 
|  | } | 
|  | } | 
|  | TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Calling conventions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "SystemZGenCallingConv.inc" | 
|  |  | 
|  | const MCPhysReg *SystemZTargetLowering::getScratchRegisters( | 
|  | CallingConv::ID) const { | 
|  | static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, | 
|  | SystemZ::R14D, 0 }; | 
|  | return ScratchRegs; | 
|  | } | 
|  |  | 
|  | bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, | 
|  | Type *ToType) const { | 
|  | return isTruncateFree(FromType, ToType); | 
|  | } | 
|  |  | 
|  | bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { | 
|  | return CI->isTailCall(); | 
|  | } | 
|  |  | 
|  | // We do not yet support 128-bit single-element vector types.  If the user | 
|  | // attempts to use such types as function argument or return type, prefer | 
|  | // to error out instead of emitting code violating the ABI. | 
|  | static void VerifyVectorType(MVT VT, EVT ArgVT) { | 
|  | if (ArgVT.isVector() && !VT.isVector()) | 
|  | report_fatal_error("Unsupported vector argument or return type"); | 
|  | } | 
|  |  | 
|  | static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { | 
|  | for (unsigned i = 0; i < Ins.size(); ++i) | 
|  | VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); | 
|  | } | 
|  |  | 
|  | static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { | 
|  | for (unsigned i = 0; i < Outs.size(); ++i) | 
|  | VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); | 
|  | } | 
|  |  | 
|  | // Value is a value that has been passed to us in the location described by VA | 
|  | // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining | 
|  | // any loads onto Chain. | 
|  | static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, | 
|  | CCValAssign &VA, SDValue Chain, | 
|  | SDValue Value) { | 
|  | // If the argument has been promoted from a smaller type, insert an | 
|  | // assertion to capture this. | 
|  | if (VA.getLocInfo() == CCValAssign::SExt) | 
|  | Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | else if (VA.getLocInfo() == CCValAssign::ZExt) | 
|  | Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  |  | 
|  | if (VA.isExtInLoc()) | 
|  | Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); | 
|  | else if (VA.getLocInfo() == CCValAssign::BCvt) { | 
|  | // If this is a short vector argument loaded from the stack, | 
|  | // extend from i64 to full vector size and then bitcast. | 
|  | assert(VA.getLocVT() == MVT::i64); | 
|  | assert(VA.getValVT().isVector()); | 
|  | Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); | 
|  | Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); | 
|  | } else | 
|  | assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); | 
|  | return Value; | 
|  | } | 
|  |  | 
|  | // Value is a value of type VA.getValVT() that we need to copy into | 
|  | // the location described by VA.  Return a copy of Value converted to | 
|  | // VA.getValVT().  The caller is responsible for handling indirect values. | 
|  | static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, | 
|  | CCValAssign &VA, SDValue Value) { | 
|  | switch (VA.getLocInfo()) { | 
|  | case CCValAssign::SExt: | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); | 
|  | case CCValAssign::ZExt: | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); | 
|  | case CCValAssign::AExt: | 
|  | return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); | 
|  | case CCValAssign::BCvt: { | 
|  | assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128); | 
|  | assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 || | 
|  | VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128); | 
|  | // For an f32 vararg we need to first promote it to an f64 and then | 
|  | // bitcast it to an i64. | 
|  | if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64) | 
|  | Value = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, Value); | 
|  | MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64 | 
|  | ? MVT::v2i64 | 
|  | : VA.getLocVT(); | 
|  | Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value); | 
|  | // For ELF, this is a short vector argument to be stored to the stack, | 
|  | // bitcast to v2i64 and then extract first element. | 
|  | if (BitCastToType == MVT::v2i64) | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, | 
|  | DAG.getConstant(0, DL, MVT::i32)); | 
|  | return Value; | 
|  | } | 
|  | case CCValAssign::Full: | 
|  | return Value; | 
|  | default: | 
|  | llvm_unreachable("Unhandled getLocInfo()"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { | 
|  | SDLoc DL(In); | 
|  | SDValue Lo, Hi; | 
|  | std::tie(Lo, Hi) = DAG.SplitScalar(In, DL, MVT::i64, MVT::i64); | 
|  | SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, | 
|  | MVT::Untyped, Hi, Lo); | 
|  | return SDValue(Pair, 0); | 
|  | } | 
|  |  | 
|  | static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { | 
|  | SDLoc DL(In); | 
|  | SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, | 
|  | DL, MVT::i64, In); | 
|  | SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, | 
|  | DL, MVT::i64, In); | 
|  | return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); | 
|  | } | 
|  |  | 
|  | bool SystemZTargetLowering::splitValueIntoRegisterParts( | 
|  | SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, | 
|  | unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { | 
|  | EVT ValueVT = Val.getValueType(); | 
|  | if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) { | 
|  | // Inline assembly operand. | 
|  | Parts[0] = lowerI128ToGR128(DAG, DAG.getBitcast(MVT::i128, Val)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::joinRegisterPartsIntoValue( | 
|  | SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, | 
|  | MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const { | 
|  | if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) { | 
|  | // Inline assembly operand. | 
|  | SDValue Res = lowerGR128ToI128(DAG, Parts[0]); | 
|  | return DAG.getBitcast(ValueVT, Res); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::LowerFormalArguments( | 
|  | SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, | 
|  | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | SystemZMachineFunctionInfo *FuncInfo = | 
|  | MF.getInfo<SystemZMachineFunctionInfo>(); | 
|  | auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | // Detect unsupported vector argument types. | 
|  | if (Subtarget.hasVector()) | 
|  | VerifyVectorTypes(Ins); | 
|  |  | 
|  | // Assign locations to all of the incoming arguments. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); | 
|  | CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); | 
|  |  | 
|  | unsigned NumFixedGPRs = 0; | 
|  | unsigned NumFixedFPRs = 0; | 
|  | for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { | 
|  | SDValue ArgValue; | 
|  | CCValAssign &VA = ArgLocs[I]; | 
|  | EVT LocVT = VA.getLocVT(); | 
|  | if (VA.isRegLoc()) { | 
|  | // Arguments passed in registers | 
|  | const TargetRegisterClass *RC; | 
|  | switch (LocVT.getSimpleVT().SimpleTy) { | 
|  | default: | 
|  | // Integers smaller than i64 should be promoted to i64. | 
|  | llvm_unreachable("Unexpected argument type"); | 
|  | case MVT::i32: | 
|  | NumFixedGPRs += 1; | 
|  | RC = &SystemZ::GR32BitRegClass; | 
|  | break; | 
|  | case MVT::i64: | 
|  | NumFixedGPRs += 1; | 
|  | RC = &SystemZ::GR64BitRegClass; | 
|  | break; | 
|  | case MVT::f32: | 
|  | NumFixedFPRs += 1; | 
|  | RC = &SystemZ::FP32BitRegClass; | 
|  | break; | 
|  | case MVT::f64: | 
|  | NumFixedFPRs += 1; | 
|  | RC = &SystemZ::FP64BitRegClass; | 
|  | break; | 
|  | case MVT::f128: | 
|  | NumFixedFPRs += 2; | 
|  | RC = &SystemZ::FP128BitRegClass; | 
|  | break; | 
|  | case MVT::v16i8: | 
|  | case MVT::v8i16: | 
|  | case MVT::v4i32: | 
|  | case MVT::v2i64: | 
|  | case MVT::v4f32: | 
|  | case MVT::v2f64: | 
|  | RC = &SystemZ::VR128BitRegClass; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Register VReg = MRI.createVirtualRegister(RC); | 
|  | MRI.addLiveIn(VA.getLocReg(), VReg); | 
|  | ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); | 
|  | } else { | 
|  | assert(VA.isMemLoc() && "Argument not register or memory"); | 
|  |  | 
|  | // Create the frame index object for this incoming parameter. | 
|  | // FIXME: Pre-include call frame size in the offset, should not | 
|  | // need to manually add it here. | 
|  | int64_t ArgSPOffset = VA.getLocMemOffset(); | 
|  | if (Subtarget.isTargetXPLINK64()) { | 
|  | auto &XPRegs = | 
|  | Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); | 
|  | ArgSPOffset += XPRegs.getCallFrameSize(); | 
|  | } | 
|  | int FI = | 
|  | MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true); | 
|  |  | 
|  | // Create the SelectionDAG nodes corresponding to a load | 
|  | // from this parameter.  Unpromoted ints and floats are | 
|  | // passed as right-justified 8-byte values. | 
|  | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | 
|  | if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) | 
|  | FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, | 
|  | DAG.getIntPtrConstant(4, DL)); | 
|  | ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, | 
|  | MachinePointerInfo::getFixedStack(MF, FI)); | 
|  | } | 
|  |  | 
|  | // Convert the value of the argument register into the value that's | 
|  | // being passed. | 
|  | if (VA.getLocInfo() == CCValAssign::Indirect) { | 
|  | InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, | 
|  | MachinePointerInfo())); | 
|  | // If the original argument was split (e.g. i128), we need | 
|  | // to load all parts of it here (using the same address). | 
|  | unsigned ArgIndex = Ins[I].OrigArgIndex; | 
|  | assert (Ins[I].PartOffset == 0); | 
|  | while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { | 
|  | CCValAssign &PartVA = ArgLocs[I + 1]; | 
|  | unsigned PartOffset = Ins[I + 1].PartOffset; | 
|  | SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, | 
|  | DAG.getIntPtrConstant(PartOffset, DL)); | 
|  | InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, | 
|  | MachinePointerInfo())); | 
|  | ++I; | 
|  | } | 
|  | } else | 
|  | InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); | 
|  | } | 
|  |  | 
|  | // FIXME: Add support for lowering varargs for XPLINK64 in a later patch. | 
|  | if (IsVarArg && Subtarget.isTargetELF()) { | 
|  | // Save the number of non-varargs registers for later use by va_start, etc. | 
|  | FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); | 
|  | FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); | 
|  |  | 
|  | // Likewise the address (in the form of a frame index) of where the | 
|  | // first stack vararg would be.  The 1-byte size here is arbitrary. | 
|  | int64_t VarArgsOffset = CCInfo.getStackSize(); | 
|  | FuncInfo->setVarArgsFrameIndex( | 
|  | MFI.CreateFixedObject(1, VarArgsOffset, true)); | 
|  |  | 
|  | // ...and a similar frame index for the caller-allocated save area | 
|  | // that will be used to store the incoming registers. | 
|  | int64_t RegSaveOffset = | 
|  | -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; | 
|  | unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); | 
|  | FuncInfo->setRegSaveFrameIndex(RegSaveIndex); | 
|  |  | 
|  | // Store the FPR varargs in the reserved frame slots.  (We store the | 
|  | // GPRs as part of the prologue.) | 
|  | if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) { | 
|  | SDValue MemOps[SystemZ::ELFNumArgFPRs]; | 
|  | for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) { | 
|  | unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]); | 
|  | int FI = | 
|  | MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true); | 
|  | SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); | 
|  | Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I], | 
|  | &SystemZ::FP64BitRegClass); | 
|  | SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); | 
|  | MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, | 
|  | MachinePointerInfo::getFixedStack(MF, FI)); | 
|  | } | 
|  | // Join the stores, which are independent of one another. | 
|  | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, | 
|  | ArrayRef(&MemOps[NumFixedFPRs], | 
|  | SystemZ::ELFNumArgFPRs - NumFixedFPRs)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special | 
|  | // register (R5) | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | static bool canUseSiblingCall(const CCState &ArgCCInfo, | 
|  | SmallVectorImpl<CCValAssign> &ArgLocs, | 
|  | SmallVectorImpl<ISD::OutputArg> &Outs) { | 
|  | // Punt if there are any indirect or stack arguments, or if the call | 
|  | // needs the callee-saved argument register R6, or if the call uses | 
|  | // the callee-saved register arguments SwiftSelf and SwiftError. | 
|  | for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { | 
|  | CCValAssign &VA = ArgLocs[I]; | 
|  | if (VA.getLocInfo() == CCValAssign::Indirect) | 
|  | return false; | 
|  | if (!VA.isRegLoc()) | 
|  | return false; | 
|  | Register Reg = VA.getLocReg(); | 
|  | if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) | 
|  | return false; | 
|  | if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | SelectionDAG &DAG = CLI.DAG; | 
|  | SDLoc &DL = CLI.DL; | 
|  | SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; | 
|  | SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; | 
|  | SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; | 
|  | SDValue Chain = CLI.Chain; | 
|  | SDValue Callee = CLI.Callee; | 
|  | bool &IsTailCall = CLI.IsTailCall; | 
|  | CallingConv::ID CallConv = CLI.CallConv; | 
|  | bool IsVarArg = CLI.IsVarArg; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | EVT PtrVT = getPointerTy(MF.getDataLayout()); | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  | SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters(); | 
|  |  | 
|  | // FIXME: z/OS support to be added in later. | 
|  | if (Subtarget.isTargetXPLINK64()) | 
|  | IsTailCall = false; | 
|  |  | 
|  | // Detect unsupported vector argument and return types. | 
|  | if (Subtarget.hasVector()) { | 
|  | VerifyVectorTypes(Outs); | 
|  | VerifyVectorTypes(Ins); | 
|  | } | 
|  |  | 
|  | // Analyze the operands of the call, assigning locations to each operand. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx); | 
|  | ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); | 
|  |  | 
|  | // We don't support GuaranteedTailCallOpt, only automatically-detected | 
|  | // sibling calls. | 
|  | if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) | 
|  | IsTailCall = false; | 
|  |  | 
|  | // Get a count of how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = ArgCCInfo.getStackSize(); | 
|  |  | 
|  | if (Subtarget.isTargetXPLINK64()) | 
|  | // Although the XPLINK specifications for AMODE64 state that minimum size | 
|  | // of the param area is minimum 32 bytes and no rounding is otherwise | 
|  | // specified, we round this area in 64 bytes increments to be compatible | 
|  | // with existing compilers. | 
|  | NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64)); | 
|  |  | 
|  | // Mark the start of the call. | 
|  | if (!IsTailCall) | 
|  | Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); | 
|  |  | 
|  | // Copy argument values to their designated locations. | 
|  | SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; | 
|  | SmallVector<SDValue, 8> MemOpChains; | 
|  | SDValue StackPtr; | 
|  | for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { | 
|  | CCValAssign &VA = ArgLocs[I]; | 
|  | SDValue ArgValue = OutVals[I]; | 
|  |  | 
|  | if (VA.getLocInfo() == CCValAssign::Indirect) { | 
|  | // Store the argument in a stack slot and pass its address. | 
|  | unsigned ArgIndex = Outs[I].OrigArgIndex; | 
|  | EVT SlotVT; | 
|  | if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { | 
|  | // Allocate the full stack space for a promoted (and split) argument. | 
|  | Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty; | 
|  | EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType); | 
|  | MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT); | 
|  | unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT); | 
|  | SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N); | 
|  | } else { | 
|  | SlotVT = Outs[I].ArgVT; | 
|  | } | 
|  | SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT); | 
|  | int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); | 
|  | MemOpChains.push_back( | 
|  | DAG.getStore(Chain, DL, ArgValue, SpillSlot, | 
|  | MachinePointerInfo::getFixedStack(MF, FI))); | 
|  | // If the original argument was split (e.g. i128), we need | 
|  | // to store all parts of it here (and pass just one address). | 
|  | assert (Outs[I].PartOffset == 0); | 
|  | while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { | 
|  | SDValue PartValue = OutVals[I + 1]; | 
|  | unsigned PartOffset = Outs[I + 1].PartOffset; | 
|  | SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, | 
|  | DAG.getIntPtrConstant(PartOffset, DL)); | 
|  | MemOpChains.push_back( | 
|  | DAG.getStore(Chain, DL, PartValue, Address, | 
|  | MachinePointerInfo::getFixedStack(MF, FI))); | 
|  | assert((PartOffset + PartValue.getValueType().getStoreSize() <= | 
|  | SlotVT.getStoreSize()) && "Not enough space for argument part!"); | 
|  | ++I; | 
|  | } | 
|  | ArgValue = SpillSlot; | 
|  | } else | 
|  | ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a | 
|  | // MVT::i128 type. We decompose the 128-bit type to a pair of its high | 
|  | // and low values. | 
|  | if (VA.getLocVT() == MVT::i128) | 
|  | ArgValue = lowerI128ToGR128(DAG, ArgValue); | 
|  | // Queue up the argument copies and emit them at the end. | 
|  | RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); | 
|  | } else { | 
|  | assert(VA.isMemLoc() && "Argument not register or memory"); | 
|  |  | 
|  | // Work out the address of the stack slot.  Unpromoted ints and | 
|  | // floats are passed as right-justified 8-byte values. | 
|  | if (!StackPtr.getNode()) | 
|  | StackPtr = DAG.getCopyFromReg(Chain, DL, | 
|  | Regs->getStackPointerRegister(), PtrVT); | 
|  | unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() + | 
|  | VA.getLocMemOffset(); | 
|  | if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) | 
|  | Offset += 4; | 
|  | SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, | 
|  | DAG.getIntPtrConstant(Offset, DL)); | 
|  |  | 
|  | // Emit the store. | 
|  | MemOpChains.push_back( | 
|  | DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); | 
|  |  | 
|  | // Although long doubles or vectors are passed through the stack when | 
|  | // they are vararg (non-fixed arguments), if a long double or vector | 
|  | // occupies the third and fourth slot of the argument list GPR3 should | 
|  | // still shadow the third slot of the argument list. | 
|  | if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) { | 
|  | SDValue ShadowArgValue = | 
|  | DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue, | 
|  | DAG.getIntPtrConstant(1, DL)); | 
|  | RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Join the stores, which are independent of one another. | 
|  | if (!MemOpChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); | 
|  |  | 
|  | // Accept direct calls by converting symbolic call addresses to the | 
|  | // associated Target* opcodes.  Force %r1 to be used for indirect | 
|  | // tail calls. | 
|  | SDValue Glue; | 
|  | // FIXME: Add support for XPLINK using the ADA register. | 
|  | if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { | 
|  | Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); | 
|  | Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); | 
|  | } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { | 
|  | Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); | 
|  | Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); | 
|  | } else if (IsTailCall) { | 
|  | Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); | 
|  | Glue = Chain.getValue(1); | 
|  | Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); | 
|  | } | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes, chained and glued together. | 
|  | for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { | 
|  | Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, | 
|  | RegsToPass[I].second, Glue); | 
|  | Glue = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | // The first call operand is the chain and the second is the target address. | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  |  | 
|  | // Add argument registers to the end of the list so that they are | 
|  | // known live into the call. | 
|  | for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) | 
|  | Ops.push_back(DAG.getRegister(RegsToPass[I].first, | 
|  | RegsToPass[I].second.getValueType())); | 
|  |  | 
|  | // Add a register mask operand representing the call-preserved registers. | 
|  | const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); | 
|  | const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); | 
|  | assert(Mask && "Missing call preserved mask for calling convention"); | 
|  | Ops.push_back(DAG.getRegisterMask(Mask)); | 
|  |  | 
|  | // Glue the call to the argument copies, if any. | 
|  | if (Glue.getNode()) | 
|  | Ops.push_back(Glue); | 
|  |  | 
|  | // Emit the call. | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | if (IsTailCall) { | 
|  | SDValue Ret = DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); | 
|  | DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge); | 
|  | return Ret; | 
|  | } | 
|  | Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); | 
|  | DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); | 
|  | Glue = Chain.getValue(1); | 
|  |  | 
|  | // Mark the end of the call, which is glued to the call itself. | 
|  | Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL); | 
|  | Glue = Chain.getValue(1); | 
|  |  | 
|  | // Assign locations to each value returned by this call. | 
|  | SmallVector<CCValAssign, 16> RetLocs; | 
|  | CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx); | 
|  | RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); | 
|  |  | 
|  | // Copy all of the result registers out of their specified physreg. | 
|  | for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { | 
|  | CCValAssign &VA = RetLocs[I]; | 
|  |  | 
|  | // Copy the value out, gluing the copy to the end of the call sequence. | 
|  | SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), | 
|  | VA.getLocVT(), Glue); | 
|  | Chain = RetValue.getValue(1); | 
|  | Glue = RetValue.getValue(2); | 
|  |  | 
|  | // Convert the value of the return register into the value that's | 
|  | // being returned. | 
|  | InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | // Generate a call taking the given operands as arguments and returning a | 
|  | // result of type RetVT. | 
|  | std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall( | 
|  | SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT, | 
|  | ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL, | 
|  | bool DoesNotReturn, bool IsReturnValueUsed) const { | 
|  | TargetLowering::ArgListTy Args; | 
|  | Args.reserve(Ops.size()); | 
|  |  | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | for (SDValue Op : Ops) { | 
|  | Entry.Node = Op; | 
|  | Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); | 
|  | Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); | 
|  | Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); | 
|  | Args.push_back(Entry); | 
|  | } | 
|  |  | 
|  | SDValue Callee = | 
|  | DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned); | 
|  | CLI.setDebugLoc(DL) | 
|  | .setChain(Chain) | 
|  | .setCallee(CallConv, RetTy, Callee, std::move(Args)) | 
|  | .setNoReturn(DoesNotReturn) | 
|  | .setDiscardResult(!IsReturnValueUsed) | 
|  | .setSExtResult(SignExtend) | 
|  | .setZExtResult(!SignExtend); | 
|  | return LowerCallTo(CLI); | 
|  | } | 
|  |  | 
|  | bool SystemZTargetLowering:: | 
|  | CanLowerReturn(CallingConv::ID CallConv, | 
|  | MachineFunction &MF, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | LLVMContext &Context) const { | 
|  | // Detect unsupported vector return types. | 
|  | if (Subtarget.hasVector()) | 
|  | VerifyVectorTypes(Outs); | 
|  |  | 
|  | // Special case that we cannot easily detect in RetCC_SystemZ since | 
|  | // i128 is not a legal type. | 
|  | for (auto &Out : Outs) | 
|  | if (Out.ArgVT == MVT::i128) | 
|  | return false; | 
|  |  | 
|  | SmallVector<CCValAssign, 16> RetLocs; | 
|  | CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); | 
|  | return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, | 
|  | bool IsVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SDLoc &DL, SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | // Detect unsupported vector return types. | 
|  | if (Subtarget.hasVector()) | 
|  | VerifyVectorTypes(Outs); | 
|  |  | 
|  | // Assign locations to each returned value. | 
|  | SmallVector<CCValAssign, 16> RetLocs; | 
|  | CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); | 
|  | RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); | 
|  |  | 
|  | // Quick exit for void returns | 
|  | if (RetLocs.empty()) | 
|  | return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, Chain); | 
|  |  | 
|  | if (CallConv == CallingConv::GHC) | 
|  | report_fatal_error("GHC functions return void only"); | 
|  |  | 
|  | // Copy the result values into the output registers. | 
|  | SDValue Glue; | 
|  | SmallVector<SDValue, 4> RetOps; | 
|  | RetOps.push_back(Chain); | 
|  | for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { | 
|  | CCValAssign &VA = RetLocs[I]; | 
|  | SDValue RetValue = OutVals[I]; | 
|  |  | 
|  | // Make the return register live on exit. | 
|  | assert(VA.isRegLoc() && "Can only return in registers!"); | 
|  |  | 
|  | // Promote the value as required. | 
|  | RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); | 
|  |  | 
|  | // Chain and glue the copies together. | 
|  | Register Reg = VA.getLocReg(); | 
|  | Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); | 
|  | Glue = Chain.getValue(1); | 
|  | RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); | 
|  | } | 
|  |  | 
|  | // Update chain and glue. | 
|  | RetOps[0] = Chain; | 
|  | if (Glue.getNode()) | 
|  | RetOps.push_back(Glue); | 
|  |  | 
|  | return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, RetOps); | 
|  | } | 
|  |  | 
|  | // Return true if Op is an intrinsic node with chain that returns the CC value | 
|  | // as its only (other) argument.  Provide the associated SystemZISD opcode and | 
|  | // the mask of valid CC values if so. | 
|  | static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, | 
|  | unsigned &CCValid) { | 
|  | unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | switch (Id) { | 
|  | case Intrinsic::s390_tbegin: | 
|  | Opcode = SystemZISD::TBEGIN; | 
|  | CCValid = SystemZ::CCMASK_TBEGIN; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_tbegin_nofloat: | 
|  | Opcode = SystemZISD::TBEGIN_NOFLOAT; | 
|  | CCValid = SystemZ::CCMASK_TBEGIN; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_tend: | 
|  | Opcode = SystemZISD::TEND; | 
|  | CCValid = SystemZ::CCMASK_TEND; | 
|  | return true; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return true if Op is an intrinsic node without chain that returns the | 
|  | // CC value as its final argument.  Provide the associated SystemZISD | 
|  | // opcode and the mask of valid CC values if so. | 
|  | static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { | 
|  | unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | switch (Id) { | 
|  | case Intrinsic::s390_vpkshs: | 
|  | case Intrinsic::s390_vpksfs: | 
|  | case Intrinsic::s390_vpksgs: | 
|  | Opcode = SystemZISD::PACKS_CC; | 
|  | CCValid = SystemZ::CCMASK_VCMP; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vpklshs: | 
|  | case Intrinsic::s390_vpklsfs: | 
|  | case Intrinsic::s390_vpklsgs: | 
|  | Opcode = SystemZISD::PACKLS_CC; | 
|  | CCValid = SystemZ::CCMASK_VCMP; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vceqbs: | 
|  | case Intrinsic::s390_vceqhs: | 
|  | case Intrinsic::s390_vceqfs: | 
|  | case Intrinsic::s390_vceqgs: | 
|  | Opcode = SystemZISD::VICMPES; | 
|  | CCValid = SystemZ::CCMASK_VCMP; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vchbs: | 
|  | case Intrinsic::s390_vchhs: | 
|  | case Intrinsic::s390_vchfs: | 
|  | case Intrinsic::s390_vchgs: | 
|  | Opcode = SystemZISD::VICMPHS; | 
|  | CCValid = SystemZ::CCMASK_VCMP; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vchlbs: | 
|  | case Intrinsic::s390_vchlhs: | 
|  | case Intrinsic::s390_vchlfs: | 
|  | case Intrinsic::s390_vchlgs: | 
|  | Opcode = SystemZISD::VICMPHLS; | 
|  | CCValid = SystemZ::CCMASK_VCMP; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vtm: | 
|  | Opcode = SystemZISD::VTM; | 
|  | CCValid = SystemZ::CCMASK_VCMP; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vfaebs: | 
|  | case Intrinsic::s390_vfaehs: | 
|  | case Intrinsic::s390_vfaefs: | 
|  | Opcode = SystemZISD::VFAE_CC; | 
|  | CCValid = SystemZ::CCMASK_ANY; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vfaezbs: | 
|  | case Intrinsic::s390_vfaezhs: | 
|  | case Intrinsic::s390_vfaezfs: | 
|  | Opcode = SystemZISD::VFAEZ_CC; | 
|  | CCValid = SystemZ::CCMASK_ANY; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vfeebs: | 
|  | case Intrinsic::s390_vfeehs: | 
|  | case Intrinsic::s390_vfeefs: | 
|  | Opcode = SystemZISD::VFEE_CC; | 
|  | CCValid = SystemZ::CCMASK_ANY; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vfeezbs: | 
|  | case Intrinsic::s390_vfeezhs: | 
|  | case Intrinsic::s390_vfeezfs: | 
|  | Opcode = SystemZISD::VFEEZ_CC; | 
|  | CCValid = SystemZ::CCMASK_ANY; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vfenebs: | 
|  | case Intrinsic::s390_vfenehs: | 
|  | case Intrinsic::s390_vfenefs: | 
|  | Opcode = SystemZISD::VFENE_CC; | 
|  | CCValid = SystemZ::CCMASK_ANY; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vfenezbs: | 
|  | case Intrinsic::s390_vfenezhs: | 
|  | case Intrinsic::s390_vfenezfs: | 
|  | Opcode = SystemZISD::VFENEZ_CC; | 
|  | CCValid = SystemZ::CCMASK_ANY; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vistrbs: | 
|  | case Intrinsic::s390_vistrhs: | 
|  | case Intrinsic::s390_vistrfs: | 
|  | Opcode = SystemZISD::VISTR_CC; | 
|  | CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vstrcbs: | 
|  | case Intrinsic::s390_vstrchs: | 
|  | case Intrinsic::s390_vstrcfs: | 
|  | Opcode = SystemZISD::VSTRC_CC; | 
|  | CCValid = SystemZ::CCMASK_ANY; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vstrczbs: | 
|  | case Intrinsic::s390_vstrczhs: | 
|  | case Intrinsic::s390_vstrczfs: | 
|  | Opcode = SystemZISD::VSTRCZ_CC; | 
|  | CCValid = SystemZ::CCMASK_ANY; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vstrsb: | 
|  | case Intrinsic::s390_vstrsh: | 
|  | case Intrinsic::s390_vstrsf: | 
|  | Opcode = SystemZISD::VSTRS_CC; | 
|  | CCValid = SystemZ::CCMASK_ANY; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vstrszb: | 
|  | case Intrinsic::s390_vstrszh: | 
|  | case Intrinsic::s390_vstrszf: | 
|  | Opcode = SystemZISD::VSTRSZ_CC; | 
|  | CCValid = SystemZ::CCMASK_ANY; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vfcedbs: | 
|  | case Intrinsic::s390_vfcesbs: | 
|  | Opcode = SystemZISD::VFCMPES; | 
|  | CCValid = SystemZ::CCMASK_VCMP; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vfchdbs: | 
|  | case Intrinsic::s390_vfchsbs: | 
|  | Opcode = SystemZISD::VFCMPHS; | 
|  | CCValid = SystemZ::CCMASK_VCMP; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vfchedbs: | 
|  | case Intrinsic::s390_vfchesbs: | 
|  | Opcode = SystemZISD::VFCMPHES; | 
|  | CCValid = SystemZ::CCMASK_VCMP; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_vftcidb: | 
|  | case Intrinsic::s390_vftcisb: | 
|  | Opcode = SystemZISD::VFTCI; | 
|  | CCValid = SystemZ::CCMASK_VCMP; | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::s390_tdc: | 
|  | Opcode = SystemZISD::TDC; | 
|  | CCValid = SystemZ::CCMASK_TDC; | 
|  | return true; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit an intrinsic with chain and an explicit CC register result. | 
|  | static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, | 
|  | unsigned Opcode) { | 
|  | // Copy all operands except the intrinsic ID. | 
|  | unsigned NumOps = Op.getNumOperands(); | 
|  | SmallVector<SDValue, 6> Ops; | 
|  | Ops.reserve(NumOps - 1); | 
|  | Ops.push_back(Op.getOperand(0)); | 
|  | for (unsigned I = 2; I < NumOps; ++I) | 
|  | Ops.push_back(Op.getOperand(I)); | 
|  |  | 
|  | assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); | 
|  | SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); | 
|  | SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); | 
|  | SDValue OldChain = SDValue(Op.getNode(), 1); | 
|  | SDValue NewChain = SDValue(Intr.getNode(), 1); | 
|  | DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); | 
|  | return Intr.getNode(); | 
|  | } | 
|  |  | 
|  | // Emit an intrinsic with an explicit CC register result. | 
|  | static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, | 
|  | unsigned Opcode) { | 
|  | // Copy all operands except the intrinsic ID. | 
|  | unsigned NumOps = Op.getNumOperands(); | 
|  | SmallVector<SDValue, 6> Ops; | 
|  | Ops.reserve(NumOps - 1); | 
|  | for (unsigned I = 1; I < NumOps; ++I) | 
|  | Ops.push_back(Op.getOperand(I)); | 
|  |  | 
|  | SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); | 
|  | return Intr.getNode(); | 
|  | } | 
|  |  | 
|  | // CC is a comparison that will be implemented using an integer or | 
|  | // floating-point comparison.  Return the condition code mask for | 
|  | // a branch on true.  In the integer case, CCMASK_CMP_UO is set for | 
|  | // unsigned comparisons and clear for signed ones.  In the floating-point | 
|  | // case, CCMASK_CMP_UO has its normal mask meaning (unordered). | 
|  | static unsigned CCMaskForCondCode(ISD::CondCode CC) { | 
|  | #define CONV(X) \ | 
|  | case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ | 
|  | case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ | 
|  | case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X | 
|  |  | 
|  | switch (CC) { | 
|  | default: | 
|  | llvm_unreachable("Invalid integer condition!"); | 
|  |  | 
|  | CONV(EQ); | 
|  | CONV(NE); | 
|  | CONV(GT); | 
|  | CONV(GE); | 
|  | CONV(LT); | 
|  | CONV(LE); | 
|  |  | 
|  | case ISD::SETO:  return SystemZ::CCMASK_CMP_O; | 
|  | case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; | 
|  | } | 
|  | #undef CONV | 
|  | } | 
|  |  | 
|  | // If C can be converted to a comparison against zero, adjust the operands | 
|  | // as necessary. | 
|  | static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { | 
|  | if (C.ICmpType == SystemZICMP::UnsignedOnly) | 
|  | return; | 
|  |  | 
|  | auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); | 
|  | if (!ConstOp1) | 
|  | return; | 
|  |  | 
|  | int64_t Value = ConstOp1->getSExtValue(); | 
|  | if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || | 
|  | (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || | 
|  | (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || | 
|  | (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { | 
|  | C.CCMask ^= SystemZ::CCMASK_CMP_EQ; | 
|  | C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, | 
|  | // adjust the operands as necessary. | 
|  | static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, | 
|  | Comparison &C) { | 
|  | // For us to make any changes, it must a comparison between a single-use | 
|  | // load and a constant. | 
|  | if (!C.Op0.hasOneUse() || | 
|  | C.Op0.getOpcode() != ISD::LOAD || | 
|  | C.Op1.getOpcode() != ISD::Constant) | 
|  | return; | 
|  |  | 
|  | // We must have an 8- or 16-bit load. | 
|  | auto *Load = cast<LoadSDNode>(C.Op0); | 
|  | unsigned NumBits = Load->getMemoryVT().getSizeInBits(); | 
|  | if ((NumBits != 8 && NumBits != 16) || | 
|  | NumBits != Load->getMemoryVT().getStoreSizeInBits()) | 
|  | return; | 
|  |  | 
|  | // The load must be an extending one and the constant must be within the | 
|  | // range of the unextended value. | 
|  | auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); | 
|  | uint64_t Value = ConstOp1->getZExtValue(); | 
|  | uint64_t Mask = (1 << NumBits) - 1; | 
|  | if (Load->getExtensionType() == ISD::SEXTLOAD) { | 
|  | // Make sure that ConstOp1 is in range of C.Op0. | 
|  | int64_t SignedValue = ConstOp1->getSExtValue(); | 
|  | if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) | 
|  | return; | 
|  | if (C.ICmpType != SystemZICMP::SignedOnly) { | 
|  | // Unsigned comparison between two sign-extended values is equivalent | 
|  | // to unsigned comparison between two zero-extended values. | 
|  | Value &= Mask; | 
|  | } else if (NumBits == 8) { | 
|  | // Try to treat the comparison as unsigned, so that we can use CLI. | 
|  | // Adjust CCMask and Value as necessary. | 
|  | if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) | 
|  | // Test whether the high bit of the byte is set. | 
|  | Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; | 
|  | else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) | 
|  | // Test whether the high bit of the byte is clear. | 
|  | Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; | 
|  | else | 
|  | // No instruction exists for this combination. | 
|  | return; | 
|  | C.ICmpType = SystemZICMP::UnsignedOnly; | 
|  | } | 
|  | } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { | 
|  | if (Value > Mask) | 
|  | return; | 
|  | // If the constant is in range, we can use any comparison. | 
|  | C.ICmpType = SystemZICMP::Any; | 
|  | } else | 
|  | return; | 
|  |  | 
|  | // Make sure that the first operand is an i32 of the right extension type. | 
|  | ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? | 
|  | ISD::SEXTLOAD : | 
|  | ISD::ZEXTLOAD); | 
|  | if (C.Op0.getValueType() != MVT::i32 || | 
|  | Load->getExtensionType() != ExtType) { | 
|  | C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), | 
|  | Load->getBasePtr(), Load->getPointerInfo(), | 
|  | Load->getMemoryVT(), Load->getAlign(), | 
|  | Load->getMemOperand()->getFlags()); | 
|  | // Update the chain uses. | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); | 
|  | } | 
|  |  | 
|  | // Make sure that the second operand is an i32 with the right value. | 
|  | if (C.Op1.getValueType() != MVT::i32 || | 
|  | Value != ConstOp1->getZExtValue()) | 
|  | C.Op1 = DAG.getConstant(Value, DL, MVT::i32); | 
|  | } | 
|  |  | 
|  | // Return true if Op is either an unextended load, or a load suitable | 
|  | // for integer register-memory comparisons of type ICmpType. | 
|  | static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { | 
|  | auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); | 
|  | if (Load) { | 
|  | // There are no instructions to compare a register with a memory byte. | 
|  | if (Load->getMemoryVT() == MVT::i8) | 
|  | return false; | 
|  | // Otherwise decide on extension type. | 
|  | switch (Load->getExtensionType()) { | 
|  | case ISD::NON_EXTLOAD: | 
|  | return true; | 
|  | case ISD::SEXTLOAD: | 
|  | return ICmpType != SystemZICMP::UnsignedOnly; | 
|  | case ISD::ZEXTLOAD: | 
|  | return ICmpType != SystemZICMP::SignedOnly; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return true if it is better to swap the operands of C. | 
|  | static bool shouldSwapCmpOperands(const Comparison &C) { | 
|  | // Leave f128 comparisons alone, since they have no memory forms. | 
|  | if (C.Op0.getValueType() == MVT::f128) | 
|  | return false; | 
|  |  | 
|  | // Always keep a floating-point constant second, since comparisons with | 
|  | // zero can use LOAD TEST and comparisons with other constants make a | 
|  | // natural memory operand. | 
|  | if (isa<ConstantFPSDNode>(C.Op1)) | 
|  | return false; | 
|  |  | 
|  | // Never swap comparisons with zero since there are many ways to optimize | 
|  | // those later. | 
|  | auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); | 
|  | if (ConstOp1 && ConstOp1->getZExtValue() == 0) | 
|  | return false; | 
|  |  | 
|  | // Also keep natural memory operands second if the loaded value is | 
|  | // only used here.  Several comparisons have memory forms. | 
|  | if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. | 
|  | // In that case we generally prefer the memory to be second. | 
|  | if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { | 
|  | // The only exceptions are when the second operand is a constant and | 
|  | // we can use things like CHHSI. | 
|  | if (!ConstOp1) | 
|  | return true; | 
|  | // The unsigned memory-immediate instructions can handle 16-bit | 
|  | // unsigned integers. | 
|  | if (C.ICmpType != SystemZICMP::SignedOnly && | 
|  | isUInt<16>(ConstOp1->getZExtValue())) | 
|  | return false; | 
|  | // The signed memory-immediate instructions can handle 16-bit | 
|  | // signed integers. | 
|  | if (C.ICmpType != SystemZICMP::UnsignedOnly && | 
|  | isInt<16>(ConstOp1->getSExtValue())) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Try to promote the use of CGFR and CLGFR. | 
|  | unsigned Opcode0 = C.Op0.getOpcode(); | 
|  | if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) | 
|  | return true; | 
|  | if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) | 
|  | return true; | 
|  | if (C.ICmpType != SystemZICMP::SignedOnly && | 
|  | Opcode0 == ISD::AND && | 
|  | C.Op0.getOperand(1).getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check whether C tests for equality between X and Y and whether X - Y | 
|  | // or Y - X is also computed.  In that case it's better to compare the | 
|  | // result of the subtraction against zero. | 
|  | static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, | 
|  | Comparison &C) { | 
|  | if (C.CCMask == SystemZ::CCMASK_CMP_EQ || | 
|  | C.CCMask == SystemZ::CCMASK_CMP_NE) { | 
|  | for (SDNode *N : C.Op0->uses()) { | 
|  | if (N->getOpcode() == ISD::SUB && | 
|  | ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || | 
|  | (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { | 
|  | // Disable the nsw and nuw flags: the backend needs to handle | 
|  | // overflow as well during comparison elimination. | 
|  | SDNodeFlags Flags = N->getFlags(); | 
|  | Flags.setNoSignedWrap(false); | 
|  | Flags.setNoUnsignedWrap(false); | 
|  | N->setFlags(Flags); | 
|  | C.Op0 = SDValue(N, 0); | 
|  | C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check whether C compares a floating-point value with zero and if that | 
|  | // floating-point value is also negated.  In this case we can use the | 
|  | // negation to set CC, so avoiding separate LOAD AND TEST and | 
|  | // LOAD (NEGATIVE/COMPLEMENT) instructions. | 
|  | static void adjustForFNeg(Comparison &C) { | 
|  | // This optimization is invalid for strict comparisons, since FNEG | 
|  | // does not raise any exceptions. | 
|  | if (C.Chain) | 
|  | return; | 
|  | auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); | 
|  | if (C1 && C1->isZero()) { | 
|  | for (SDNode *N : C.Op0->uses()) { | 
|  | if (N->getOpcode() == ISD::FNEG) { | 
|  | C.Op0 = SDValue(N, 0); | 
|  | C.CCMask = SystemZ::reverseCCMask(C.CCMask); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check whether C compares (shl X, 32) with 0 and whether X is | 
|  | // also sign-extended.  In that case it is better to test the result | 
|  | // of the sign extension using LTGFR. | 
|  | // | 
|  | // This case is important because InstCombine transforms a comparison | 
|  | // with (sext (trunc X)) into a comparison with (shl X, 32). | 
|  | static void adjustForLTGFR(Comparison &C) { | 
|  | // Check for a comparison between (shl X, 32) and 0. | 
|  | if (C.Op0.getOpcode() == ISD::SHL && | 
|  | C.Op0.getValueType() == MVT::i64 && | 
|  | C.Op1.getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { | 
|  | auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); | 
|  | if (C1 && C1->getZExtValue() == 32) { | 
|  | SDValue ShlOp0 = C.Op0.getOperand(0); | 
|  | // See whether X has any SIGN_EXTEND_INREG uses. | 
|  | for (SDNode *N : ShlOp0->uses()) { | 
|  | if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && | 
|  | cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { | 
|  | C.Op0 = SDValue(N, 0); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If C compares the truncation of an extending load, try to compare | 
|  | // the untruncated value instead.  This exposes more opportunities to | 
|  | // reuse CC. | 
|  | static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, | 
|  | Comparison &C) { | 
|  | if (C.Op0.getOpcode() == ISD::TRUNCATE && | 
|  | C.Op0.getOperand(0).getOpcode() == ISD::LOAD && | 
|  | C.Op1.getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { | 
|  | auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); | 
|  | if (L->getMemoryVT().getStoreSizeInBits().getFixedValue() <= | 
|  | C.Op0.getValueSizeInBits().getFixedValue()) { | 
|  | unsigned Type = L->getExtensionType(); | 
|  | if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || | 
|  | (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { | 
|  | C.Op0 = C.Op0.getOperand(0); | 
|  | C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return true if shift operation N has an in-range constant shift value. | 
|  | // Store it in ShiftVal if so. | 
|  | static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { | 
|  | auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | if (!Shift) | 
|  | return false; | 
|  |  | 
|  | uint64_t Amount = Shift->getZExtValue(); | 
|  | if (Amount >= N.getValueSizeInBits()) | 
|  | return false; | 
|  |  | 
|  | ShiftVal = Amount; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check whether an AND with Mask is suitable for a TEST UNDER MASK | 
|  | // instruction and whether the CC value is descriptive enough to handle | 
|  | // a comparison of type Opcode between the AND result and CmpVal. | 
|  | // CCMask says which comparison result is being tested and BitSize is | 
|  | // the number of bits in the operands.  If TEST UNDER MASK can be used, | 
|  | // return the corresponding CC mask, otherwise return 0. | 
|  | static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, | 
|  | uint64_t Mask, uint64_t CmpVal, | 
|  | unsigned ICmpType) { | 
|  | assert(Mask != 0 && "ANDs with zero should have been removed by now"); | 
|  |  | 
|  | // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. | 
|  | if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && | 
|  | !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) | 
|  | return 0; | 
|  |  | 
|  | // Work out the masks for the lowest and highest bits. | 
|  | uint64_t High = llvm::bit_floor(Mask); | 
|  | uint64_t Low = uint64_t(1) << llvm::countr_zero(Mask); | 
|  |  | 
|  | // Signed ordered comparisons are effectively unsigned if the sign | 
|  | // bit is dropped. | 
|  | bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); | 
|  |  | 
|  | // Check for equality comparisons with 0, or the equivalent. | 
|  | if (CmpVal == 0) { | 
|  | if (CCMask == SystemZ::CCMASK_CMP_EQ) | 
|  | return SystemZ::CCMASK_TM_ALL_0; | 
|  | if (CCMask == SystemZ::CCMASK_CMP_NE) | 
|  | return SystemZ::CCMASK_TM_SOME_1; | 
|  | } | 
|  | if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { | 
|  | if (CCMask == SystemZ::CCMASK_CMP_LT) | 
|  | return SystemZ::CCMASK_TM_ALL_0; | 
|  | if (CCMask == SystemZ::CCMASK_CMP_GE) | 
|  | return SystemZ::CCMASK_TM_SOME_1; | 
|  | } | 
|  | if (EffectivelyUnsigned && CmpVal < Low) { | 
|  | if (CCMask == SystemZ::CCMASK_CMP_LE) | 
|  | return SystemZ::CCMASK_TM_ALL_0; | 
|  | if (CCMask == SystemZ::CCMASK_CMP_GT) | 
|  | return SystemZ::CCMASK_TM_SOME_1; | 
|  | } | 
|  |  | 
|  | // Check for equality comparisons with the mask, or the equivalent. | 
|  | if (CmpVal == Mask) { | 
|  | if (CCMask == SystemZ::CCMASK_CMP_EQ) | 
|  | return SystemZ::CCMASK_TM_ALL_1; | 
|  | if (CCMask == SystemZ::CCMASK_CMP_NE) | 
|  | return SystemZ::CCMASK_TM_SOME_0; | 
|  | } | 
|  | if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { | 
|  | if (CCMask == SystemZ::CCMASK_CMP_GT) | 
|  | return SystemZ::CCMASK_TM_ALL_1; | 
|  | if (CCMask == SystemZ::CCMASK_CMP_LE) | 
|  | return SystemZ::CCMASK_TM_SOME_0; | 
|  | } | 
|  | if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { | 
|  | if (CCMask == SystemZ::CCMASK_CMP_GE) | 
|  | return SystemZ::CCMASK_TM_ALL_1; | 
|  | if (CCMask == SystemZ::CCMASK_CMP_LT) | 
|  | return SystemZ::CCMASK_TM_SOME_0; | 
|  | } | 
|  |  | 
|  | // Check for ordered comparisons with the top bit. | 
|  | if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { | 
|  | if (CCMask == SystemZ::CCMASK_CMP_LE) | 
|  | return SystemZ::CCMASK_TM_MSB_0; | 
|  | if (CCMask == SystemZ::CCMASK_CMP_GT) | 
|  | return SystemZ::CCMASK_TM_MSB_1; | 
|  | } | 
|  | if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { | 
|  | if (CCMask == SystemZ::CCMASK_CMP_LT) | 
|  | return SystemZ::CCMASK_TM_MSB_0; | 
|  | if (CCMask == SystemZ::CCMASK_CMP_GE) | 
|  | return SystemZ::CCMASK_TM_MSB_1; | 
|  | } | 
|  |  | 
|  | // If there are just two bits, we can do equality checks for Low and High | 
|  | // as well. | 
|  | if (Mask == Low + High) { | 
|  | if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) | 
|  | return SystemZ::CCMASK_TM_MIXED_MSB_0; | 
|  | if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) | 
|  | return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; | 
|  | if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) | 
|  | return SystemZ::CCMASK_TM_MIXED_MSB_1; | 
|  | if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) | 
|  | return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; | 
|  | } | 
|  |  | 
|  | // Looks like we've exhausted our options. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // See whether C can be implemented as a TEST UNDER MASK instruction. | 
|  | // Update the arguments with the TM version if so. | 
|  | static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, | 
|  | Comparison &C) { | 
|  | // Check that we have a comparison with a constant. | 
|  | auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); | 
|  | if (!ConstOp1) | 
|  | return; | 
|  | uint64_t CmpVal = ConstOp1->getZExtValue(); | 
|  |  | 
|  | // Check whether the nonconstant input is an AND with a constant mask. | 
|  | Comparison NewC(C); | 
|  | uint64_t MaskVal; | 
|  | ConstantSDNode *Mask = nullptr; | 
|  | if (C.Op0.getOpcode() == ISD::AND) { | 
|  | NewC.Op0 = C.Op0.getOperand(0); | 
|  | NewC.Op1 = C.Op0.getOperand(1); | 
|  | Mask = dyn_cast<ConstantSDNode>(NewC.Op1); | 
|  | if (!Mask) | 
|  | return; | 
|  | MaskVal = Mask->getZExtValue(); | 
|  | } else { | 
|  | // There is no instruction to compare with a 64-bit immediate | 
|  | // so use TMHH instead if possible.  We need an unsigned ordered | 
|  | // comparison with an i64 immediate. | 
|  | if (NewC.Op0.getValueType() != MVT::i64 || | 
|  | NewC.CCMask == SystemZ::CCMASK_CMP_EQ || | 
|  | NewC.CCMask == SystemZ::CCMASK_CMP_NE || | 
|  | NewC.ICmpType == SystemZICMP::SignedOnly) | 
|  | return; | 
|  | // Convert LE and GT comparisons into LT and GE. | 
|  | if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || | 
|  | NewC.CCMask == SystemZ::CCMASK_CMP_GT) { | 
|  | if (CmpVal == uint64_t(-1)) | 
|  | return; | 
|  | CmpVal += 1; | 
|  | NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; | 
|  | } | 
|  | // If the low N bits of Op1 are zero than the low N bits of Op0 can | 
|  | // be masked off without changing the result. | 
|  | MaskVal = -(CmpVal & -CmpVal); | 
|  | NewC.ICmpType = SystemZICMP::UnsignedOnly; | 
|  | } | 
|  | if (!MaskVal) | 
|  | return; | 
|  |  | 
|  | // Check whether the combination of mask, comparison value and comparison | 
|  | // type are suitable. | 
|  | unsigned BitSize = NewC.Op0.getValueSizeInBits(); | 
|  | unsigned NewCCMask, ShiftVal; | 
|  | if (NewC.ICmpType != SystemZICMP::SignedOnly && | 
|  | NewC.Op0.getOpcode() == ISD::SHL && | 
|  | isSimpleShift(NewC.Op0, ShiftVal) && | 
|  | (MaskVal >> ShiftVal != 0) && | 
|  | ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && | 
|  | (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, | 
|  | MaskVal >> ShiftVal, | 
|  | CmpVal >> ShiftVal, | 
|  | SystemZICMP::Any))) { | 
|  | NewC.Op0 = NewC.Op0.getOperand(0); | 
|  | MaskVal >>= ShiftVal; | 
|  | } else if (NewC.ICmpType != SystemZICMP::SignedOnly && | 
|  | NewC.Op0.getOpcode() == ISD::SRL && | 
|  | isSimpleShift(NewC.Op0, ShiftVal) && | 
|  | (MaskVal << ShiftVal != 0) && | 
|  | ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && | 
|  | (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, | 
|  | MaskVal << ShiftVal, | 
|  | CmpVal << ShiftVal, | 
|  | SystemZICMP::UnsignedOnly))) { | 
|  | NewC.Op0 = NewC.Op0.getOperand(0); | 
|  | MaskVal <<= ShiftVal; | 
|  | } else { | 
|  | NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, | 
|  | NewC.ICmpType); | 
|  | if (!NewCCMask) | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Go ahead and make the change. | 
|  | C.Opcode = SystemZISD::TM; | 
|  | C.Op0 = NewC.Op0; | 
|  | if (Mask && Mask->getZExtValue() == MaskVal) | 
|  | C.Op1 = SDValue(Mask, 0); | 
|  | else | 
|  | C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); | 
|  | C.CCValid = SystemZ::CCMASK_TM; | 
|  | C.CCMask = NewCCMask; | 
|  | } | 
|  |  | 
|  | // See whether the comparison argument contains a redundant AND | 
|  | // and remove it if so.  This sometimes happens due to the generic | 
|  | // BRCOND expansion. | 
|  | static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, | 
|  | Comparison &C) { | 
|  | if (C.Op0.getOpcode() != ISD::AND) | 
|  | return; | 
|  | auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); | 
|  | if (!Mask) | 
|  | return; | 
|  | KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); | 
|  | if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) | 
|  | return; | 
|  |  | 
|  | C.Op0 = C.Op0.getOperand(0); | 
|  | } | 
|  |  | 
|  | // Return a Comparison that tests the condition-code result of intrinsic | 
|  | // node Call against constant integer CC using comparison code Cond. | 
|  | // Opcode is the opcode of the SystemZISD operation for the intrinsic | 
|  | // and CCValid is the set of possible condition-code results. | 
|  | static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, | 
|  | SDValue Call, unsigned CCValid, uint64_t CC, | 
|  | ISD::CondCode Cond) { | 
|  | Comparison C(Call, SDValue(), SDValue()); | 
|  | C.Opcode = Opcode; | 
|  | C.CCValid = CCValid; | 
|  | if (Cond == ISD::SETEQ) | 
|  | // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. | 
|  | C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; | 
|  | else if (Cond == ISD::SETNE) | 
|  | // ...and the inverse of that. | 
|  | C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; | 
|  | else if (Cond == ISD::SETLT || Cond == ISD::SETULT) | 
|  | // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, | 
|  | // always true for CC>3. | 
|  | C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; | 
|  | else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) | 
|  | // ...and the inverse of that. | 
|  | C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; | 
|  | else if (Cond == ISD::SETLE || Cond == ISD::SETULE) | 
|  | // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), | 
|  | // always true for CC>3. | 
|  | C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; | 
|  | else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) | 
|  | // ...and the inverse of that. | 
|  | C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; | 
|  | else | 
|  | llvm_unreachable("Unexpected integer comparison type"); | 
|  | C.CCMask &= CCValid; | 
|  | return C; | 
|  | } | 
|  |  | 
|  | // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. | 
|  | static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, | 
|  | ISD::CondCode Cond, const SDLoc &DL, | 
|  | SDValue Chain = SDValue(), | 
|  | bool IsSignaling = false) { | 
|  | if (CmpOp1.getOpcode() == ISD::Constant) { | 
|  | assert(!Chain); | 
|  | uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); | 
|  | unsigned Opcode, CCValid; | 
|  | if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && | 
|  | CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && | 
|  | isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) | 
|  | return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); | 
|  | if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && | 
|  | CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && | 
|  | isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) | 
|  | return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); | 
|  | } | 
|  | Comparison C(CmpOp0, CmpOp1, Chain); | 
|  | C.CCMask = CCMaskForCondCode(Cond); | 
|  | if (C.Op0.getValueType().isFloatingPoint()) { | 
|  | C.CCValid = SystemZ::CCMASK_FCMP; | 
|  | if (!C.Chain) | 
|  | C.Opcode = SystemZISD::FCMP; | 
|  | else if (!IsSignaling) | 
|  | C.Opcode = SystemZISD::STRICT_FCMP; | 
|  | else | 
|  | C.Opcode = SystemZISD::STRICT_FCMPS; | 
|  | adjustForFNeg(C); | 
|  | } else { | 
|  | assert(!C.Chain); | 
|  | C.CCValid = SystemZ::CCMASK_ICMP; | 
|  | C.Opcode = SystemZISD::ICMP; | 
|  | // Choose the type of comparison.  Equality and inequality tests can | 
|  | // use either signed or unsigned comparisons.  The choice also doesn't | 
|  | // matter if both sign bits are known to be clear.  In those cases we | 
|  | // want to give the main isel code the freedom to choose whichever | 
|  | // form fits best. | 
|  | if (C.CCMask == SystemZ::CCMASK_CMP_EQ || | 
|  | C.CCMask == SystemZ::CCMASK_CMP_NE || | 
|  | (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) | 
|  | C.ICmpType = SystemZICMP::Any; | 
|  | else if (C.CCMask & SystemZ::CCMASK_CMP_UO) | 
|  | C.ICmpType = SystemZICMP::UnsignedOnly; | 
|  | else | 
|  | C.ICmpType = SystemZICMP::SignedOnly; | 
|  | C.CCMask &= ~SystemZ::CCMASK_CMP_UO; | 
|  | adjustForRedundantAnd(DAG, DL, C); | 
|  | adjustZeroCmp(DAG, DL, C); | 
|  | adjustSubwordCmp(DAG, DL, C); | 
|  | adjustForSubtraction(DAG, DL, C); | 
|  | adjustForLTGFR(C); | 
|  | adjustICmpTruncate(DAG, DL, C); | 
|  | } | 
|  |  | 
|  | if (shouldSwapCmpOperands(C)) { | 
|  | std::swap(C.Op0, C.Op1); | 
|  | C.CCMask = SystemZ::reverseCCMask(C.CCMask); | 
|  | } | 
|  |  | 
|  | adjustForTestUnderMask(DAG, DL, C); | 
|  | return C; | 
|  | } | 
|  |  | 
|  | // Emit the comparison instruction described by C. | 
|  | static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { | 
|  | if (!C.Op1.getNode()) { | 
|  | SDNode *Node; | 
|  | switch (C.Op0.getOpcode()) { | 
|  | case ISD::INTRINSIC_W_CHAIN: | 
|  | Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); | 
|  | return SDValue(Node, 0); | 
|  | case ISD::INTRINSIC_WO_CHAIN: | 
|  | Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); | 
|  | return SDValue(Node, Node->getNumValues() - 1); | 
|  | default: | 
|  | llvm_unreachable("Invalid comparison operands"); | 
|  | } | 
|  | } | 
|  | if (C.Opcode == SystemZISD::ICMP) | 
|  | return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, | 
|  | DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); | 
|  | if (C.Opcode == SystemZISD::TM) { | 
|  | bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != | 
|  | bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); | 
|  | return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, | 
|  | DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); | 
|  | } | 
|  | if (C.Chain) { | 
|  | SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); | 
|  | return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); | 
|  | } | 
|  | return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); | 
|  | } | 
|  |  | 
|  | // Implement a 32-bit *MUL_LOHI operation by extending both operands to | 
|  | // 64 bits.  Extend is the extension type to use.  Store the high part | 
|  | // in Hi and the low part in Lo. | 
|  | static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, | 
|  | SDValue Op0, SDValue Op1, SDValue &Hi, | 
|  | SDValue &Lo) { | 
|  | Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); | 
|  | Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); | 
|  | Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, | 
|  | DAG.getConstant(32, DL, MVT::i64)); | 
|  | Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); | 
|  | Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); | 
|  | } | 
|  |  | 
|  | // Lower a binary operation that produces two VT results, one in each | 
|  | // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation, | 
|  | // and Opcode performs the GR128 operation.  Store the even register result | 
|  | // in Even and the odd register result in Odd. | 
|  | static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, | 
|  | unsigned Opcode, SDValue Op0, SDValue Op1, | 
|  | SDValue &Even, SDValue &Odd) { | 
|  | SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); | 
|  | bool Is32Bit = is32Bit(VT); | 
|  | Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); | 
|  | Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); | 
|  | } | 
|  |  | 
|  | // Return an i32 value that is 1 if the CC value produced by CCReg is | 
|  | // in the mask CCMask and 0 otherwise.  CC is known to have a value | 
|  | // in CCValid, so other values can be ignored. | 
|  | static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, | 
|  | unsigned CCValid, unsigned CCMask) { | 
|  | SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), | 
|  | DAG.getConstant(0, DL, MVT::i32), | 
|  | DAG.getTargetConstant(CCValid, DL, MVT::i32), | 
|  | DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; | 
|  | return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); | 
|  | } | 
|  |  | 
|  | // Return the SystemISD vector comparison operation for CC, or 0 if it cannot | 
|  | // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP | 
|  | // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) | 
|  | // floating-point comparisons, and CmpMode::SignalingFP for strict signaling | 
|  | // floating-point comparisons. | 
|  | enum class CmpMode { Int, FP, StrictFP, SignalingFP }; | 
|  | static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { | 
|  | switch (CC) { | 
|  | case ISD::SETOEQ: | 
|  | case ISD::SETEQ: | 
|  | switch (Mode) { | 
|  | case CmpMode::Int:         return SystemZISD::VICMPE; | 
|  | case CmpMode::FP:          return SystemZISD::VFCMPE; | 
|  | case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE; | 
|  | case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; | 
|  | } | 
|  | llvm_unreachable("Bad mode"); | 
|  |  | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE: | 
|  | switch (Mode) { | 
|  | case CmpMode::Int:         return 0; | 
|  | case CmpMode::FP:          return SystemZISD::VFCMPHE; | 
|  | case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE; | 
|  | case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; | 
|  | } | 
|  | llvm_unreachable("Bad mode"); | 
|  |  | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT: | 
|  | switch (Mode) { | 
|  | case CmpMode::Int:         return SystemZISD::VICMPH; | 
|  | case CmpMode::FP:          return SystemZISD::VFCMPH; | 
|  | case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH; | 
|  | case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; | 
|  | } | 
|  | llvm_unreachable("Bad mode"); | 
|  |  | 
|  | case ISD::SETUGT: | 
|  | switch (Mode) { | 
|  | case CmpMode::Int:         return SystemZISD::VICMPHL; | 
|  | case CmpMode::FP:          return 0; | 
|  | case CmpMode::StrictFP:    return 0; | 
|  | case CmpMode::SignalingFP: return 0; | 
|  | } | 
|  | llvm_unreachable("Bad mode"); | 
|  |  | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return the SystemZISD vector comparison operation for CC or its inverse, | 
|  | // or 0 if neither can be done directly.  Indicate in Invert whether the | 
|  | // result is for the inverse of CC.  Mode is as above. | 
|  | static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, | 
|  | bool &Invert) { | 
|  | if (unsigned Opcode = getVectorComparison(CC, Mode)) { | 
|  | Invert = false; | 
|  | return Opcode; | 
|  | } | 
|  |  | 
|  | CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); | 
|  | if (unsigned Opcode = getVectorComparison(CC, Mode)) { | 
|  | Invert = true; | 
|  | return Opcode; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Return a v2f64 that contains the extended form of elements Start and Start+1 | 
|  | // of v4f32 value Op.  If Chain is nonnull, return the strict form. | 
|  | static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, | 
|  | SDValue Op, SDValue Chain) { | 
|  | int Mask[] = { Start, -1, Start + 1, -1 }; | 
|  | Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); | 
|  | if (Chain) { | 
|  | SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); | 
|  | return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); | 
|  | } | 
|  | return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); | 
|  | } | 
|  |  | 
|  | // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, | 
|  | // producing a result of type VT.  If Chain is nonnull, return the strict form. | 
|  | SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, | 
|  | const SDLoc &DL, EVT VT, | 
|  | SDValue CmpOp0, | 
|  | SDValue CmpOp1, | 
|  | SDValue Chain) const { | 
|  | // There is no hardware support for v4f32 (unless we have the vector | 
|  | // enhancements facility 1), so extend the vector into two v2f64s | 
|  | // and compare those. | 
|  | if (CmpOp0.getValueType() == MVT::v4f32 && | 
|  | !Subtarget.hasVectorEnhancements1()) { | 
|  | SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); | 
|  | SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); | 
|  | SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); | 
|  | SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); | 
|  | if (Chain) { | 
|  | SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); | 
|  | SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); | 
|  | SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); | 
|  | SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); | 
|  | SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), | 
|  | H1.getValue(1), L1.getValue(1), | 
|  | HRes.getValue(1), LRes.getValue(1) }; | 
|  | SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); | 
|  | SDValue Ops[2] = { Res, NewChain }; | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  | SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); | 
|  | SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); | 
|  | return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); | 
|  | } | 
|  | if (Chain) { | 
|  | SDVTList VTs = DAG.getVTList(VT, MVT::Other); | 
|  | return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); | 
|  | } | 
|  | return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); | 
|  | } | 
|  |  | 
|  | // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing | 
|  | // an integer mask of type VT.  If Chain is nonnull, we have a strict | 
|  | // floating-point comparison.  If in addition IsSignaling is true, we have | 
|  | // a strict signaling floating-point comparison. | 
|  | SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, | 
|  | const SDLoc &DL, EVT VT, | 
|  | ISD::CondCode CC, | 
|  | SDValue CmpOp0, | 
|  | SDValue CmpOp1, | 
|  | SDValue Chain, | 
|  | bool IsSignaling) const { | 
|  | bool IsFP = CmpOp0.getValueType().isFloatingPoint(); | 
|  | assert (!Chain || IsFP); | 
|  | assert (!IsSignaling || Chain); | 
|  | CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : | 
|  | Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; | 
|  | bool Invert = false; | 
|  | SDValue Cmp; | 
|  | switch (CC) { | 
|  | // Handle tests for order using (or (ogt y x) (oge x y)). | 
|  | case ISD::SETUO: | 
|  | Invert = true; | 
|  | [[fallthrough]]; | 
|  | case ISD::SETO: { | 
|  | assert(IsFP && "Unexpected integer comparison"); | 
|  | SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), | 
|  | DL, VT, CmpOp1, CmpOp0, Chain); | 
|  | SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), | 
|  | DL, VT, CmpOp0, CmpOp1, Chain); | 
|  | Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); | 
|  | if (Chain) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, | 
|  | LT.getValue(1), GE.getValue(1)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Handle <> tests using (or (ogt y x) (ogt x y)). | 
|  | case ISD::SETUEQ: | 
|  | Invert = true; | 
|  | [[fallthrough]]; | 
|  | case ISD::SETONE: { | 
|  | assert(IsFP && "Unexpected integer comparison"); | 
|  | SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), | 
|  | DL, VT, CmpOp1, CmpOp0, Chain); | 
|  | SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), | 
|  | DL, VT, CmpOp0, CmpOp1, Chain); | 
|  | Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); | 
|  | if (Chain) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, | 
|  | LT.getValue(1), GT.getValue(1)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise a single comparison is enough.  It doesn't really | 
|  | // matter whether we try the inversion or the swap first, since | 
|  | // there are no cases where both work. | 
|  | default: | 
|  | if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) | 
|  | Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); | 
|  | else { | 
|  | CC = ISD::getSetCCSwappedOperands(CC); | 
|  | if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) | 
|  | Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); | 
|  | else | 
|  | llvm_unreachable("Unhandled comparison"); | 
|  | } | 
|  | if (Chain) | 
|  | Chain = Cmp.getValue(1); | 
|  | break; | 
|  | } | 
|  | if (Invert) { | 
|  | SDValue Mask = | 
|  | DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); | 
|  | Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); | 
|  | } | 
|  | if (Chain && Chain.getNode() != Cmp.getNode()) { | 
|  | SDValue Ops[2] = { Cmp, Chain }; | 
|  | Cmp = DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  | return Cmp; | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue CmpOp0   = Op.getOperand(0); | 
|  | SDValue CmpOp1   = Op.getOperand(1); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT.isVector()) | 
|  | return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); | 
|  |  | 
|  | Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); | 
|  | SDValue CCReg = emitCmp(DAG, DL, C); | 
|  | return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, | 
|  | SelectionDAG &DAG, | 
|  | bool IsSignaling) const { | 
|  | SDValue Chain    = Op.getOperand(0); | 
|  | SDValue CmpOp0   = Op.getOperand(1); | 
|  | SDValue CmpOp1   = Op.getOperand(2); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getNode()->getValueType(0); | 
|  | if (VT.isVector()) { | 
|  | SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, | 
|  | Chain, IsSignaling); | 
|  | return Res.getValue(Op.getResNo()); | 
|  | } | 
|  |  | 
|  | Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); | 
|  | SDValue CCReg = emitCmp(DAG, DL, C); | 
|  | CCReg->setFlags(Op->getFlags()); | 
|  | SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); | 
|  | SDValue Ops[2] = { Result, CCReg.getValue(1) }; | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); | 
|  | SDValue CmpOp0   = Op.getOperand(2); | 
|  | SDValue CmpOp1   = Op.getOperand(3); | 
|  | SDValue Dest     = Op.getOperand(4); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); | 
|  | SDValue CCReg = emitCmp(DAG, DL, C); | 
|  | return DAG.getNode( | 
|  | SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), | 
|  | DAG.getTargetConstant(C.CCValid, DL, MVT::i32), | 
|  | DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); | 
|  | } | 
|  |  | 
|  | // Return true if Pos is CmpOp and Neg is the negative of CmpOp, | 
|  | // allowing Pos and Neg to be wider than CmpOp. | 
|  | static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { | 
|  | return (Neg.getOpcode() == ISD::SUB && | 
|  | Neg.getOperand(0).getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && | 
|  | Neg.getOperand(1) == Pos && | 
|  | (Pos == CmpOp || | 
|  | (Pos.getOpcode() == ISD::SIGN_EXTEND && | 
|  | Pos.getOperand(0) == CmpOp))); | 
|  | } | 
|  |  | 
|  | // Return the absolute or negative absolute of Op; IsNegative decides which. | 
|  | static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, | 
|  | bool IsNegative) { | 
|  | Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op); | 
|  | if (IsNegative) | 
|  | Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), | 
|  | DAG.getConstant(0, DL, Op.getValueType()), Op); | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue CmpOp0   = Op.getOperand(0); | 
|  | SDValue CmpOp1   = Op.getOperand(1); | 
|  | SDValue TrueOp   = Op.getOperand(2); | 
|  | SDValue FalseOp  = Op.getOperand(3); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); | 
|  |  | 
|  | // Check for absolute and negative-absolute selections, including those | 
|  | // where the comparison value is sign-extended (for LPGFR and LNGFR). | 
|  | // This check supplements the one in DAGCombiner. | 
|  | if (C.Opcode == SystemZISD::ICMP && | 
|  | C.CCMask != SystemZ::CCMASK_CMP_EQ && | 
|  | C.CCMask != SystemZ::CCMASK_CMP_NE && | 
|  | C.Op1.getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { | 
|  | if (isAbsolute(C.Op0, TrueOp, FalseOp)) | 
|  | return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); | 
|  | if (isAbsolute(C.Op0, FalseOp, TrueOp)) | 
|  | return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); | 
|  | } | 
|  |  | 
|  | SDValue CCReg = emitCmp(DAG, DL, C); | 
|  | SDValue Ops[] = {TrueOp, FalseOp, | 
|  | DAG.getTargetConstant(C.CCValid, DL, MVT::i32), | 
|  | DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; | 
|  |  | 
|  | return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Node); | 
|  | const GlobalValue *GV = Node->getGlobal(); | 
|  | int64_t Offset = Node->getOffset(); | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | CodeModel::Model CM = DAG.getTarget().getCodeModel(); | 
|  |  | 
|  | SDValue Result; | 
|  | if (Subtarget.isPC32DBLSymbol(GV, CM)) { | 
|  | if (isInt<32>(Offset)) { | 
|  | // Assign anchors at 1<<12 byte boundaries. | 
|  | uint64_t Anchor = Offset & ~uint64_t(0xfff); | 
|  | Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); | 
|  | Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); | 
|  |  | 
|  | // The offset can be folded into the address if it is aligned to a | 
|  | // halfword. | 
|  | Offset -= Anchor; | 
|  | if (Offset != 0 && (Offset & 1) == 0) { | 
|  | SDValue Full = | 
|  | DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); | 
|  | Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); | 
|  | Offset = 0; | 
|  | } | 
|  | } else { | 
|  | // Conservatively load a constant offset greater than 32 bits into a | 
|  | // register below. | 
|  | Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); | 
|  | Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); | 
|  | } | 
|  | } else { | 
|  | Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); | 
|  | Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); | 
|  | Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, | 
|  | MachinePointerInfo::getGOT(DAG.getMachineFunction())); | 
|  | } | 
|  |  | 
|  | // If there was a non-zero offset that we didn't fold, create an explicit | 
|  | // addition for it. | 
|  | if (Offset != 0) | 
|  | Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, | 
|  | DAG.getConstant(Offset, DL, PtrVT)); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, | 
|  | SelectionDAG &DAG, | 
|  | unsigned Opcode, | 
|  | SDValue GOTOffset) const { | 
|  | SDLoc DL(Node); | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | SDValue Glue; | 
|  |  | 
|  | if (DAG.getMachineFunction().getFunction().getCallingConv() == | 
|  | CallingConv::GHC) | 
|  | report_fatal_error("In GHC calling convention TLS is not supported"); | 
|  |  | 
|  | // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. | 
|  | SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); | 
|  | Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); | 
|  | Glue = Chain.getValue(1); | 
|  | Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); | 
|  | Glue = Chain.getValue(1); | 
|  |  | 
|  | // The first call operand is the chain and the second is the TLS symbol. | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, | 
|  | Node->getValueType(0), | 
|  | 0, 0)); | 
|  |  | 
|  | // Add argument registers to the end of the list so that they are | 
|  | // known live into the call. | 
|  | Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); | 
|  | Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); | 
|  |  | 
|  | // Add a register mask operand representing the call-preserved registers. | 
|  | const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); | 
|  | const uint32_t *Mask = | 
|  | TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); | 
|  | assert(Mask && "Missing call preserved mask for calling convention"); | 
|  | Ops.push_back(DAG.getRegisterMask(Mask)); | 
|  |  | 
|  | // Glue the call to the argument copies. | 
|  | Ops.push_back(Glue); | 
|  |  | 
|  | // Emit the call. | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); | 
|  | Glue = Chain.getValue(1); | 
|  |  | 
|  | // Copy the return value from %r2. | 
|  | return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | // The high part of the thread pointer is in access register 0. | 
|  | SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); | 
|  | TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); | 
|  |  | 
|  | // The low part of the thread pointer is in access register 1. | 
|  | SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); | 
|  | TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); | 
|  |  | 
|  | // Merge them into a single 64-bit address. | 
|  | SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, | 
|  | DAG.getConstant(32, DL, PtrVT)); | 
|  | return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, | 
|  | SelectionDAG &DAG) const { | 
|  | if (DAG.getTarget().useEmulatedTLS()) | 
|  | return LowerToTLSEmulatedModel(Node, DAG); | 
|  | SDLoc DL(Node); | 
|  | const GlobalValue *GV = Node->getGlobal(); | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | TLSModel::Model model = DAG.getTarget().getTLSModel(GV); | 
|  |  | 
|  | if (DAG.getMachineFunction().getFunction().getCallingConv() == | 
|  | CallingConv::GHC) | 
|  | report_fatal_error("In GHC calling convention TLS is not supported"); | 
|  |  | 
|  | SDValue TP = lowerThreadPointer(DL, DAG); | 
|  |  | 
|  | // Get the offset of GA from the thread pointer, based on the TLS model. | 
|  | SDValue Offset; | 
|  | switch (model) { | 
|  | case TLSModel::GeneralDynamic: { | 
|  | // Load the GOT offset of the tls_index (module ID / per-symbol offset). | 
|  | SystemZConstantPoolValue *CPV = | 
|  | SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); | 
|  |  | 
|  | Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); | 
|  | Offset = DAG.getLoad( | 
|  | PtrVT, DL, DAG.getEntryNode(), Offset, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); | 
|  |  | 
|  | // Call __tls_get_offset to retrieve the offset. | 
|  | Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TLSModel::LocalDynamic: { | 
|  | // Load the GOT offset of the module ID. | 
|  | SystemZConstantPoolValue *CPV = | 
|  | SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); | 
|  |  | 
|  | Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); | 
|  | Offset = DAG.getLoad( | 
|  | PtrVT, DL, DAG.getEntryNode(), Offset, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); | 
|  |  | 
|  | // Call __tls_get_offset to retrieve the module base offset. | 
|  | Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); | 
|  |  | 
|  | // Note: The SystemZLDCleanupPass will remove redundant computations | 
|  | // of the module base offset.  Count total number of local-dynamic | 
|  | // accesses to trigger execution of that pass. | 
|  | SystemZMachineFunctionInfo* MFI = | 
|  | DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); | 
|  | MFI->incNumLocalDynamicTLSAccesses(); | 
|  |  | 
|  | // Add the per-symbol offset. | 
|  | CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); | 
|  |  | 
|  | SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); | 
|  | DTPOffset = DAG.getLoad( | 
|  | PtrVT, DL, DAG.getEntryNode(), DTPOffset, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); | 
|  |  | 
|  | Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TLSModel::InitialExec: { | 
|  | // Load the offset from the GOT. | 
|  | Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, | 
|  | SystemZII::MO_INDNTPOFF); | 
|  | Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); | 
|  | Offset = | 
|  | DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, | 
|  | MachinePointerInfo::getGOT(DAG.getMachineFunction())); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TLSModel::LocalExec: { | 
|  | // Force the offset into the constant pool and load it from there. | 
|  | SystemZConstantPoolValue *CPV = | 
|  | SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); | 
|  |  | 
|  | Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); | 
|  | Offset = DAG.getLoad( | 
|  | PtrVT, DL, DAG.getEntryNode(), Offset, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add the base and offset together. | 
|  | return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Node); | 
|  | const BlockAddress *BA = Node->getBlockAddress(); | 
|  | int64_t Offset = Node->getOffset(); | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); | 
|  | Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(JT); | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); | 
|  |  | 
|  | // Use LARL to load the address of the table. | 
|  | return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(CP); | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | SDValue Result; | 
|  | if (CP->isMachineConstantPoolEntry()) | 
|  | Result = | 
|  | DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); | 
|  | else | 
|  | Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), | 
|  | CP->getOffset()); | 
|  |  | 
|  | // Use LARL to load the address of the constant pool entry. | 
|  | return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | MFI.setFrameAddressIsTaken(true); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | // By definition, the frame address is the address of the back chain.  (In | 
|  | // the case of packed stack without backchain, return the address where the | 
|  | // backchain would have been stored. This will either be an unused space or | 
|  | // contain a saved register). | 
|  | int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); | 
|  | SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); | 
|  |  | 
|  | // FIXME The frontend should detect this case. | 
|  | if (Depth > 0) { | 
|  | report_fatal_error("Unsupported stack frame traversal count"); | 
|  | } | 
|  |  | 
|  | return BackChain; | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | MFI.setReturnAddressIsTaken(true); | 
|  |  | 
|  | if (verifyReturnAddressArgumentIsConstant(Op, DAG)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | // FIXME The frontend should detect this case. | 
|  | if (Depth > 0) { | 
|  | report_fatal_error("Unsupported stack frame traversal count"); | 
|  | } | 
|  |  | 
|  | // Return R14D, which has the return address. Mark it an implicit live-in. | 
|  | Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); | 
|  | return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | SDValue In = Op.getOperand(0); | 
|  | EVT InVT = In.getValueType(); | 
|  | EVT ResVT = Op.getValueType(); | 
|  |  | 
|  | // Convert loads directly.  This is normally done by DAGCombiner, | 
|  | // but we need this case for bitcasts that are created during lowering | 
|  | // and which are then lowered themselves. | 
|  | if (auto *LoadN = dyn_cast<LoadSDNode>(In)) | 
|  | if (ISD::isNormalLoad(LoadN)) { | 
|  | SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), | 
|  | LoadN->getBasePtr(), LoadN->getMemOperand()); | 
|  | // Update the chain uses. | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); | 
|  | return NewLoad; | 
|  | } | 
|  |  | 
|  | if (InVT == MVT::i32 && ResVT == MVT::f32) { | 
|  | SDValue In64; | 
|  | if (Subtarget.hasHighWord()) { | 
|  | SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, | 
|  | MVT::i64); | 
|  | In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, | 
|  | MVT::i64, SDValue(U64, 0), In); | 
|  | } else { | 
|  | In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); | 
|  | In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, | 
|  | DAG.getConstant(32, DL, MVT::i64)); | 
|  | } | 
|  | SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); | 
|  | return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, | 
|  | DL, MVT::f32, Out64); | 
|  | } | 
|  | if (InVT == MVT::f32 && ResVT == MVT::i32) { | 
|  | SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); | 
|  | SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, | 
|  | MVT::f64, SDValue(U64, 0), In); | 
|  | SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); | 
|  | if (Subtarget.hasHighWord()) | 
|  | return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, | 
|  | MVT::i32, Out64); | 
|  | SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, | 
|  | DAG.getConstant(32, DL, MVT::i64)); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); | 
|  | } | 
|  | llvm_unreachable("Unexpected bitcast combination"); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  |  | 
|  | if (Subtarget.isTargetXPLINK64()) | 
|  | return lowerVASTART_XPLINK(Op, DAG); | 
|  | else | 
|  | return lowerVASTART_ELF(Op, DAG); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SystemZMachineFunctionInfo *FuncInfo = | 
|  | MF.getInfo<SystemZMachineFunctionInfo>(); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | // vastart just stores the address of the VarArgsFrameIndex slot into the | 
|  | // memory location argument. | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), | 
|  | MachinePointerInfo(SV)); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SystemZMachineFunctionInfo *FuncInfo = | 
|  | MF.getInfo<SystemZMachineFunctionInfo>(); | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | SDValue Chain   = Op.getOperand(0); | 
|  | SDValue Addr    = Op.getOperand(1); | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | // The initial values of each field. | 
|  | const unsigned NumFields = 4; | 
|  | SDValue Fields[NumFields] = { | 
|  | DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), | 
|  | DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), | 
|  | DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), | 
|  | DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) | 
|  | }; | 
|  |  | 
|  | // Store each field into its respective slot. | 
|  | SDValue MemOps[NumFields]; | 
|  | unsigned Offset = 0; | 
|  | for (unsigned I = 0; I < NumFields; ++I) { | 
|  | SDValue FieldAddr = Addr; | 
|  | if (Offset != 0) | 
|  | FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, | 
|  | DAG.getIntPtrConstant(Offset, DL)); | 
|  | MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, | 
|  | MachinePointerInfo(SV, Offset)); | 
|  | Offset += 8; | 
|  | } | 
|  | return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Chain      = Op.getOperand(0); | 
|  | SDValue DstPtr     = Op.getOperand(1); | 
|  | SDValue SrcPtr     = Op.getOperand(2); | 
|  | const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); | 
|  | const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | uint32_t Sz = | 
|  | Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32; | 
|  | return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL), | 
|  | Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, | 
|  | /*isTailCall*/ false, MachinePointerInfo(DstSV), | 
|  | MachinePointerInfo(SrcSV)); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | if (Subtarget.isTargetXPLINK64()) | 
|  | return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG); | 
|  | else | 
|  | return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Size = Op.getOperand(1); | 
|  | SDValue Align = Op.getOperand(2); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | // If user has set the no alignment function attribute, ignore | 
|  | // alloca alignments. | 
|  | uint64_t AlignVal = | 
|  | (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); | 
|  |  | 
|  | uint64_t StackAlign = TFI->getStackAlignment(); | 
|  | uint64_t RequiredAlign = std::max(AlignVal, StackAlign); | 
|  | uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; | 
|  |  | 
|  | SDValue NeededSpace = Size; | 
|  |  | 
|  | // Add extra space for alignment if needed. | 
|  | EVT PtrVT = getPointerTy(MF.getDataLayout()); | 
|  | if (ExtraAlignSpace) | 
|  | NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace, | 
|  | DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); | 
|  |  | 
|  | bool IsSigned = false; | 
|  | bool DoesNotReturn = false; | 
|  | bool IsReturnValueUsed = false; | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue AllocaCall = | 
|  | makeExternalCall(Chain, DAG, "@@ALCAXP", VT, ArrayRef(NeededSpace), | 
|  | CallingConv::C, IsSigned, DL, DoesNotReturn, | 
|  | IsReturnValueUsed) | 
|  | .first; | 
|  |  | 
|  | // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue | 
|  | // to end of call in order to ensure it isn't broken up from the call | 
|  | // sequence. | 
|  | auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); | 
|  | Register SPReg = Regs.getStackPointerRegister(); | 
|  | Chain = AllocaCall.getValue(1); | 
|  | SDValue Glue = AllocaCall.getValue(2); | 
|  | SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue); | 
|  | Chain = NewSPRegNode.getValue(1); | 
|  |  | 
|  | MVT PtrMVT = getPointerMemTy(MF.getDataLayout()); | 
|  | SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT); | 
|  | SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust); | 
|  |  | 
|  | // Dynamically realign if needed. | 
|  | if (ExtraAlignSpace) { | 
|  | Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, | 
|  | DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); | 
|  | Result = DAG.getNode(ISD::AND, DL, PtrVT, Result, | 
|  | DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT)); | 
|  | } | 
|  |  | 
|  | SDValue Ops[2] = {Result, Chain}; | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); | 
|  | bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); | 
|  |  | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Size  = Op.getOperand(1); | 
|  | SDValue Align = Op.getOperand(2); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | // If user has set the no alignment function attribute, ignore | 
|  | // alloca alignments. | 
|  | uint64_t AlignVal = | 
|  | (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); | 
|  |  | 
|  | uint64_t StackAlign = TFI->getStackAlignment(); | 
|  | uint64_t RequiredAlign = std::max(AlignVal, StackAlign); | 
|  | uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; | 
|  |  | 
|  | Register SPReg = getStackPointerRegisterToSaveRestore(); | 
|  | SDValue NeededSpace = Size; | 
|  |  | 
|  | // Get a reference to the stack pointer. | 
|  | SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); | 
|  |  | 
|  | // If we need a backchain, save it now. | 
|  | SDValue Backchain; | 
|  | if (StoreBackchain) | 
|  | Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), | 
|  | MachinePointerInfo()); | 
|  |  | 
|  | // Add extra space for alignment if needed. | 
|  | if (ExtraAlignSpace) | 
|  | NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, | 
|  | DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); | 
|  |  | 
|  | // Get the new stack pointer value. | 
|  | SDValue NewSP; | 
|  | if (hasInlineStackProbe(MF)) { | 
|  | NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, | 
|  | DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); | 
|  | Chain = NewSP.getValue(1); | 
|  | } | 
|  | else { | 
|  | NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); | 
|  | // Copy the new stack pointer back. | 
|  | Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); | 
|  | } | 
|  |  | 
|  | // The allocated data lives above the 160 bytes allocated for the standard | 
|  | // frame, plus any outgoing stack arguments.  We don't know how much that | 
|  | // amounts to yet, so emit a special ADJDYNALLOC placeholder. | 
|  | SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); | 
|  | SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); | 
|  |  | 
|  | // Dynamically realign if needed. | 
|  | if (RequiredAlign > StackAlign) { | 
|  | Result = | 
|  | DAG.getNode(ISD::ADD, DL, MVT::i64, Result, | 
|  | DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); | 
|  | Result = | 
|  | DAG.getNode(ISD::AND, DL, MVT::i64, Result, | 
|  | DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); | 
|  | } | 
|  |  | 
|  | if (StoreBackchain) | 
|  | Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), | 
|  | MachinePointerInfo()); | 
|  |  | 
|  | SDValue Ops[2] = { Result, Chain }; | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( | 
|  | SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  | SDValue Ops[2]; | 
|  | if (is32Bit(VT)) | 
|  | // Just do a normal 64-bit multiplication and extract the results. | 
|  | // We define this so that it can be used for constant division. | 
|  | lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), | 
|  | Op.getOperand(1), Ops[1], Ops[0]); | 
|  | else if (Subtarget.hasMiscellaneousExtensions2()) | 
|  | // SystemZISD::SMUL_LOHI returns the low result in the odd register and | 
|  | // the high result in the even register.  ISD::SMUL_LOHI is defined to | 
|  | // return the low half first, so the results are in reverse order. | 
|  | lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, | 
|  | Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); | 
|  | else { | 
|  | // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: | 
|  | // | 
|  | //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) | 
|  | // | 
|  | // but using the fact that the upper halves are either all zeros | 
|  | // or all ones: | 
|  | // | 
|  | //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) | 
|  | // | 
|  | // and grouping the right terms together since they are quicker than the | 
|  | // multiplication: | 
|  | // | 
|  | //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64) | 
|  | SDValue C63 = DAG.getConstant(63, DL, MVT::i64); | 
|  | SDValue LL = Op.getOperand(0); | 
|  | SDValue RL = Op.getOperand(1); | 
|  | SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); | 
|  | SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); | 
|  | // SystemZISD::UMUL_LOHI returns the low result in the odd register and | 
|  | // the high result in the even register.  ISD::SMUL_LOHI is defined to | 
|  | // return the low half first, so the results are in reverse order. | 
|  | lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, | 
|  | LL, RL, Ops[1], Ops[0]); | 
|  | SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); | 
|  | SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); | 
|  | SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); | 
|  | Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); | 
|  | } | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  | SDValue Ops[2]; | 
|  | if (is32Bit(VT)) | 
|  | // Just do a normal 64-bit multiplication and extract the results. | 
|  | // We define this so that it can be used for constant division. | 
|  | lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), | 
|  | Op.getOperand(1), Ops[1], Ops[0]); | 
|  | else | 
|  | // SystemZISD::UMUL_LOHI returns the low result in the odd register and | 
|  | // the high result in the even register.  ISD::UMUL_LOHI is defined to | 
|  | // return the low half first, so the results are in reverse order. | 
|  | lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, | 
|  | Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | // We use DSGF for 32-bit division.  This means the first operand must | 
|  | // always be 64-bit, and the second operand should be 32-bit whenever | 
|  | // that is possible, to improve performance. | 
|  | if (is32Bit(VT)) | 
|  | Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); | 
|  | else if (DAG.ComputeNumSignBits(Op1) > 32) | 
|  | Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); | 
|  |  | 
|  | // DSG(F) returns the remainder in the even register and the | 
|  | // quotient in the odd register. | 
|  | SDValue Ops[2]; | 
|  | lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | // DL(G) returns the remainder in the even register and the | 
|  | // quotient in the odd register. | 
|  | SDValue Ops[2]; | 
|  | lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, | 
|  | Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { | 
|  | assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); | 
|  |  | 
|  | // Get the known-zero masks for each operand. | 
|  | SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; | 
|  | KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), | 
|  | DAG.computeKnownBits(Ops[1])}; | 
|  |  | 
|  | // See if the upper 32 bits of one operand and the lower 32 bits of the | 
|  | // other are known zero.  They are the low and high operands respectively. | 
|  | uint64_t Masks[] = { Known[0].Zero.getZExtValue(), | 
|  | Known[1].Zero.getZExtValue() }; | 
|  | unsigned High, Low; | 
|  | if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) | 
|  | High = 1, Low = 0; | 
|  | else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) | 
|  | High = 0, Low = 1; | 
|  | else | 
|  | return Op; | 
|  |  | 
|  | SDValue LowOp = Ops[Low]; | 
|  | SDValue HighOp = Ops[High]; | 
|  |  | 
|  | // If the high part is a constant, we're better off using IILH. | 
|  | if (HighOp.getOpcode() == ISD::Constant) | 
|  | return Op; | 
|  |  | 
|  | // If the low part is a constant that is outside the range of LHI, | 
|  | // then we're better off using IILF. | 
|  | if (LowOp.getOpcode() == ISD::Constant) { | 
|  | int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); | 
|  | if (!isInt<16>(Value)) | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // Check whether the high part is an AND that doesn't change the | 
|  | // high 32 bits and just masks out low bits.  We can skip it if so. | 
|  | if (HighOp.getOpcode() == ISD::AND && | 
|  | HighOp.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | SDValue HighOp0 = HighOp.getOperand(0); | 
|  | uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); | 
|  | if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) | 
|  | HighOp = HighOp0; | 
|  | } | 
|  |  | 
|  | // Take advantage of the fact that all GR32 operations only change the | 
|  | // low 32 bits by truncating Low to an i32 and inserting it directly | 
|  | // using a subreg.  The interesting cases are those where the truncation | 
|  | // can be folded. | 
|  | SDLoc DL(Op); | 
|  | SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); | 
|  | return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, | 
|  | MVT::i64, HighOp, Low32); | 
|  | } | 
|  |  | 
|  | // Lower SADDO/SSUBO/UADDO/USUBO nodes. | 
|  | SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDNode *N = Op.getNode(); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | SDLoc DL(N); | 
|  | unsigned BaseOp = 0; | 
|  | unsigned CCValid = 0; | 
|  | unsigned CCMask = 0; | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | default: llvm_unreachable("Unknown instruction!"); | 
|  | case ISD::SADDO: | 
|  | BaseOp = SystemZISD::SADDO; | 
|  | CCValid = SystemZ::CCMASK_ARITH; | 
|  | CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; | 
|  | break; | 
|  | case ISD::SSUBO: | 
|  | BaseOp = SystemZISD::SSUBO; | 
|  | CCValid = SystemZ::CCMASK_ARITH; | 
|  | CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; | 
|  | break; | 
|  | case ISD::UADDO: | 
|  | BaseOp = SystemZISD::UADDO; | 
|  | CCValid = SystemZ::CCMASK_LOGICAL; | 
|  | CCMask = SystemZ::CCMASK_LOGICAL_CARRY; | 
|  | break; | 
|  | case ISD::USUBO: | 
|  | BaseOp = SystemZISD::USUBO; | 
|  | CCValid = SystemZ::CCMASK_LOGICAL; | 
|  | CCMask = SystemZ::CCMASK_LOGICAL_BORROW; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); | 
|  | SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); | 
|  |  | 
|  | SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); | 
|  | if (N->getValueType(1) == MVT::i1) | 
|  | SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); | 
|  |  | 
|  | return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); | 
|  | } | 
|  |  | 
|  | static bool isAddCarryChain(SDValue Carry) { | 
|  | while (Carry.getOpcode() == ISD::UADDO_CARRY) | 
|  | Carry = Carry.getOperand(2); | 
|  | return Carry.getOpcode() == ISD::UADDO; | 
|  | } | 
|  |  | 
|  | static bool isSubBorrowChain(SDValue Carry) { | 
|  | while (Carry.getOpcode() == ISD::USUBO_CARRY) | 
|  | Carry = Carry.getOperand(2); | 
|  | return Carry.getOpcode() == ISD::USUBO; | 
|  | } | 
|  |  | 
|  | // Lower UADDO_CARRY/USUBO_CARRY nodes. | 
|  | SDValue SystemZTargetLowering::lowerUADDSUBO_CARRY(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  |  | 
|  | SDNode *N = Op.getNode(); | 
|  | MVT VT = N->getSimpleValueType(0); | 
|  |  | 
|  | // Let legalize expand this if it isn't a legal type yet. | 
|  | if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | SDValue Carry = Op.getOperand(2); | 
|  | SDLoc DL(N); | 
|  | unsigned BaseOp = 0; | 
|  | unsigned CCValid = 0; | 
|  | unsigned CCMask = 0; | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | default: llvm_unreachable("Unknown instruction!"); | 
|  | case ISD::UADDO_CARRY: | 
|  | if (!isAddCarryChain(Carry)) | 
|  | return SDValue(); | 
|  |  | 
|  | BaseOp = SystemZISD::ADDCARRY; | 
|  | CCValid = SystemZ::CCMASK_LOGICAL; | 
|  | CCMask = SystemZ::CCMASK_LOGICAL_CARRY; | 
|  | break; | 
|  | case ISD::USUBO_CARRY: | 
|  | if (!isSubBorrowChain(Carry)) | 
|  | return SDValue(); | 
|  |  | 
|  | BaseOp = SystemZISD::SUBCARRY; | 
|  | CCValid = SystemZ::CCMASK_LOGICAL; | 
|  | CCMask = SystemZ::CCMASK_LOGICAL_BORROW; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Set the condition code from the carry flag. | 
|  | Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, | 
|  | DAG.getConstant(CCValid, DL, MVT::i32), | 
|  | DAG.getConstant(CCMask, DL, MVT::i32)); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(VT, MVT::i32); | 
|  | SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); | 
|  |  | 
|  | SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); | 
|  | if (N->getValueType(1) == MVT::i1) | 
|  | SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); | 
|  |  | 
|  | return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  | Op = Op.getOperand(0); | 
|  |  | 
|  | // Handle vector types via VPOPCT. | 
|  | if (VT.isVector()) { | 
|  | Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); | 
|  | Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); | 
|  | switch (VT.getScalarSizeInBits()) { | 
|  | case 8: | 
|  | break; | 
|  | case 16: { | 
|  | Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); | 
|  | SDValue Shift = DAG.getConstant(8, DL, MVT::i32); | 
|  | SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); | 
|  | Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); | 
|  | Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); | 
|  | break; | 
|  | } | 
|  | case 32: { | 
|  | SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, | 
|  | DAG.getConstant(0, DL, MVT::i32)); | 
|  | Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); | 
|  | break; | 
|  | } | 
|  | case 64: { | 
|  | SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, | 
|  | DAG.getConstant(0, DL, MVT::i32)); | 
|  | Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); | 
|  | Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("Unexpected type"); | 
|  | } | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // Get the known-zero mask for the operand. | 
|  | KnownBits Known = DAG.computeKnownBits(Op); | 
|  | unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); | 
|  | if (NumSignificantBits == 0) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  |  | 
|  | // Skip known-zero high parts of the operand. | 
|  | int64_t OrigBitSize = VT.getSizeInBits(); | 
|  | int64_t BitSize = llvm::bit_ceil(NumSignificantBits); | 
|  | BitSize = std::min(BitSize, OrigBitSize); | 
|  |  | 
|  | // The POPCNT instruction counts the number of bits in each byte. | 
|  | Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); | 
|  | Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); | 
|  | Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); | 
|  |  | 
|  | // Add up per-byte counts in a binary tree.  All bits of Op at | 
|  | // position larger than BitSize remain zero throughout. | 
|  | for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { | 
|  | SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); | 
|  | if (BitSize != OrigBitSize) | 
|  | Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, | 
|  | DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); | 
|  | Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); | 
|  | } | 
|  |  | 
|  | // Extract overall result from high byte. | 
|  | if (BitSize > 8) | 
|  | Op = DAG.getNode(ISD::SRL, DL, VT, Op, | 
|  | DAG.getConstant(BitSize - 8, DL, VT)); | 
|  |  | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( | 
|  | cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); | 
|  | SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( | 
|  | cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); | 
|  |  | 
|  | // The only fence that needs an instruction is a sequentially-consistent | 
|  | // cross-thread fence. | 
|  | if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && | 
|  | FenceSSID == SyncScope::System) { | 
|  | return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, | 
|  | Op.getOperand(0)), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | // MEMBARRIER is a compiler barrier; it codegens to a no-op. | 
|  | return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); | 
|  | } | 
|  |  | 
|  | // Op is an atomic load.  Lower it into a normal volatile load. | 
|  | SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | auto *Node = cast<AtomicSDNode>(Op.getNode()); | 
|  | return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), | 
|  | Node->getChain(), Node->getBasePtr(), | 
|  | Node->getMemoryVT(), Node->getMemOperand()); | 
|  | } | 
|  |  | 
|  | // Op is an atomic store.  Lower it into a normal volatile store. | 
|  | SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | auto *Node = cast<AtomicSDNode>(Op.getNode()); | 
|  | SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), | 
|  | Node->getBasePtr(), Node->getMemoryVT(), | 
|  | Node->getMemOperand()); | 
|  | // We have to enforce sequential consistency by performing a | 
|  | // serialization operation after the store. | 
|  | if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent) | 
|  | Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), | 
|  | MVT::Other, Chain), 0); | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first | 
|  | // two into the fullword ATOMIC_LOADW_* operation given by Opcode. | 
|  | SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, | 
|  | SelectionDAG &DAG, | 
|  | unsigned Opcode) const { | 
|  | auto *Node = cast<AtomicSDNode>(Op.getNode()); | 
|  |  | 
|  | // 32-bit operations need no code outside the main loop. | 
|  | EVT NarrowVT = Node->getMemoryVT(); | 
|  | EVT WideVT = MVT::i32; | 
|  | if (NarrowVT == WideVT) | 
|  | return Op; | 
|  |  | 
|  | int64_t BitSize = NarrowVT.getSizeInBits(); | 
|  | SDValue ChainIn = Node->getChain(); | 
|  | SDValue Addr = Node->getBasePtr(); | 
|  | SDValue Src2 = Node->getVal(); | 
|  | MachineMemOperand *MMO = Node->getMemOperand(); | 
|  | SDLoc DL(Node); | 
|  | EVT PtrVT = Addr.getValueType(); | 
|  |  | 
|  | // Convert atomic subtracts of constants into additions. | 
|  | if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) | 
|  | if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { | 
|  | Opcode = SystemZISD::ATOMIC_LOADW_ADD; | 
|  | Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); | 
|  | } | 
|  |  | 
|  | // Get the address of the containing word. | 
|  | SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, | 
|  | DAG.getConstant(-4, DL, PtrVT)); | 
|  |  | 
|  | // Get the number of bits that the word must be rotated left in order | 
|  | // to bring the field to the top bits of a GR32. | 
|  | SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, | 
|  | DAG.getConstant(3, DL, PtrVT)); | 
|  | BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); | 
|  |  | 
|  | // Get the complementing shift amount, for rotating a field in the top | 
|  | // bits back to its proper position. | 
|  | SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, | 
|  | DAG.getConstant(0, DL, WideVT), BitShift); | 
|  |  | 
|  | // Extend the source operand to 32 bits and prepare it for the inner loop. | 
|  | // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other | 
|  | // operations require the source to be shifted in advance.  (This shift | 
|  | // can be folded if the source is constant.)  For AND and NAND, the lower | 
|  | // bits must be set, while for other opcodes they should be left clear. | 
|  | if (Opcode != SystemZISD::ATOMIC_SWAPW) | 
|  | Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, | 
|  | DAG.getConstant(32 - BitSize, DL, WideVT)); | 
|  | if (Opcode == SystemZISD::ATOMIC_LOADW_AND || | 
|  | Opcode == SystemZISD::ATOMIC_LOADW_NAND) | 
|  | Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, | 
|  | DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); | 
|  |  | 
|  | // Construct the ATOMIC_LOADW_* node. | 
|  | SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); | 
|  | SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, | 
|  | DAG.getConstant(BitSize, DL, WideVT) }; | 
|  | SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, | 
|  | NarrowVT, MMO); | 
|  |  | 
|  | // Rotate the result of the final CS so that the field is in the lower | 
|  | // bits of a GR32, then truncate it. | 
|  | SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, | 
|  | DAG.getConstant(BitSize, DL, WideVT)); | 
|  | SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); | 
|  |  | 
|  | SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; | 
|  | return DAG.getMergeValues(RetOps, DL); | 
|  | } | 
|  |  | 
|  | // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations | 
|  | // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit | 
|  | // operations into additions. | 
|  | SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | auto *Node = cast<AtomicSDNode>(Op.getNode()); | 
|  | EVT MemVT = Node->getMemoryVT(); | 
|  | if (MemVT == MVT::i32 || MemVT == MVT::i64) { | 
|  | // A full-width operation. | 
|  | assert(Op.getValueType() == MemVT && "Mismatched VTs"); | 
|  | SDValue Src2 = Node->getVal(); | 
|  | SDValue NegSrc2; | 
|  | SDLoc DL(Src2); | 
|  |  | 
|  | if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { | 
|  | // Use an addition if the operand is constant and either LAA(G) is | 
|  | // available or the negative value is in the range of A(G)FHI. | 
|  | int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); | 
|  | if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) | 
|  | NegSrc2 = DAG.getConstant(Value, DL, MemVT); | 
|  | } else if (Subtarget.hasInterlockedAccess1()) | 
|  | // Use LAA(G) if available. | 
|  | NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), | 
|  | Src2); | 
|  |  | 
|  | if (NegSrc2.getNode()) | 
|  | return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, | 
|  | Node->getChain(), Node->getBasePtr(), NegSrc2, | 
|  | Node->getMemOperand()); | 
|  |  | 
|  | // Use the node as-is. | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); | 
|  | } | 
|  |  | 
|  | // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. | 
|  | SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | auto *Node = cast<AtomicSDNode>(Op.getNode()); | 
|  | SDValue ChainIn = Node->getOperand(0); | 
|  | SDValue Addr = Node->getOperand(1); | 
|  | SDValue CmpVal = Node->getOperand(2); | 
|  | SDValue SwapVal = Node->getOperand(3); | 
|  | MachineMemOperand *MMO = Node->getMemOperand(); | 
|  | SDLoc DL(Node); | 
|  |  | 
|  | // We have native support for 32-bit and 64-bit compare and swap, but we | 
|  | // still need to expand extracting the "success" result from the CC. | 
|  | EVT NarrowVT = Node->getMemoryVT(); | 
|  | EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; | 
|  | if (NarrowVT == WideVT) { | 
|  | SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); | 
|  | SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; | 
|  | SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, | 
|  | DL, Tys, Ops, NarrowVT, MMO); | 
|  | SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), | 
|  | SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); | 
|  |  | 
|  | DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); | 
|  | DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); | 
|  | DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Convert 8-bit and 16-bit compare and swap to a loop, implemented | 
|  | // via a fullword ATOMIC_CMP_SWAPW operation. | 
|  | int64_t BitSize = NarrowVT.getSizeInBits(); | 
|  | EVT PtrVT = Addr.getValueType(); | 
|  |  | 
|  | // Get the address of the containing word. | 
|  | SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, | 
|  | DAG.getConstant(-4, DL, PtrVT)); | 
|  |  | 
|  | // Get the number of bits that the word must be rotated left in order | 
|  | // to bring the field to the top bits of a GR32. | 
|  | SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, | 
|  | DAG.getConstant(3, DL, PtrVT)); | 
|  | BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); | 
|  |  | 
|  | // Get the complementing shift amount, for rotating a field in the top | 
|  | // bits back to its proper position. | 
|  | SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, | 
|  | DAG.getConstant(0, DL, WideVT), BitShift); | 
|  |  | 
|  | // Construct the ATOMIC_CMP_SWAPW node. | 
|  | SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); | 
|  | SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, | 
|  | NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; | 
|  | SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, | 
|  | VTList, Ops, NarrowVT, MMO); | 
|  | SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), | 
|  | SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); | 
|  |  | 
|  | // emitAtomicCmpSwapW() will zero extend the result (original value). | 
|  | SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0), | 
|  | DAG.getValueType(NarrowVT)); | 
|  | DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal); | 
|  | DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); | 
|  | DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | MachineMemOperand::Flags | 
|  | SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { | 
|  | // Because of how we convert atomic_load and atomic_store to normal loads and | 
|  | // stores in the DAG, we need to ensure that the MMOs are marked volatile | 
|  | // since DAGCombine hasn't been updated to account for atomic, but non | 
|  | // volatile loads.  (See D57601) | 
|  | if (auto *SI = dyn_cast<StoreInst>(&I)) | 
|  | if (SI->isAtomic()) | 
|  | return MachineMemOperand::MOVolatile; | 
|  | if (auto *LI = dyn_cast<LoadInst>(&I)) | 
|  | if (LI->isAtomic()) | 
|  | return MachineMemOperand::MOVolatile; | 
|  | if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) | 
|  | if (AI->isAtomic()) | 
|  | return MachineMemOperand::MOVolatile; | 
|  | if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) | 
|  | if (AI->isAtomic()) | 
|  | return MachineMemOperand::MOVolatile; | 
|  | return MachineMemOperand::MONone; | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | auto *Regs = Subtarget.getSpecialRegisters(); | 
|  | if (MF.getFunction().getCallingConv() == CallingConv::GHC) | 
|  | report_fatal_error("Variable-sized stack allocations are not supported " | 
|  | "in GHC calling convention"); | 
|  | return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), | 
|  | Regs->getStackPointerRegister(), Op.getValueType()); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | auto *Regs = Subtarget.getSpecialRegisters(); | 
|  | bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); | 
|  |  | 
|  | if (MF.getFunction().getCallingConv() == CallingConv::GHC) | 
|  | report_fatal_error("Variable-sized stack allocations are not supported " | 
|  | "in GHC calling convention"); | 
|  |  | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue NewSP = Op.getOperand(1); | 
|  | SDValue Backchain; | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | if (StoreBackchain) { | 
|  | SDValue OldSP = DAG.getCopyFromReg( | 
|  | Chain, DL, Regs->getStackPointerRegister(), MVT::i64); | 
|  | Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), | 
|  | MachinePointerInfo()); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP); | 
|  |  | 
|  | if (StoreBackchain) | 
|  | Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), | 
|  | MachinePointerInfo()); | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); | 
|  | if (!IsData) | 
|  | // Just preserve the chain. | 
|  | return Op.getOperand(0); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); | 
|  | unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; | 
|  | auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); | 
|  | SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), | 
|  | Op.getOperand(1)}; | 
|  | return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, | 
|  | Node->getVTList(), Ops, | 
|  | Node->getMemoryVT(), Node->getMemOperand()); | 
|  | } | 
|  |  | 
|  | // Convert condition code in CCReg to an i32 value. | 
|  | static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { | 
|  | SDLoc DL(CCReg); | 
|  | SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); | 
|  | return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, | 
|  | DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned Opcode, CCValid; | 
|  | if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { | 
|  | assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); | 
|  | SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); | 
|  | SDValue CC = getCCResult(DAG, SDValue(Node, 0)); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned Opcode, CCValid; | 
|  | if (isIntrinsicWithCC(Op, Opcode, CCValid)) { | 
|  | SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); | 
|  | if (Op->getNumValues() == 1) | 
|  | return getCCResult(DAG, SDValue(Node, 0)); | 
|  | assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); | 
|  | return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), | 
|  | SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); | 
|  | } | 
|  |  | 
|  | unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | switch (Id) { | 
|  | case Intrinsic::thread_pointer: | 
|  | return lowerThreadPointer(SDLoc(Op), DAG); | 
|  |  | 
|  | case Intrinsic::s390_vpdi: | 
|  | return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | 
|  |  | 
|  | case Intrinsic::s390_vperm: | 
|  | return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | 
|  |  | 
|  | case Intrinsic::s390_vuphb: | 
|  | case Intrinsic::s390_vuphh: | 
|  | case Intrinsic::s390_vuphf: | 
|  | return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), | 
|  | Op.getOperand(1)); | 
|  |  | 
|  | case Intrinsic::s390_vuplhb: | 
|  | case Intrinsic::s390_vuplhh: | 
|  | case Intrinsic::s390_vuplhf: | 
|  | return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), | 
|  | Op.getOperand(1)); | 
|  |  | 
|  | case Intrinsic::s390_vuplb: | 
|  | case Intrinsic::s390_vuplhw: | 
|  | case Intrinsic::s390_vuplf: | 
|  | return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), | 
|  | Op.getOperand(1)); | 
|  |  | 
|  | case Intrinsic::s390_vupllb: | 
|  | case Intrinsic::s390_vupllh: | 
|  | case Intrinsic::s390_vupllf: | 
|  | return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), | 
|  | Op.getOperand(1)); | 
|  |  | 
|  | case Intrinsic::s390_vsumb: | 
|  | case Intrinsic::s390_vsumh: | 
|  | case Intrinsic::s390_vsumgh: | 
|  | case Intrinsic::s390_vsumgf: | 
|  | case Intrinsic::s390_vsumqf: | 
|  | case Intrinsic::s390_vsumqg: | 
|  | return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Says that SystemZISD operation Opcode can be used to perform the equivalent | 
|  | // of a VPERM with permute vector Bytes.  If Opcode takes three operands, | 
|  | // Operand is the constant third operand, otherwise it is the number of | 
|  | // bytes in each element of the result. | 
|  | struct Permute { | 
|  | unsigned Opcode; | 
|  | unsigned Operand; | 
|  | unsigned char Bytes[SystemZ::VectorBytes]; | 
|  | }; | 
|  | } | 
|  |  | 
|  | static const Permute PermuteForms[] = { | 
|  | // VMRHG | 
|  | { SystemZISD::MERGE_HIGH, 8, | 
|  | { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, | 
|  | // VMRHF | 
|  | { SystemZISD::MERGE_HIGH, 4, | 
|  | { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, | 
|  | // VMRHH | 
|  | { SystemZISD::MERGE_HIGH, 2, | 
|  | { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, | 
|  | // VMRHB | 
|  | { SystemZISD::MERGE_HIGH, 1, | 
|  | { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, | 
|  | // VMRLG | 
|  | { SystemZISD::MERGE_LOW, 8, | 
|  | { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, | 
|  | // VMRLF | 
|  | { SystemZISD::MERGE_LOW, 4, | 
|  | { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, | 
|  | // VMRLH | 
|  | { SystemZISD::MERGE_LOW, 2, | 
|  | { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, | 
|  | // VMRLB | 
|  | { SystemZISD::MERGE_LOW, 1, | 
|  | { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, | 
|  | // VPKG | 
|  | { SystemZISD::PACK, 4, | 
|  | { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, | 
|  | // VPKF | 
|  | { SystemZISD::PACK, 2, | 
|  | { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, | 
|  | // VPKH | 
|  | { SystemZISD::PACK, 1, | 
|  | { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, | 
|  | // VPDI V1, V2, 4  (low half of V1, high half of V2) | 
|  | { SystemZISD::PERMUTE_DWORDS, 4, | 
|  | { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, | 
|  | // VPDI V1, V2, 1  (high half of V1, low half of V2) | 
|  | { SystemZISD::PERMUTE_DWORDS, 1, | 
|  | { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } | 
|  | }; | 
|  |  | 
|  | // Called after matching a vector shuffle against a particular pattern. | 
|  | // Both the original shuffle and the pattern have two vector operands. | 
|  | // OpNos[0] is the operand of the original shuffle that should be used for | 
|  | // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. | 
|  | // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and | 
|  | // set OpNo0 and OpNo1 to the shuffle operands that should actually be used | 
|  | // for operands 0 and 1 of the pattern. | 
|  | static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { | 
|  | if (OpNos[0] < 0) { | 
|  | if (OpNos[1] < 0) | 
|  | return false; | 
|  | OpNo0 = OpNo1 = OpNos[1]; | 
|  | } else if (OpNos[1] < 0) { | 
|  | OpNo0 = OpNo1 = OpNos[0]; | 
|  | } else { | 
|  | OpNo0 = OpNos[0]; | 
|  | OpNo1 = OpNos[1]; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Bytes is a VPERM-like permute vector, except that -1 is used for | 
|  | // undefined bytes.  Return true if the VPERM can be implemented using P. | 
|  | // When returning true set OpNo0 to the VPERM operand that should be | 
|  | // used for operand 0 of P and likewise OpNo1 for operand 1 of P. | 
|  | // | 
|  | // For example, if swapping the VPERM operands allows P to match, OpNo0 | 
|  | // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one | 
|  | // operand, but rewriting it to use two duplicated operands allows it to | 
|  | // match P, then OpNo0 and OpNo1 will be the same. | 
|  | static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, | 
|  | unsigned &OpNo0, unsigned &OpNo1) { | 
|  | int OpNos[] = { -1, -1 }; | 
|  | for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { | 
|  | int Elt = Bytes[I]; | 
|  | if (Elt >= 0) { | 
|  | // Make sure that the two permute vectors use the same suboperand | 
|  | // byte number.  Only the operand numbers (the high bits) are | 
|  | // allowed to differ. | 
|  | if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) | 
|  | return false; | 
|  | int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; | 
|  | int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; | 
|  | // Make sure that the operand mappings are consistent with previous | 
|  | // elements. | 
|  | if (OpNos[ModelOpNo] == 1 - RealOpNo) | 
|  | return false; | 
|  | OpNos[ModelOpNo] = RealOpNo; | 
|  | } | 
|  | } | 
|  | return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); | 
|  | } | 
|  |  | 
|  | // As above, but search for a matching permute. | 
|  | static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, | 
|  | unsigned &OpNo0, unsigned &OpNo1) { | 
|  | for (auto &P : PermuteForms) | 
|  | if (matchPermute(Bytes, P, OpNo0, OpNo1)) | 
|  | return &P; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Bytes is a VPERM-like permute vector, except that -1 is used for | 
|  | // undefined bytes.  This permute is an operand of an outer permute. | 
|  | // See whether redistributing the -1 bytes gives a shuffle that can be | 
|  | // implemented using P.  If so, set Transform to a VPERM-like permute vector | 
|  | // that, when applied to the result of P, gives the original permute in Bytes. | 
|  | static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, | 
|  | const Permute &P, | 
|  | SmallVectorImpl<int> &Transform) { | 
|  | unsigned To = 0; | 
|  | for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { | 
|  | int Elt = Bytes[From]; | 
|  | if (Elt < 0) | 
|  | // Byte number From of the result is undefined. | 
|  | Transform[From] = -1; | 
|  | else { | 
|  | while (P.Bytes[To] != Elt) { | 
|  | To += 1; | 
|  | if (To == SystemZ::VectorBytes) | 
|  | return false; | 
|  | } | 
|  | Transform[From] = To; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // As above, but search for a matching permute. | 
|  | static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, | 
|  | SmallVectorImpl<int> &Transform) { | 
|  | for (auto &P : PermuteForms) | 
|  | if (matchDoublePermute(Bytes, P, Transform)) | 
|  | return &P; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Convert the mask of the given shuffle op into a byte-level mask, | 
|  | // as if it had type vNi8. | 
|  | static bool getVPermMask(SDValue ShuffleOp, | 
|  | SmallVectorImpl<int> &Bytes) { | 
|  | EVT VT = ShuffleOp.getValueType(); | 
|  | unsigned NumElements = VT.getVectorNumElements(); | 
|  | unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); | 
|  |  | 
|  | if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { | 
|  | Bytes.resize(NumElements * BytesPerElement, -1); | 
|  | for (unsigned I = 0; I < NumElements; ++I) { | 
|  | int Index = VSN->getMaskElt(I); | 
|  | if (Index >= 0) | 
|  | for (unsigned J = 0; J < BytesPerElement; ++J) | 
|  | Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && | 
|  | isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { | 
|  | unsigned Index = ShuffleOp.getConstantOperandVal(1); | 
|  | Bytes.resize(NumElements * BytesPerElement, -1); | 
|  | for (unsigned I = 0; I < NumElements; ++I) | 
|  | for (unsigned J = 0; J < BytesPerElement; ++J) | 
|  | Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Bytes is a VPERM-like permute vector, except that -1 is used for | 
|  | // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of | 
|  | // the result come from a contiguous sequence of bytes from one input. | 
|  | // Set Base to the selector for the first byte if so. | 
|  | static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, | 
|  | unsigned BytesPerElement, int &Base) { | 
|  | Base = -1; | 
|  | for (unsigned I = 0; I < BytesPerElement; ++I) { | 
|  | if (Bytes[Start + I] >= 0) { | 
|  | unsigned Elem = Bytes[Start + I]; | 
|  | if (Base < 0) { | 
|  | Base = Elem - I; | 
|  | // Make sure the bytes would come from one input operand. | 
|  | if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) | 
|  | return false; | 
|  | } else if (unsigned(Base) != Elem - I) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Bytes is a VPERM-like permute vector, except that -1 is used for | 
|  | // undefined bytes.  Return true if it can be performed using VSLDB. | 
|  | // When returning true, set StartIndex to the shift amount and OpNo0 | 
|  | // and OpNo1 to the VPERM operands that should be used as the first | 
|  | // and second shift operand respectively. | 
|  | static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, | 
|  | unsigned &StartIndex, unsigned &OpNo0, | 
|  | unsigned &OpNo1) { | 
|  | int OpNos[] = { -1, -1 }; | 
|  | int Shift = -1; | 
|  | for (unsigned I = 0; I < 16; ++I) { | 
|  | int Index = Bytes[I]; | 
|  | if (Index >= 0) { | 
|  | int ExpectedShift = (Index - I) % SystemZ::VectorBytes; | 
|  | int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; | 
|  | int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; | 
|  | if (Shift < 0) | 
|  | Shift = ExpectedShift; | 
|  | else if (Shift != ExpectedShift) | 
|  | return false; | 
|  | // Make sure that the operand mappings are consistent with previous | 
|  | // elements. | 
|  | if (OpNos[ModelOpNo] == 1 - RealOpNo) | 
|  | return false; | 
|  | OpNos[ModelOpNo] = RealOpNo; | 
|  | } | 
|  | } | 
|  | StartIndex = Shift; | 
|  | return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); | 
|  | } | 
|  |  | 
|  | // Create a node that performs P on operands Op0 and Op1, casting the | 
|  | // operands to the appropriate type.  The type of the result is determined by P. | 
|  | static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, | 
|  | const Permute &P, SDValue Op0, SDValue Op1) { | 
|  | // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input | 
|  | // elements of a PACK are twice as wide as the outputs. | 
|  | unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : | 
|  | P.Opcode == SystemZISD::PACK ? P.Operand * 2 : | 
|  | P.Operand); | 
|  | // Cast both operands to the appropriate type. | 
|  | MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), | 
|  | SystemZ::VectorBytes / InBytes); | 
|  | Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); | 
|  | Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); | 
|  | SDValue Op; | 
|  | if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { | 
|  | SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); | 
|  | Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); | 
|  | } else if (P.Opcode == SystemZISD::PACK) { | 
|  | MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), | 
|  | SystemZ::VectorBytes / P.Operand); | 
|  | Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); | 
|  | } else { | 
|  | Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); | 
|  | } | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static bool isZeroVector(SDValue N) { | 
|  | if (N->getOpcode() == ISD::BITCAST) | 
|  | N = N->getOperand(0); | 
|  | if (N->getOpcode() == ISD::SPLAT_VECTOR) | 
|  | if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) | 
|  | return Op->getZExtValue() == 0; | 
|  | return ISD::isBuildVectorAllZeros(N.getNode()); | 
|  | } | 
|  |  | 
|  | // Return the index of the zero/undef vector, or UINT32_MAX if not found. | 
|  | static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { | 
|  | for (unsigned I = 0; I < Num ; I++) | 
|  | if (isZeroVector(Ops[I])) | 
|  | return I; | 
|  | return UINT32_MAX; | 
|  | } | 
|  |  | 
|  | // Bytes is a VPERM-like permute vector, except that -1 is used for | 
|  | // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using | 
|  | // VSLDB or VPERM. | 
|  | static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, | 
|  | SDValue *Ops, | 
|  | const SmallVectorImpl<int> &Bytes) { | 
|  | for (unsigned I = 0; I < 2; ++I) | 
|  | Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); | 
|  |  | 
|  | // First see whether VSLDB can be used. | 
|  | unsigned StartIndex, OpNo0, OpNo1; | 
|  | if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) | 
|  | return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], | 
|  | Ops[OpNo1], | 
|  | DAG.getTargetConstant(StartIndex, DL, MVT::i32)); | 
|  |  | 
|  | // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to | 
|  | // eliminate a zero vector by reusing any zero index in the permute vector. | 
|  | unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); | 
|  | if (ZeroVecIdx != UINT32_MAX) { | 
|  | bool MaskFirst = true; | 
|  | int ZeroIdx = -1; | 
|  | for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { | 
|  | unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; | 
|  | unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; | 
|  | if (OpNo == ZeroVecIdx && I == 0) { | 
|  | // If the first byte is zero, use mask as first operand. | 
|  | ZeroIdx = 0; | 
|  | break; | 
|  | } | 
|  | if (OpNo != ZeroVecIdx && Byte == 0) { | 
|  | // If mask contains a zero, use it by placing that vector first. | 
|  | ZeroIdx = I + SystemZ::VectorBytes; | 
|  | MaskFirst = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (ZeroIdx != -1) { | 
|  | SDValue IndexNodes[SystemZ::VectorBytes]; | 
|  | for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { | 
|  | if (Bytes[I] >= 0) { | 
|  | unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; | 
|  | unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; | 
|  | if (OpNo == ZeroVecIdx) | 
|  | IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); | 
|  | else { | 
|  | unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; | 
|  | IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); | 
|  | } | 
|  | } else | 
|  | IndexNodes[I] = DAG.getUNDEF(MVT::i32); | 
|  | } | 
|  | SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); | 
|  | SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; | 
|  | if (MaskFirst) | 
|  | return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, | 
|  | Mask); | 
|  | else | 
|  | return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, | 
|  | Mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue IndexNodes[SystemZ::VectorBytes]; | 
|  | for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) | 
|  | if (Bytes[I] >= 0) | 
|  | IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); | 
|  | else | 
|  | IndexNodes[I] = DAG.getUNDEF(MVT::i32); | 
|  | SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); | 
|  | return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], | 
|  | (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Describes a general N-operand vector shuffle. | 
|  | struct GeneralShuffle { | 
|  | GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} | 
|  | void addUndef(); | 
|  | bool add(SDValue, unsigned); | 
|  | SDValue getNode(SelectionDAG &, const SDLoc &); | 
|  | void tryPrepareForUnpack(); | 
|  | bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } | 
|  | SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); | 
|  |  | 
|  | // The operands of the shuffle. | 
|  | SmallVector<SDValue, SystemZ::VectorBytes> Ops; | 
|  |  | 
|  | // Index I is -1 if byte I of the result is undefined.  Otherwise the | 
|  | // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand | 
|  | // Bytes[I] / SystemZ::VectorBytes. | 
|  | SmallVector<int, SystemZ::VectorBytes> Bytes; | 
|  |  | 
|  | // The type of the shuffle result. | 
|  | EVT VT; | 
|  |  | 
|  | // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. | 
|  | unsigned UnpackFromEltSize; | 
|  | }; | 
|  | } | 
|  |  | 
|  | // Add an extra undefined element to the shuffle. | 
|  | void GeneralShuffle::addUndef() { | 
|  | unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); | 
|  | for (unsigned I = 0; I < BytesPerElement; ++I) | 
|  | Bytes.push_back(-1); | 
|  | } | 
|  |  | 
|  | // Add an extra element to the shuffle, taking it from element Elem of Op. | 
|  | // A null Op indicates a vector input whose value will be calculated later; | 
|  | // there is at most one such input per shuffle and it always has the same | 
|  | // type as the result. Aborts and returns false if the source vector elements | 
|  | // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per | 
|  | // LLVM they become implicitly extended, but this is rare and not optimized. | 
|  | bool GeneralShuffle::add(SDValue Op, unsigned Elem) { | 
|  | unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); | 
|  |  | 
|  | // The source vector can have wider elements than the result, | 
|  | // either through an explicit TRUNCATE or because of type legalization. | 
|  | // We want the least significant part. | 
|  | EVT FromVT = Op.getNode() ? Op.getValueType() : VT; | 
|  | unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); | 
|  |  | 
|  | // Return false if the source elements are smaller than their destination | 
|  | // elements. | 
|  | if (FromBytesPerElement < BytesPerElement) | 
|  | return false; | 
|  |  | 
|  | unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + | 
|  | (FromBytesPerElement - BytesPerElement)); | 
|  |  | 
|  | // Look through things like shuffles and bitcasts. | 
|  | while (Op.getNode()) { | 
|  | if (Op.getOpcode() == ISD::BITCAST) | 
|  | Op = Op.getOperand(0); | 
|  | else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { | 
|  | // See whether the bytes we need come from a contiguous part of one | 
|  | // operand. | 
|  | SmallVector<int, SystemZ::VectorBytes> OpBytes; | 
|  | if (!getVPermMask(Op, OpBytes)) | 
|  | break; | 
|  | int NewByte; | 
|  | if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) | 
|  | break; | 
|  | if (NewByte < 0) { | 
|  | addUndef(); | 
|  | return true; | 
|  | } | 
|  | Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); | 
|  | Byte = unsigned(NewByte) % SystemZ::VectorBytes; | 
|  | } else if (Op.isUndef()) { | 
|  | addUndef(); | 
|  | return true; | 
|  | } else | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Make sure that the source of the extraction is in Ops. | 
|  | unsigned OpNo = 0; | 
|  | for (; OpNo < Ops.size(); ++OpNo) | 
|  | if (Ops[OpNo] == Op) | 
|  | break; | 
|  | if (OpNo == Ops.size()) | 
|  | Ops.push_back(Op); | 
|  |  | 
|  | // Add the element to Bytes. | 
|  | unsigned Base = OpNo * SystemZ::VectorBytes + Byte; | 
|  | for (unsigned I = 0; I < BytesPerElement; ++I) | 
|  | Bytes.push_back(Base + I); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Return SDNodes for the completed shuffle. | 
|  | SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { | 
|  | assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); | 
|  |  | 
|  | if (Ops.size() == 0) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | // Use a single unpack if possible as the last operation. | 
|  | tryPrepareForUnpack(); | 
|  |  | 
|  | // Make sure that there are at least two shuffle operands. | 
|  | if (Ops.size() == 1) | 
|  | Ops.push_back(DAG.getUNDEF(MVT::v16i8)); | 
|  |  | 
|  | // Create a tree of shuffles, deferring root node until after the loop. | 
|  | // Try to redistribute the undefined elements of non-root nodes so that | 
|  | // the non-root shuffles match something like a pack or merge, then adjust | 
|  | // the parent node's permute vector to compensate for the new order. | 
|  | // Among other things, this copes with vectors like <2 x i16> that were | 
|  | // padded with undefined elements during type legalization. | 
|  | // | 
|  | // In the best case this redistribution will lead to the whole tree | 
|  | // using packs and merges.  It should rarely be a loss in other cases. | 
|  | unsigned Stride = 1; | 
|  | for (; Stride * 2 < Ops.size(); Stride *= 2) { | 
|  | for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { | 
|  | SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; | 
|  |  | 
|  | // Create a mask for just these two operands. | 
|  | SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); | 
|  | for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { | 
|  | unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; | 
|  | unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; | 
|  | if (OpNo == I) | 
|  | NewBytes[J] = Byte; | 
|  | else if (OpNo == I + Stride) | 
|  | NewBytes[J] = SystemZ::VectorBytes + Byte; | 
|  | else | 
|  | NewBytes[J] = -1; | 
|  | } | 
|  | // See if it would be better to reorganize NewMask to avoid using VPERM. | 
|  | SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); | 
|  | if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { | 
|  | Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); | 
|  | // Applying NewBytesMap to Ops[I] gets back to NewBytes. | 
|  | for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { | 
|  | if (NewBytes[J] >= 0) { | 
|  | assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && | 
|  | "Invalid double permute"); | 
|  | Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; | 
|  | } else | 
|  | assert(NewBytesMap[J] < 0 && "Invalid double permute"); | 
|  | } | 
|  | } else { | 
|  | // Just use NewBytes on the operands. | 
|  | Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); | 
|  | for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) | 
|  | if (NewBytes[J] >= 0) | 
|  | Bytes[J] = I * SystemZ::VectorBytes + J; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now we just have 2 inputs.  Put the second operand in Ops[1]. | 
|  | if (Stride > 1) { | 
|  | Ops[1] = Ops[Stride]; | 
|  | for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) | 
|  | if (Bytes[I] >= int(SystemZ::VectorBytes)) | 
|  | Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; | 
|  | } | 
|  |  | 
|  | // Look for an instruction that can do the permute without resorting | 
|  | // to VPERM. | 
|  | unsigned OpNo0, OpNo1; | 
|  | SDValue Op; | 
|  | if (unpackWasPrepared() && Ops[1].isUndef()) | 
|  | Op = Ops[0]; | 
|  | else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) | 
|  | Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); | 
|  | else | 
|  | Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); | 
|  |  | 
|  | Op = insertUnpackIfPrepared(DAG, DL, Op); | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, Op); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { | 
|  | dbgs() << Msg.c_str() << " { "; | 
|  | for (unsigned i = 0; i < Bytes.size(); i++) | 
|  | dbgs() << Bytes[i] << " "; | 
|  | dbgs() << "}\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // If the Bytes vector matches an unpack operation, prepare to do the unpack | 
|  | // after all else by removing the zero vector and the effect of the unpack on | 
|  | // Bytes. | 
|  | void GeneralShuffle::tryPrepareForUnpack() { | 
|  | uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); | 
|  | if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) | 
|  | return; | 
|  |  | 
|  | // Only do this if removing the zero vector reduces the depth, otherwise | 
|  | // the critical path will increase with the final unpack. | 
|  | if (Ops.size() > 2 && | 
|  | Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) | 
|  | return; | 
|  |  | 
|  | // Find an unpack that would allow removing the zero vector from Ops. | 
|  | UnpackFromEltSize = 1; | 
|  | for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { | 
|  | bool MatchUnpack = true; | 
|  | SmallVector<int, SystemZ::VectorBytes> SrcBytes; | 
|  | for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { | 
|  | unsigned ToEltSize = UnpackFromEltSize * 2; | 
|  | bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; | 
|  | if (!IsZextByte) | 
|  | SrcBytes.push_back(Bytes[Elt]); | 
|  | if (Bytes[Elt] != -1) { | 
|  | unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; | 
|  | if (IsZextByte != (OpNo == ZeroVecOpNo)) { | 
|  | MatchUnpack = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (MatchUnpack) { | 
|  | if (Ops.size() == 2) { | 
|  | // Don't use unpack if a single source operand needs rearrangement. | 
|  | for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) | 
|  | if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { | 
|  | UnpackFromEltSize = UINT_MAX; | 
|  | return; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (UnpackFromEltSize > 4) | 
|  | return; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " | 
|  | << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo | 
|  | << ".\n"; | 
|  | dumpBytes(Bytes, "Original Bytes vector:");); | 
|  |  | 
|  | // Apply the unpack in reverse to the Bytes array. | 
|  | unsigned B = 0; | 
|  | for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { | 
|  | Elt += UnpackFromEltSize; | 
|  | for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) | 
|  | Bytes[B] = Bytes[Elt]; | 
|  | } | 
|  | while (B < SystemZ::VectorBytes) | 
|  | Bytes[B++] = -1; | 
|  |  | 
|  | // Remove the zero vector from Ops | 
|  | Ops.erase(&Ops[ZeroVecOpNo]); | 
|  | for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) | 
|  | if (Bytes[I] >= 0) { | 
|  | unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; | 
|  | if (OpNo > ZeroVecOpNo) | 
|  | Bytes[I] -= SystemZ::VectorBytes; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); | 
|  | dbgs() << "\n";); | 
|  | } | 
|  |  | 
|  | SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, | 
|  | const SDLoc &DL, | 
|  | SDValue Op) { | 
|  | if (!unpackWasPrepared()) | 
|  | return Op; | 
|  | unsigned InBits = UnpackFromEltSize * 8; | 
|  | EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), | 
|  | SystemZ::VectorBits / InBits); | 
|  | SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); | 
|  | unsigned OutBits = InBits * 2; | 
|  | EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), | 
|  | SystemZ::VectorBits / OutBits); | 
|  | return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); | 
|  | } | 
|  |  | 
|  | // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. | 
|  | static bool isScalarToVector(SDValue Op) { | 
|  | for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) | 
|  | if (!Op.getOperand(I).isUndef()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Return a vector of type VT that contains Value in the first element. | 
|  | // The other elements don't matter. | 
|  | static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, | 
|  | SDValue Value) { | 
|  | // If we have a constant, replicate it to all elements and let the | 
|  | // BUILD_VECTOR lowering take care of it. | 
|  | if (Value.getOpcode() == ISD::Constant || | 
|  | Value.getOpcode() == ISD::ConstantFP) { | 
|  | SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); | 
|  | return DAG.getBuildVector(VT, DL, Ops); | 
|  | } | 
|  | if (Value.isUndef()) | 
|  | return DAG.getUNDEF(VT); | 
|  | return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); | 
|  | } | 
|  |  | 
|  | // Return a vector of type VT in which Op0 is in element 0 and Op1 is in | 
|  | // element 1.  Used for cases in which replication is cheap. | 
|  | static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, | 
|  | SDValue Op0, SDValue Op1) { | 
|  | if (Op0.isUndef()) { | 
|  | if (Op1.isUndef()) | 
|  | return DAG.getUNDEF(VT); | 
|  | return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); | 
|  | } | 
|  | if (Op1.isUndef()) | 
|  | return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); | 
|  | return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, | 
|  | buildScalarToVector(DAG, DL, VT, Op0), | 
|  | buildScalarToVector(DAG, DL, VT, Op1)); | 
|  | } | 
|  |  | 
|  | // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 | 
|  | // vector for them. | 
|  | static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, | 
|  | SDValue Op1) { | 
|  | if (Op0.isUndef() && Op1.isUndef()) | 
|  | return DAG.getUNDEF(MVT::v2i64); | 
|  | // If one of the two inputs is undefined then replicate the other one, | 
|  | // in order to avoid using another register unnecessarily. | 
|  | if (Op0.isUndef()) | 
|  | Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); | 
|  | else if (Op1.isUndef()) | 
|  | Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); | 
|  | else { | 
|  | Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); | 
|  | Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); | 
|  | } | 
|  | return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); | 
|  | } | 
|  |  | 
|  | // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually | 
|  | // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for | 
|  | // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR | 
|  | // would benefit from this representation and return it if so. | 
|  | static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, | 
|  | BuildVectorSDNode *BVN) { | 
|  | EVT VT = BVN->getValueType(0); | 
|  | unsigned NumElements = VT.getVectorNumElements(); | 
|  |  | 
|  | // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation | 
|  | // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still | 
|  | // need a BUILD_VECTOR, add an additional placeholder operand for that | 
|  | // BUILD_VECTOR and store its operands in ResidueOps. | 
|  | GeneralShuffle GS(VT); | 
|  | SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; | 
|  | bool FoundOne = false; | 
|  | for (unsigned I = 0; I < NumElements; ++I) { | 
|  | SDValue Op = BVN->getOperand(I); | 
|  | if (Op.getOpcode() == ISD::TRUNCATE) | 
|  | Op = Op.getOperand(0); | 
|  | if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | Op.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | if (!GS.add(Op.getOperand(0), Elem)) | 
|  | return SDValue(); | 
|  | FoundOne = true; | 
|  | } else if (Op.isUndef()) { | 
|  | GS.addUndef(); | 
|  | } else { | 
|  | if (!GS.add(SDValue(), ResidueOps.size())) | 
|  | return SDValue(); | 
|  | ResidueOps.push_back(BVN->getOperand(I)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Nothing to do if there are no EXTRACT_VECTOR_ELTs. | 
|  | if (!FoundOne) | 
|  | return SDValue(); | 
|  |  | 
|  | // Create the BUILD_VECTOR for the remaining elements, if any. | 
|  | if (!ResidueOps.empty()) { | 
|  | while (ResidueOps.size() < NumElements) | 
|  | ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); | 
|  | for (auto &Op : GS.Ops) { | 
|  | if (!Op.getNode()) { | 
|  | Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return GS.getNode(DAG, SDLoc(BVN)); | 
|  | } | 
|  |  | 
|  | bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { | 
|  | if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) | 
|  | return true; | 
|  | if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Combine GPR scalar values Elems into a vector of type VT. | 
|  | SDValue | 
|  | SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, | 
|  | SmallVectorImpl<SDValue> &Elems) const { | 
|  | // See whether there is a single replicated value. | 
|  | SDValue Single; | 
|  | unsigned int NumElements = Elems.size(); | 
|  | unsigned int Count = 0; | 
|  | for (auto Elem : Elems) { | 
|  | if (!Elem.isUndef()) { | 
|  | if (!Single.getNode()) | 
|  | Single = Elem; | 
|  | else if (Elem != Single) { | 
|  | Single = SDValue(); | 
|  | break; | 
|  | } | 
|  | Count += 1; | 
|  | } | 
|  | } | 
|  | // There are three cases here: | 
|  | // | 
|  | // - if the only defined element is a loaded one, the best sequence | 
|  | //   is a replicating load. | 
|  | // | 
|  | // - otherwise, if the only defined element is an i64 value, we will | 
|  | //   end up with the same VLVGP sequence regardless of whether we short-cut | 
|  | //   for replication or fall through to the later code. | 
|  | // | 
|  | // - otherwise, if the only defined element is an i32 or smaller value, | 
|  | //   we would need 2 instructions to replicate it: VLVGP followed by VREPx. | 
|  | //   This is only a win if the single defined element is used more than once. | 
|  | //   In other cases we're better off using a single VLVGx. | 
|  | if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) | 
|  | return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); | 
|  |  | 
|  | // If all elements are loads, use VLREP/VLEs (below). | 
|  | bool AllLoads = true; | 
|  | for (auto Elem : Elems) | 
|  | if (!isVectorElementLoad(Elem)) { | 
|  | AllLoads = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The best way of building a v2i64 from two i64s is to use VLVGP. | 
|  | if (VT == MVT::v2i64 && !AllLoads) | 
|  | return joinDwords(DAG, DL, Elems[0], Elems[1]); | 
|  |  | 
|  | // Use a 64-bit merge high to combine two doubles. | 
|  | if (VT == MVT::v2f64 && !AllLoads) | 
|  | return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); | 
|  |  | 
|  | // Build v4f32 values directly from the FPRs: | 
|  | // | 
|  | //   <Axxx> <Bxxx> <Cxxxx> <Dxxx> | 
|  | //         V              V         VMRHF | 
|  | //      <ABxx>         <CDxx> | 
|  | //                V                 VMRHG | 
|  | //              <ABCD> | 
|  | if (VT == MVT::v4f32 && !AllLoads) { | 
|  | SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); | 
|  | SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); | 
|  | // Avoid unnecessary undefs by reusing the other operand. | 
|  | if (Op01.isUndef()) | 
|  | Op01 = Op23; | 
|  | else if (Op23.isUndef()) | 
|  | Op23 = Op01; | 
|  | // Merging identical replications is a no-op. | 
|  | if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) | 
|  | return Op01; | 
|  | Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); | 
|  | Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); | 
|  | SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, | 
|  | DL, MVT::v2i64, Op01, Op23); | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, Op); | 
|  | } | 
|  |  | 
|  | // Collect the constant terms. | 
|  | SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); | 
|  | SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); | 
|  |  | 
|  | unsigned NumConstants = 0; | 
|  | for (unsigned I = 0; I < NumElements; ++I) { | 
|  | SDValue Elem = Elems[I]; | 
|  | if (Elem.getOpcode() == ISD::Constant || | 
|  | Elem.getOpcode() == ISD::ConstantFP) { | 
|  | NumConstants += 1; | 
|  | Constants[I] = Elem; | 
|  | Done[I] = true; | 
|  | } | 
|  | } | 
|  | // If there was at least one constant, fill in the other elements of | 
|  | // Constants with undefs to get a full vector constant and use that | 
|  | // as the starting point. | 
|  | SDValue Result; | 
|  | SDValue ReplicatedVal; | 
|  | if (NumConstants > 0) { | 
|  | for (unsigned I = 0; I < NumElements; ++I) | 
|  | if (!Constants[I].getNode()) | 
|  | Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); | 
|  | Result = DAG.getBuildVector(VT, DL, Constants); | 
|  | } else { | 
|  | // Otherwise try to use VLREP or VLVGP to start the sequence in order to | 
|  | // avoid a false dependency on any previous contents of the vector | 
|  | // register. | 
|  |  | 
|  | // Use a VLREP if at least one element is a load. Make sure to replicate | 
|  | // the load with the most elements having its value. | 
|  | std::map<const SDNode*, unsigned> UseCounts; | 
|  | SDNode *LoadMaxUses = nullptr; | 
|  | for (unsigned I = 0; I < NumElements; ++I) | 
|  | if (isVectorElementLoad(Elems[I])) { | 
|  | SDNode *Ld = Elems[I].getNode(); | 
|  | UseCounts[Ld]++; | 
|  | if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) | 
|  | LoadMaxUses = Ld; | 
|  | } | 
|  | if (LoadMaxUses != nullptr) { | 
|  | ReplicatedVal = SDValue(LoadMaxUses, 0); | 
|  | Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); | 
|  | } else { | 
|  | // Try to use VLVGP. | 
|  | unsigned I1 = NumElements / 2 - 1; | 
|  | unsigned I2 = NumElements - 1; | 
|  | bool Def1 = !Elems[I1].isUndef(); | 
|  | bool Def2 = !Elems[I2].isUndef(); | 
|  | if (Def1 || Def2) { | 
|  | SDValue Elem1 = Elems[Def1 ? I1 : I2]; | 
|  | SDValue Elem2 = Elems[Def2 ? I2 : I1]; | 
|  | Result = DAG.getNode(ISD::BITCAST, DL, VT, | 
|  | joinDwords(DAG, DL, Elem1, Elem2)); | 
|  | Done[I1] = true; | 
|  | Done[I2] = true; | 
|  | } else | 
|  | Result = DAG.getUNDEF(VT); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Use VLVGx to insert the other elements. | 
|  | for (unsigned I = 0; I < NumElements; ++I) | 
|  | if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) | 
|  | Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], | 
|  | DAG.getConstant(I, DL, MVT::i32)); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | if (BVN->isConstant()) { | 
|  | if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) | 
|  | return Op; | 
|  |  | 
|  | // Fall back to loading it from memory. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // See if we should use shuffles to construct the vector from other vectors. | 
|  | if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) | 
|  | return Res; | 
|  |  | 
|  | // Detect SCALAR_TO_VECTOR conversions. | 
|  | if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) | 
|  | return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); | 
|  |  | 
|  | // Otherwise use buildVector to build the vector up from GPRs. | 
|  | unsigned NumElements = Op.getNumOperands(); | 
|  | SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); | 
|  | for (unsigned I = 0; I < NumElements; ++I) | 
|  | Ops[I] = Op.getOperand(I); | 
|  | return buildVector(DAG, DL, VT, Ops); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned NumElements = VT.getVectorNumElements(); | 
|  |  | 
|  | if (VSN->isSplat()) { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | unsigned Index = VSN->getSplatIndex(); | 
|  | assert(Index < VT.getVectorNumElements() && | 
|  | "Splat index should be defined and in first operand"); | 
|  | // See whether the value we're splatting is directly available as a scalar. | 
|  | if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || | 
|  | Op0.getOpcode() == ISD::BUILD_VECTOR) | 
|  | return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); | 
|  | // Otherwise keep it as a vector-to-vector operation. | 
|  | return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), | 
|  | DAG.getTargetConstant(Index, DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | GeneralShuffle GS(VT); | 
|  | for (unsigned I = 0; I < NumElements; ++I) { | 
|  | int Elt = VSN->getMaskElt(I); | 
|  | if (Elt < 0) | 
|  | GS.addUndef(); | 
|  | else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), | 
|  | unsigned(Elt) % NumElements)) | 
|  | return SDValue(); | 
|  | } | 
|  | return GS.getNode(DAG, SDLoc(VSN)); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | // Just insert the scalar into element 0 of an undefined vector. | 
|  | return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, | 
|  | Op.getValueType(), DAG.getUNDEF(Op.getValueType()), | 
|  | Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // Handle insertions of floating-point values. | 
|  | SDLoc DL(Op); | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDValue Op2 = Op.getOperand(2); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | // Insertions into constant indices of a v2f64 can be done using VPDI. | 
|  | // However, if the inserted value is a bitcast or a constant then it's | 
|  | // better to use GPRs, as below. | 
|  | if (VT == MVT::v2f64 && | 
|  | Op1.getOpcode() != ISD::BITCAST && | 
|  | Op1.getOpcode() != ISD::ConstantFP && | 
|  | Op2.getOpcode() == ISD::Constant) { | 
|  | uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); | 
|  | unsigned Mask = VT.getVectorNumElements() - 1; | 
|  | if (Index <= Mask) | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // Otherwise bitcast to the equivalent integer form and insert via a GPR. | 
|  | MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); | 
|  | MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); | 
|  | SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, | 
|  | DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), | 
|  | DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, Res); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // Handle extractions of floating-point values. | 
|  | SDLoc DL(Op); | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT VecVT = Op0.getValueType(); | 
|  |  | 
|  | // Extractions of constant indices can be done directly. | 
|  | if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { | 
|  | uint64_t Index = CIndexN->getZExtValue(); | 
|  | unsigned Mask = VecVT.getVectorNumElements() - 1; | 
|  | if (Index <= Mask) | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // Otherwise bitcast to the equivalent integer form and extract via a GPR. | 
|  | MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); | 
|  | MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); | 
|  | SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, | 
|  | DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, Res); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering:: | 
|  | lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDValue PackedOp = Op.getOperand(0); | 
|  | EVT OutVT = Op.getValueType(); | 
|  | EVT InVT = PackedOp.getValueType(); | 
|  | unsigned ToBits = OutVT.getScalarSizeInBits(); | 
|  | unsigned FromBits = InVT.getScalarSizeInBits(); | 
|  | do { | 
|  | FromBits *= 2; | 
|  | EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), | 
|  | SystemZ::VectorBits / FromBits); | 
|  | PackedOp = | 
|  | DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); | 
|  | } while (FromBits != ToBits); | 
|  | return PackedOp; | 
|  | } | 
|  |  | 
|  | // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. | 
|  | SDValue SystemZTargetLowering:: | 
|  | lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDValue PackedOp = Op.getOperand(0); | 
|  | SDLoc DL(Op); | 
|  | EVT OutVT = Op.getValueType(); | 
|  | EVT InVT = PackedOp.getValueType(); | 
|  | unsigned InNumElts = InVT.getVectorNumElements(); | 
|  | unsigned OutNumElts = OutVT.getVectorNumElements(); | 
|  | unsigned NumInPerOut = InNumElts / OutNumElts; | 
|  |  | 
|  | SDValue ZeroVec = | 
|  | DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); | 
|  |  | 
|  | SmallVector<int, 16> Mask(InNumElts); | 
|  | unsigned ZeroVecElt = InNumElts; | 
|  | for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { | 
|  | unsigned MaskElt = PackedElt * NumInPerOut; | 
|  | unsigned End = MaskElt + NumInPerOut - 1; | 
|  | for (; MaskElt < End; MaskElt++) | 
|  | Mask[MaskElt] = ZeroVecElt++; | 
|  | Mask[MaskElt] = PackedElt; | 
|  | } | 
|  | SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); | 
|  | return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, | 
|  | unsigned ByScalar) const { | 
|  | // Look for cases where a vector shift can use the *_BY_SCALAR form. | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned ElemBitSize = VT.getScalarSizeInBits(); | 
|  |  | 
|  | // See whether the shift vector is a splat represented as BUILD_VECTOR. | 
|  | if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { | 
|  | APInt SplatBits, SplatUndef; | 
|  | unsigned SplatBitSize; | 
|  | bool HasAnyUndefs; | 
|  | // Check for constant splats.  Use ElemBitSize as the minimum element | 
|  | // width and reject splats that need wider elements. | 
|  | if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, | 
|  | ElemBitSize, true) && | 
|  | SplatBitSize == ElemBitSize) { | 
|  | SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, | 
|  | DL, MVT::i32); | 
|  | return DAG.getNode(ByScalar, DL, VT, Op0, Shift); | 
|  | } | 
|  | // Check for variable splats. | 
|  | BitVector UndefElements; | 
|  | SDValue Splat = BVN->getSplatValue(&UndefElements); | 
|  | if (Splat) { | 
|  | // Since i32 is the smallest legal type, we either need a no-op | 
|  | // or a truncation. | 
|  | SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); | 
|  | return DAG.getNode(ByScalar, DL, VT, Op0, Shift); | 
|  | } | 
|  | } | 
|  |  | 
|  | // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, | 
|  | // and the shift amount is directly available in a GPR. | 
|  | if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { | 
|  | if (VSN->isSplat()) { | 
|  | SDValue VSNOp0 = VSN->getOperand(0); | 
|  | unsigned Index = VSN->getSplatIndex(); | 
|  | assert(Index < VT.getVectorNumElements() && | 
|  | "Splat index should be defined and in first operand"); | 
|  | if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || | 
|  | VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | // Since i32 is the smallest legal type, we either need a no-op | 
|  | // or a truncation. | 
|  | SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, | 
|  | VSNOp0.getOperand(Index)); | 
|  | return DAG.getNode(ByScalar, DL, VT, Op0, Shift); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise just treat the current form as legal. | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | MVT ResultVT = Op.getSimpleValueType(); | 
|  | SDValue Arg = Op.getOperand(0); | 
|  | auto CNode = cast<ConstantSDNode>(Op.getOperand(1)); | 
|  | unsigned Check = CNode->getZExtValue(); | 
|  |  | 
|  | unsigned TDCMask = 0; | 
|  | if (Check & fcSNan) | 
|  | TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS; | 
|  | if (Check & fcQNan) | 
|  | TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS; | 
|  | if (Check & fcPosInf) | 
|  | TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS; | 
|  | if (Check & fcNegInf) | 
|  | TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS; | 
|  | if (Check & fcPosNormal) | 
|  | TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS; | 
|  | if (Check & fcNegNormal) | 
|  | TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS; | 
|  | if (Check & fcPosSubnormal) | 
|  | TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS; | 
|  | if (Check & fcNegSubnormal) | 
|  | TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS; | 
|  | if (Check & fcPosZero) | 
|  | TDCMask |= SystemZ::TDCMASK_ZERO_PLUS; | 
|  | if (Check & fcNegZero) | 
|  | TDCMask |= SystemZ::TDCMASK_ZERO_MINUS; | 
|  | SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64); | 
|  |  | 
|  | SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV); | 
|  | return getCCResult(DAG, Intr); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::LowerOperation(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::FRAMEADDR: | 
|  | return lowerFRAMEADDR(Op, DAG); | 
|  | case ISD::RETURNADDR: | 
|  | return lowerRETURNADDR(Op, DAG); | 
|  | case ISD::BR_CC: | 
|  | return lowerBR_CC(Op, DAG); | 
|  | case ISD::SELECT_CC: | 
|  | return lowerSELECT_CC(Op, DAG); | 
|  | case ISD::SETCC: | 
|  | return lowerSETCC(Op, DAG); | 
|  | case ISD::STRICT_FSETCC: | 
|  | return lowerSTRICT_FSETCC(Op, DAG, false); | 
|  | case ISD::STRICT_FSETCCS: | 
|  | return lowerSTRICT_FSETCC(Op, DAG, true); | 
|  | case ISD::GlobalAddress: | 
|  | return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); | 
|  | case ISD::GlobalTLSAddress: | 
|  | return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); | 
|  | case ISD::BlockAddress: | 
|  | return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); | 
|  | case ISD::JumpTable: | 
|  | return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); | 
|  | case ISD::ConstantPool: | 
|  | return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); | 
|  | case ISD::BITCAST: | 
|  | return lowerBITCAST(Op, DAG); | 
|  | case ISD::VASTART: | 
|  | return lowerVASTART(Op, DAG); | 
|  | case ISD::VACOPY: | 
|  | return lowerVACOPY(Op, DAG); | 
|  | case ISD::DYNAMIC_STACKALLOC: | 
|  | return lowerDYNAMIC_STACKALLOC(Op, DAG); | 
|  | case ISD::GET_DYNAMIC_AREA_OFFSET: | 
|  | return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); | 
|  | case ISD::SMUL_LOHI: | 
|  | return lowerSMUL_LOHI(Op, DAG); | 
|  | case ISD::UMUL_LOHI: | 
|  | return lowerUMUL_LOHI(Op, DAG); | 
|  | case ISD::SDIVREM: | 
|  | return lowerSDIVREM(Op, DAG); | 
|  | case ISD::UDIVREM: | 
|  | return lowerUDIVREM(Op, DAG); | 
|  | case ISD::SADDO: | 
|  | case ISD::SSUBO: | 
|  | case ISD::UADDO: | 
|  | case ISD::USUBO: | 
|  | return lowerXALUO(Op, DAG); | 
|  | case ISD::UADDO_CARRY: | 
|  | case ISD::USUBO_CARRY: | 
|  | return lowerUADDSUBO_CARRY(Op, DAG); | 
|  | case ISD::OR: | 
|  | return lowerOR(Op, DAG); | 
|  | case ISD::CTPOP: | 
|  | return lowerCTPOP(Op, DAG); | 
|  | case ISD::ATOMIC_FENCE: | 
|  | return lowerATOMIC_FENCE(Op, DAG); | 
|  | case ISD::ATOMIC_SWAP: | 
|  | return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); | 
|  | case ISD::ATOMIC_STORE: | 
|  | return lowerATOMIC_STORE(Op, DAG); | 
|  | case ISD::ATOMIC_LOAD: | 
|  | return lowerATOMIC_LOAD(Op, DAG); | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | return lowerATOMIC_LOAD_SUB(Op, DAG); | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); | 
|  | case ISD::ATOMIC_LOAD_MIN: | 
|  | return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); | 
|  | case ISD::ATOMIC_LOAD_MAX: | 
|  | return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); | 
|  | case ISD::ATOMIC_LOAD_UMIN: | 
|  | return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); | 
|  | case ISD::ATOMIC_LOAD_UMAX: | 
|  | return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); | 
|  | case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: | 
|  | return lowerATOMIC_CMP_SWAP(Op, DAG); | 
|  | case ISD::STACKSAVE: | 
|  | return lowerSTACKSAVE(Op, DAG); | 
|  | case ISD::STACKRESTORE: | 
|  | return lowerSTACKRESTORE(Op, DAG); | 
|  | case ISD::PREFETCH: | 
|  | return lowerPREFETCH(Op, DAG); | 
|  | case ISD::INTRINSIC_W_CHAIN: | 
|  | return lowerINTRINSIC_W_CHAIN(Op, DAG); | 
|  | case ISD::INTRINSIC_WO_CHAIN: | 
|  | return lowerINTRINSIC_WO_CHAIN(Op, DAG); | 
|  | case ISD::BUILD_VECTOR: | 
|  | return lowerBUILD_VECTOR(Op, DAG); | 
|  | case ISD::VECTOR_SHUFFLE: | 
|  | return lowerVECTOR_SHUFFLE(Op, DAG); | 
|  | case ISD::SCALAR_TO_VECTOR: | 
|  | return lowerSCALAR_TO_VECTOR(Op, DAG); | 
|  | case ISD::INSERT_VECTOR_ELT: | 
|  | return lowerINSERT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | return lowerEXTRACT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::SIGN_EXTEND_VECTOR_INREG: | 
|  | return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); | 
|  | case ISD::ZERO_EXTEND_VECTOR_INREG: | 
|  | return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); | 
|  | case ISD::SHL: | 
|  | return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); | 
|  | case ISD::SRL: | 
|  | return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); | 
|  | case ISD::SRA: | 
|  | return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); | 
|  | case ISD::IS_FPCLASS: | 
|  | return lowerIS_FPCLASS(Op, DAG); | 
|  | case ISD::GET_ROUNDING: | 
|  | return lowerGET_ROUNDING(Op, DAG); | 
|  | default: | 
|  | llvm_unreachable("Unexpected node to lower"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Lower operations with invalid operand or result types (currently used | 
|  | // only for 128-bit integer types). | 
|  | void | 
|  | SystemZTargetLowering::LowerOperationWrapper(SDNode *N, | 
|  | SmallVectorImpl<SDValue> &Results, | 
|  | SelectionDAG &DAG) const { | 
|  | switch (N->getOpcode()) { | 
|  | case ISD::ATOMIC_LOAD: { | 
|  | SDLoc DL(N); | 
|  | SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); | 
|  | SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; | 
|  | MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); | 
|  | SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, | 
|  | DL, Tys, Ops, MVT::i128, MMO); | 
|  | Results.push_back(lowerGR128ToI128(DAG, Res)); | 
|  | Results.push_back(Res.getValue(1)); | 
|  | break; | 
|  | } | 
|  | case ISD::ATOMIC_STORE: { | 
|  | SDLoc DL(N); | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other); | 
|  | SDValue Ops[] = { N->getOperand(0), | 
|  | lowerI128ToGR128(DAG, N->getOperand(2)), | 
|  | N->getOperand(1) }; | 
|  | MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); | 
|  | SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, | 
|  | DL, Tys, Ops, MVT::i128, MMO); | 
|  | // We have to enforce sequential consistency by performing a | 
|  | // serialization operation after the store. | 
|  | if (cast<AtomicSDNode>(N)->getSuccessOrdering() == | 
|  | AtomicOrdering::SequentiallyConsistent) | 
|  | Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, | 
|  | MVT::Other, Res), 0); | 
|  | Results.push_back(Res); | 
|  | break; | 
|  | } | 
|  | case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { | 
|  | SDLoc DL(N); | 
|  | SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); | 
|  | SDValue Ops[] = { N->getOperand(0), N->getOperand(1), | 
|  | lowerI128ToGR128(DAG, N->getOperand(2)), | 
|  | lowerI128ToGR128(DAG, N->getOperand(3)) }; | 
|  | MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); | 
|  | SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, | 
|  | DL, Tys, Ops, MVT::i128, MMO); | 
|  | SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), | 
|  | SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); | 
|  | Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); | 
|  | Results.push_back(lowerGR128ToI128(DAG, Res)); | 
|  | Results.push_back(Success); | 
|  | Results.push_back(Res.getValue(2)); | 
|  | break; | 
|  | } | 
|  | case ISD::BITCAST: { | 
|  | SDValue Src = N->getOperand(0); | 
|  | if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 && | 
|  | !useSoftFloat()) { | 
|  | SDLoc DL(N); | 
|  | SDValue Lo, Hi; | 
|  | if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) { | 
|  | SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src); | 
|  | Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, | 
|  | DAG.getConstant(1, DL, MVT::i32)); | 
|  | Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, | 
|  | DAG.getConstant(0, DL, MVT::i32)); | 
|  | } else { | 
|  | assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass && | 
|  | "Unrecognized register class for f128."); | 
|  | SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, | 
|  | DL, MVT::f64, Src); | 
|  | SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, | 
|  | DL, MVT::f64, Src); | 
|  | Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP); | 
|  | Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP); | 
|  | } | 
|  | Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("Unexpected node to lower"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | SystemZTargetLowering::ReplaceNodeResults(SDNode *N, | 
|  | SmallVectorImpl<SDValue> &Results, | 
|  | SelectionDAG &DAG) const { | 
|  | return LowerOperationWrapper(N, Results, DAG); | 
|  | } | 
|  |  | 
|  | const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME | 
|  | switch ((SystemZISD::NodeType)Opcode) { | 
|  | case SystemZISD::FIRST_NUMBER: break; | 
|  | OPCODE(RET_GLUE); | 
|  | OPCODE(CALL); | 
|  | OPCODE(SIBCALL); | 
|  | OPCODE(TLS_GDCALL); | 
|  | OPCODE(TLS_LDCALL); | 
|  | OPCODE(PCREL_WRAPPER); | 
|  | OPCODE(PCREL_OFFSET); | 
|  | OPCODE(ICMP); | 
|  | OPCODE(FCMP); | 
|  | OPCODE(STRICT_FCMP); | 
|  | OPCODE(STRICT_FCMPS); | 
|  | OPCODE(TM); | 
|  | OPCODE(BR_CCMASK); | 
|  | OPCODE(SELECT_CCMASK); | 
|  | OPCODE(ADJDYNALLOC); | 
|  | OPCODE(PROBED_ALLOCA); | 
|  | OPCODE(POPCNT); | 
|  | OPCODE(SMUL_LOHI); | 
|  | OPCODE(UMUL_LOHI); | 
|  | OPCODE(SDIVREM); | 
|  | OPCODE(UDIVREM); | 
|  | OPCODE(SADDO); | 
|  | OPCODE(SSUBO); | 
|  | OPCODE(UADDO); | 
|  | OPCODE(USUBO); | 
|  | OPCODE(ADDCARRY); | 
|  | OPCODE(SUBCARRY); | 
|  | OPCODE(GET_CCMASK); | 
|  | OPCODE(MVC); | 
|  | OPCODE(NC); | 
|  | OPCODE(OC); | 
|  | OPCODE(XC); | 
|  | OPCODE(CLC); | 
|  | OPCODE(MEMSET_MVC); | 
|  | OPCODE(STPCPY); | 
|  | OPCODE(STRCMP); | 
|  | OPCODE(SEARCH_STRING); | 
|  | OPCODE(IPM); | 
|  | OPCODE(TBEGIN); | 
|  | OPCODE(TBEGIN_NOFLOAT); | 
|  | OPCODE(TEND); | 
|  | OPCODE(BYTE_MASK); | 
|  | OPCODE(ROTATE_MASK); | 
|  | OPCODE(REPLICATE); | 
|  | OPCODE(JOIN_DWORDS); | 
|  | OPCODE(SPLAT); | 
|  | OPCODE(MERGE_HIGH); | 
|  | OPCODE(MERGE_LOW); | 
|  | OPCODE(SHL_DOUBLE); | 
|  | OPCODE(PERMUTE_DWORDS); | 
|  | OPCODE(PERMUTE); | 
|  | OPCODE(PACK); | 
|  | OPCODE(PACKS_CC); | 
|  | OPCODE(PACKLS_CC); | 
|  | OPCODE(UNPACK_HIGH); | 
|  | OPCODE(UNPACKL_HIGH); | 
|  | OPCODE(UNPACK_LOW); | 
|  | OPCODE(UNPACKL_LOW); | 
|  | OPCODE(VSHL_BY_SCALAR); | 
|  | OPCODE(VSRL_BY_SCALAR); | 
|  | OPCODE(VSRA_BY_SCALAR); | 
|  | OPCODE(VSUM); | 
|  | OPCODE(VICMPE); | 
|  | OPCODE(VICMPH); | 
|  | OPCODE(VICMPHL); | 
|  | OPCODE(VICMPES); | 
|  | OPCODE(VICMPHS); | 
|  | OPCODE(VICMPHLS); | 
|  | OPCODE(VFCMPE); | 
|  | OPCODE(STRICT_VFCMPE); | 
|  | OPCODE(STRICT_VFCMPES); | 
|  | OPCODE(VFCMPH); | 
|  | OPCODE(STRICT_VFCMPH); | 
|  | OPCODE(STRICT_VFCMPHS); | 
|  | OPCODE(VFCMPHE); | 
|  | OPCODE(STRICT_VFCMPHE); | 
|  | OPCODE(STRICT_VFCMPHES); | 
|  | OPCODE(VFCMPES); | 
|  | OPCODE(VFCMPHS); | 
|  | OPCODE(VFCMPHES); | 
|  | OPCODE(VFTCI); | 
|  | OPCODE(VEXTEND); | 
|  | OPCODE(STRICT_VEXTEND); | 
|  | OPCODE(VROUND); | 
|  | OPCODE(STRICT_VROUND); | 
|  | OPCODE(VTM); | 
|  | OPCODE(VFAE_CC); | 
|  | OPCODE(VFAEZ_CC); | 
|  | OPCODE(VFEE_CC); | 
|  | OPCODE(VFEEZ_CC); | 
|  | OPCODE(VFENE_CC); | 
|  | OPCODE(VFENEZ_CC); | 
|  | OPCODE(VISTR_CC); | 
|  | OPCODE(VSTRC_CC); | 
|  | OPCODE(VSTRCZ_CC); | 
|  | OPCODE(VSTRS_CC); | 
|  | OPCODE(VSTRSZ_CC); | 
|  | OPCODE(TDC); | 
|  | OPCODE(ATOMIC_SWAPW); | 
|  | OPCODE(ATOMIC_LOADW_ADD); | 
|  | OPCODE(ATOMIC_LOADW_SUB); | 
|  | OPCODE(ATOMIC_LOADW_AND); | 
|  | OPCODE(ATOMIC_LOADW_OR); | 
|  | OPCODE(ATOMIC_LOADW_XOR); | 
|  | OPCODE(ATOMIC_LOADW_NAND); | 
|  | OPCODE(ATOMIC_LOADW_MIN); | 
|  | OPCODE(ATOMIC_LOADW_MAX); | 
|  | OPCODE(ATOMIC_LOADW_UMIN); | 
|  | OPCODE(ATOMIC_LOADW_UMAX); | 
|  | OPCODE(ATOMIC_CMP_SWAPW); | 
|  | OPCODE(ATOMIC_CMP_SWAP); | 
|  | OPCODE(ATOMIC_LOAD_128); | 
|  | OPCODE(ATOMIC_STORE_128); | 
|  | OPCODE(ATOMIC_CMP_SWAP_128); | 
|  | OPCODE(LRV); | 
|  | OPCODE(STRV); | 
|  | OPCODE(VLER); | 
|  | OPCODE(VSTER); | 
|  | OPCODE(PREFETCH); | 
|  | } | 
|  | return nullptr; | 
|  | #undef OPCODE | 
|  | } | 
|  |  | 
|  | // Return true if VT is a vector whose elements are a whole number of bytes | 
|  | // in width. Also check for presence of vector support. | 
|  | bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { | 
|  | if (!Subtarget.hasVector()) | 
|  | return false; | 
|  |  | 
|  | return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); | 
|  | } | 
|  |  | 
|  | // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT | 
|  | // producing a result of type ResVT.  Op is a possibly bitcast version | 
|  | // of the input vector and Index is the index (based on type VecVT) that | 
|  | // should be extracted.  Return the new extraction if a simplification | 
|  | // was possible or if Force is true. | 
|  | SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, | 
|  | EVT VecVT, SDValue Op, | 
|  | unsigned Index, | 
|  | DAGCombinerInfo &DCI, | 
|  | bool Force) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  |  | 
|  | // The number of bytes being extracted. | 
|  | unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); | 
|  |  | 
|  | for (;;) { | 
|  | unsigned Opcode = Op.getOpcode(); | 
|  | if (Opcode == ISD::BITCAST) | 
|  | // Look through bitcasts. | 
|  | Op = Op.getOperand(0); | 
|  | else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && | 
|  | canTreatAsByteVector(Op.getValueType())) { | 
|  | // Get a VPERM-like permute mask and see whether the bytes covered | 
|  | // by the extracted element are a contiguous sequence from one | 
|  | // source operand. | 
|  | SmallVector<int, SystemZ::VectorBytes> Bytes; | 
|  | if (!getVPermMask(Op, Bytes)) | 
|  | break; | 
|  | int First; | 
|  | if (!getShuffleInput(Bytes, Index * BytesPerElement, | 
|  | BytesPerElement, First)) | 
|  | break; | 
|  | if (First < 0) | 
|  | return DAG.getUNDEF(ResVT); | 
|  | // Make sure the contiguous sequence starts at a multiple of the | 
|  | // original element size. | 
|  | unsigned Byte = unsigned(First) % Bytes.size(); | 
|  | if (Byte % BytesPerElement != 0) | 
|  | break; | 
|  | // We can get the extracted value directly from an input. | 
|  | Index = Byte / BytesPerElement; | 
|  | Op = Op.getOperand(unsigned(First) / Bytes.size()); | 
|  | Force = true; | 
|  | } else if (Opcode == ISD::BUILD_VECTOR && | 
|  | canTreatAsByteVector(Op.getValueType())) { | 
|  | // We can only optimize this case if the BUILD_VECTOR elements are | 
|  | // at least as wide as the extracted value. | 
|  | EVT OpVT = Op.getValueType(); | 
|  | unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); | 
|  | if (OpBytesPerElement < BytesPerElement) | 
|  | break; | 
|  | // Make sure that the least-significant bit of the extracted value | 
|  | // is the least significant bit of an input. | 
|  | unsigned End = (Index + 1) * BytesPerElement; | 
|  | if (End % OpBytesPerElement != 0) | 
|  | break; | 
|  | // We're extracting the low part of one operand of the BUILD_VECTOR. | 
|  | Op = Op.getOperand(End / OpBytesPerElement - 1); | 
|  | if (!Op.getValueType().isInteger()) { | 
|  | EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); | 
|  | Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | } | 
|  | EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); | 
|  | Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); | 
|  | if (VT != ResVT) { | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); | 
|  | } | 
|  | return Op; | 
|  | } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || | 
|  | Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || | 
|  | Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && | 
|  | canTreatAsByteVector(Op.getValueType()) && | 
|  | canTreatAsByteVector(Op.getOperand(0).getValueType())) { | 
|  | // Make sure that only the unextended bits are significant. | 
|  | EVT ExtVT = Op.getValueType(); | 
|  | EVT OpVT = Op.getOperand(0).getValueType(); | 
|  | unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); | 
|  | unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); | 
|  | unsigned Byte = Index * BytesPerElement; | 
|  | unsigned SubByte = Byte % ExtBytesPerElement; | 
|  | unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; | 
|  | if (SubByte < MinSubByte || | 
|  | SubByte + BytesPerElement > ExtBytesPerElement) | 
|  | break; | 
|  | // Get the byte offset of the unextended element | 
|  | Byte = Byte / ExtBytesPerElement * OpBytesPerElement; | 
|  | // ...then add the byte offset relative to that element. | 
|  | Byte += SubByte - MinSubByte; | 
|  | if (Byte % BytesPerElement != 0) | 
|  | break; | 
|  | Op = Op.getOperand(0); | 
|  | Index = Byte / BytesPerElement; | 
|  | Force = true; | 
|  | } else | 
|  | break; | 
|  | } | 
|  | if (Force) { | 
|  | if (Op.getValueType() != VecVT) { | 
|  | Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | } | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, | 
|  | DAG.getConstant(Index, DL, MVT::i32)); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Optimize vector operations in scalar value Op on the basis that Op | 
|  | // is truncated to TruncVT. | 
|  | SDValue SystemZTargetLowering::combineTruncateExtract( | 
|  | const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { | 
|  | // If we have (trunc (extract_vector_elt X, Y)), try to turn it into | 
|  | // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements | 
|  | // of type TruncVT. | 
|  | if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | TruncVT.getSizeInBits() % 8 == 0) { | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | EVT VecVT = Vec.getValueType(); | 
|  | if (canTreatAsByteVector(VecVT)) { | 
|  | if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); | 
|  | unsigned TruncBytes = TruncVT.getStoreSize(); | 
|  | if (BytesPerElement % TruncBytes == 0) { | 
|  | // Calculate the value of Y' in the above description.  We are | 
|  | // splitting the original elements into Scale equal-sized pieces | 
|  | // and for truncation purposes want the last (least-significant) | 
|  | // of these pieces for IndexN.  This is easiest to do by calculating | 
|  | // the start index of the following element and then subtracting 1. | 
|  | unsigned Scale = BytesPerElement / TruncBytes; | 
|  | unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; | 
|  |  | 
|  | // Defer the creation of the bitcast from X to combineExtract, | 
|  | // which might be able to optimize the extraction. | 
|  | VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), | 
|  | VecVT.getStoreSize() / TruncBytes); | 
|  | EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); | 
|  | return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineZERO_EXTEND( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { | 
|  | auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); | 
|  | auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (TrueOp && FalseOp) { | 
|  | SDLoc DL(N0); | 
|  | SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), | 
|  | DAG.getConstant(FalseOp->getZExtValue(), DL, VT), | 
|  | N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; | 
|  | SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); | 
|  | // If N0 has multiple uses, change other uses as well. | 
|  | if (!N0.hasOneUse()) { | 
|  | SDValue TruncSelect = | 
|  | DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); | 
|  | DCI.CombineTo(N0.getNode(), TruncSelect); | 
|  | } | 
|  | return NewSelect; | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) | 
|  | // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) | 
|  | // into (select_cc LHS, RHS, -1, 0, COND) | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); | 
|  | if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) | 
|  | N0 = N0.getOperand(0); | 
|  | if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { | 
|  | SDLoc DL(N0); | 
|  | SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), | 
|  | N0.getOperand(2) }; | 
|  | return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineSIGN_EXTEND( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | // Convert (sext (ashr (shl X, C1), C2)) to | 
|  | // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as | 
|  | // cheap as narrower ones. | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { | 
|  | auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | SDValue Inner = N0.getOperand(0); | 
|  | if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { | 
|  | if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { | 
|  | unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); | 
|  | unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; | 
|  | unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; | 
|  | EVT ShiftVT = N0.getOperand(1).getValueType(); | 
|  | SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, | 
|  | Inner.getOperand(0)); | 
|  | SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, | 
|  | DAG.getConstant(NewShlAmt, SDLoc(Inner), | 
|  | ShiftVT)); | 
|  | return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, | 
|  | DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); | 
|  | } | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineMERGE( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  | if (Op0.getOpcode() == ISD::BITCAST) | 
|  | Op0 = Op0.getOperand(0); | 
|  | if (ISD::isBuildVectorAllZeros(Op0.getNode())) { | 
|  | // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF | 
|  | // for v4f32. | 
|  | if (Op1 == N->getOperand(0)) | 
|  | return Op1; | 
|  | // (z_merge_? 0, X) -> (z_unpackl_? 0, X). | 
|  | EVT VT = Op1.getValueType(); | 
|  | unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); | 
|  | if (ElemBytes <= 4) { | 
|  | Opcode = (Opcode == SystemZISD::MERGE_HIGH ? | 
|  | SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); | 
|  | EVT InVT = VT.changeVectorElementTypeToInteger(); | 
|  | EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), | 
|  | SystemZ::VectorBytes / ElemBytes / 2); | 
|  | if (VT != InVT) { | 
|  | Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); | 
|  | DCI.AddToWorklist(Op1.getNode()); | 
|  | } | 
|  | SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineLOAD( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT LdVT = N->getValueType(0); | 
|  | if (LdVT.isVector() || LdVT.isInteger()) | 
|  | return SDValue(); | 
|  | // Transform a scalar load that is REPLICATEd as well as having other | 
|  | // use(s) to the form where the other use(s) use the first element of the | 
|  | // REPLICATE instead of the load. Otherwise instruction selection will not | 
|  | // produce a VLREP. Avoid extracting to a GPR, so only do this for floating | 
|  | // point loads. | 
|  |  | 
|  | SDValue Replicate; | 
|  | SmallVector<SDNode*, 8> OtherUses; | 
|  | for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | if (UI->getOpcode() == SystemZISD::REPLICATE) { | 
|  | if (Replicate) | 
|  | return SDValue(); // Should never happen | 
|  | Replicate = SDValue(*UI, 0); | 
|  | } | 
|  | else if (UI.getUse().getResNo() == 0) | 
|  | OtherUses.push_back(*UI); | 
|  | } | 
|  | if (!Replicate || OtherUses.empty()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, | 
|  | Replicate, DAG.getConstant(0, DL, MVT::i32)); | 
|  | // Update uses of the loaded Value while preserving old chains. | 
|  | for (SDNode *U : OtherUses) { | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (SDValue Op : U->ops()) | 
|  | Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); | 
|  | DAG.UpdateNodeOperands(U, Ops); | 
|  | } | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { | 
|  | if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) | 
|  | return true; | 
|  | if (Subtarget.hasVectorEnhancements2()) | 
|  | if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { | 
|  | if (!VT.isVector() || !VT.isSimple() || | 
|  | VT.getSizeInBits() != 128 || | 
|  | VT.getScalarSizeInBits() % 8 != 0) | 
|  | return false; | 
|  |  | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | for (unsigned i = 0; i < NumElts; ++i) { | 
|  | if (M[i] < 0) continue; // ignore UNDEF indices | 
|  | if ((unsigned) M[i] != NumElts - 1 - i) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) { | 
|  | for (auto *U : StoredVal->uses()) { | 
|  | if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) { | 
|  | EVT CurrMemVT = ST->getMemoryVT().getScalarType(); | 
|  | if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16) | 
|  | continue; | 
|  | } else if (isa<BuildVectorSDNode>(U)) { | 
|  | SDValue BuildVector = SDValue(U, 0); | 
|  | if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) && | 
|  | isOnlyUsedByStores(BuildVector, DAG)) | 
|  | continue; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineSTORE( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | auto *SN = cast<StoreSDNode>(N); | 
|  | auto &Op1 = N->getOperand(1); | 
|  | EVT MemVT = SN->getMemoryVT(); | 
|  | // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better | 
|  | // for the extraction to be done on a vMiN value, so that we can use VSTE. | 
|  | // If X has wider elements then convert it to: | 
|  | // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). | 
|  | if (MemVT.isInteger() && SN->isTruncatingStore()) { | 
|  | if (SDValue Value = | 
|  | combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { | 
|  | DCI.AddToWorklist(Value.getNode()); | 
|  |  | 
|  | // Rewrite the store with the new form of stored value. | 
|  | return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, | 
|  | SN->getBasePtr(), SN->getMemoryVT(), | 
|  | SN->getMemOperand()); | 
|  | } | 
|  | } | 
|  | // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR | 
|  | if (!SN->isTruncatingStore() && | 
|  | Op1.getOpcode() == ISD::BSWAP && | 
|  | Op1.getNode()->hasOneUse() && | 
|  | canLoadStoreByteSwapped(Op1.getValueType())) { | 
|  |  | 
|  | SDValue BSwapOp = Op1.getOperand(0); | 
|  |  | 
|  | if (BSwapOp.getValueType() == MVT::i16) | 
|  | BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); | 
|  |  | 
|  | SDValue Ops[] = { | 
|  | N->getOperand(0), BSwapOp, N->getOperand(2) | 
|  | }; | 
|  |  | 
|  | return | 
|  | DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), | 
|  | Ops, MemVT, SN->getMemOperand()); | 
|  | } | 
|  | // Combine STORE (element-swap) into VSTER | 
|  | if (!SN->isTruncatingStore() && | 
|  | Op1.getOpcode() == ISD::VECTOR_SHUFFLE && | 
|  | Op1.getNode()->hasOneUse() && | 
|  | Subtarget.hasVectorEnhancements2()) { | 
|  | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); | 
|  | ArrayRef<int> ShuffleMask = SVN->getMask(); | 
|  | if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { | 
|  | SDValue Ops[] = { | 
|  | N->getOperand(0), Op1.getOperand(0), N->getOperand(2) | 
|  | }; | 
|  |  | 
|  | return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), | 
|  | DAG.getVTList(MVT::Other), | 
|  | Ops, MemVT, SN->getMemOperand()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Replicate a reg or immediate with VREP instead of scalar multiply or | 
|  | // immediate load. It seems best to do this during the first DAGCombine as | 
|  | // it is straight-forward to handle the zero-extend node in the initial | 
|  | // DAG, and also not worry about the keeping the new MemVT legal (e.g. when | 
|  | // extracting an i16 element from a v16i8 vector). | 
|  | if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes && | 
|  | isOnlyUsedByStores(Op1, DAG)) { | 
|  | SDValue Word = SDValue(); | 
|  | EVT WordVT; | 
|  |  | 
|  | // Find a replicated immediate and return it if found in Word and its | 
|  | // type in WordVT. | 
|  | auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) { | 
|  | // Some constants are better handled with a scalar store. | 
|  | if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() || | 
|  | isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2) | 
|  | return; | 
|  | SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue())); | 
|  | if (VCI.isVectorConstantLegal(Subtarget) && | 
|  | VCI.Opcode == SystemZISD::REPLICATE) { | 
|  | Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32); | 
|  | WordVT = VCI.VecVT.getScalarType(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Find a replicated register and return it if found in Word and its type | 
|  | // in WordVT. | 
|  | auto FindReplicatedReg = [&](SDValue MulOp) { | 
|  | EVT MulVT = MulOp.getValueType(); | 
|  | if (MulOp->getOpcode() == ISD::MUL && | 
|  | (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) { | 
|  | // Find a zero extended value and its type. | 
|  | SDValue LHS = MulOp->getOperand(0); | 
|  | if (LHS->getOpcode() == ISD::ZERO_EXTEND) | 
|  | WordVT = LHS->getOperand(0).getValueType(); | 
|  | else if (LHS->getOpcode() == ISD::AssertZext) | 
|  | WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT(); | 
|  | else | 
|  | return; | 
|  | // Find a replicating constant, e.g. 0x00010001. | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) { | 
|  | SystemZVectorConstantInfo VCI( | 
|  | APInt(MulVT.getSizeInBits(), C->getZExtValue())); | 
|  | if (VCI.isVectorConstantLegal(Subtarget) && | 
|  | VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 && | 
|  | WordVT == VCI.VecVT.getScalarType()) | 
|  | Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | if (isa<BuildVectorSDNode>(Op1) && | 
|  | DAG.isSplatValue(Op1, true/*AllowUndefs*/)) { | 
|  | SDValue SplatVal = Op1->getOperand(0); | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(SplatVal)) | 
|  | FindReplicatedImm(C, SplatVal.getValueType().getStoreSize()); | 
|  | else | 
|  | FindReplicatedReg(SplatVal); | 
|  | } else { | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(Op1)) | 
|  | FindReplicatedImm(C, MemVT.getStoreSize()); | 
|  | else | 
|  | FindReplicatedReg(Op1); | 
|  | } | 
|  |  | 
|  | if (Word != SDValue()) { | 
|  | assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 && | 
|  | "Bad type handling"); | 
|  | unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits(); | 
|  | EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts); | 
|  | SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word); | 
|  | return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal, | 
|  | SN->getBasePtr(), SN->getMemOperand()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | // Combine element-swap (LOAD) into VLER | 
|  | if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && | 
|  | N->getOperand(0).hasOneUse() && | 
|  | Subtarget.hasVectorEnhancements2()) { | 
|  | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); | 
|  | ArrayRef<int> ShuffleMask = SVN->getMask(); | 
|  | if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { | 
|  | SDValue Load = N->getOperand(0); | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Load); | 
|  |  | 
|  | // Create the element-swapping load. | 
|  | SDValue Ops[] = { | 
|  | LD->getChain(),    // Chain | 
|  | LD->getBasePtr()   // Ptr | 
|  | }; | 
|  | SDValue ESLoad = | 
|  | DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), | 
|  | DAG.getVTList(LD->getValueType(0), MVT::Other), | 
|  | Ops, LD->getMemoryVT(), LD->getMemOperand()); | 
|  |  | 
|  | // First, combine the VECTOR_SHUFFLE away.  This makes the value produced | 
|  | // by the load dead. | 
|  | DCI.CombineTo(N, ESLoad); | 
|  |  | 
|  | // Next, combine the load away, we give it a bogus result value but a real | 
|  | // chain result.  The result value is dead because the shuffle is dead. | 
|  | DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); | 
|  |  | 
|  | // Return N so it doesn't get rechecked! | 
|  | return SDValue(N, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  |  | 
|  | if (!Subtarget.hasVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Look through bitcasts that retain the number of vector elements. | 
|  | SDValue Op = N->getOperand(0); | 
|  | if (Op.getOpcode() == ISD::BITCAST && | 
|  | Op.getValueType().isVector() && | 
|  | Op.getOperand(0).getValueType().isVector() && | 
|  | Op.getValueType().getVectorNumElements() == | 
|  | Op.getOperand(0).getValueType().getVectorNumElements()) | 
|  | Op = Op.getOperand(0); | 
|  |  | 
|  | // Pull BSWAP out of a vector extraction. | 
|  | if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { | 
|  | EVT VecVT = Op.getValueType(); | 
|  | EVT EltVT = VecVT.getVectorElementType(); | 
|  | Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, | 
|  | Op.getOperand(0), N->getOperand(1)); | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); | 
|  | if (EltVT != N->getValueType(0)) { | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); | 
|  | } | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // Try to simplify a vector extraction. | 
|  | if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | EVT VecVT = Op0.getValueType(); | 
|  | return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, | 
|  | IndexN->getZExtValue(), DCI, false); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineJOIN_DWORDS( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | // (join_dwords X, X) == (replicate X) | 
|  | if (N->getOperand(0) == N->getOperand(1)) | 
|  | return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), | 
|  | N->getOperand(0)); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { | 
|  | SDValue Chain1 = N1->getOperand(0); | 
|  | SDValue Chain2 = N2->getOperand(0); | 
|  |  | 
|  | // Trivial case: both nodes take the same chain. | 
|  | if (Chain1 == Chain2) | 
|  | return Chain1; | 
|  |  | 
|  | // FIXME - we could handle more complex cases via TokenFactor, | 
|  | // assuming we can verify that this would not create a cycle. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineFP_ROUND( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  |  | 
|  | if (!Subtarget.hasVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | // (fpround (extract_vector_elt X 0)) | 
|  | // (fpround (extract_vector_elt X 1)) -> | 
|  | // (extract_vector_elt (VROUND X) 0) | 
|  | // (extract_vector_elt (VROUND X) 2) | 
|  | // | 
|  | // This is a special case since the target doesn't really support v2f32s. | 
|  | unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue Op0 = N->getOperand(OpNo); | 
|  | if (N->getValueType(0) == MVT::f32 && | 
|  | Op0.hasOneUse() && | 
|  | Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | Op0.getOperand(0).getValueType() == MVT::v2f64 && | 
|  | Op0.getOperand(1).getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { | 
|  | SDValue Vec = Op0.getOperand(0); | 
|  | for (auto *U : Vec->uses()) { | 
|  | if (U != Op0.getNode() && | 
|  | U->hasOneUse() && | 
|  | U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | U->getOperand(0) == Vec && | 
|  | U->getOperand(1).getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { | 
|  | SDValue OtherRound = SDValue(*U->use_begin(), 0); | 
|  | if (OtherRound.getOpcode() == N->getOpcode() && | 
|  | OtherRound.getOperand(OpNo) == SDValue(U, 0) && | 
|  | OtherRound.getValueType() == MVT::f32) { | 
|  | SDValue VRound, Chain; | 
|  | if (N->isStrictFPOpcode()) { | 
|  | Chain = MergeInputChains(N, OtherRound.getNode()); | 
|  | if (!Chain) | 
|  | continue; | 
|  | VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), | 
|  | {MVT::v4f32, MVT::Other}, {Chain, Vec}); | 
|  | Chain = VRound.getValue(1); | 
|  | } else | 
|  | VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), | 
|  | MVT::v4f32, Vec); | 
|  | DCI.AddToWorklist(VRound.getNode()); | 
|  | SDValue Extract1 = | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, | 
|  | VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); | 
|  | DCI.AddToWorklist(Extract1.getNode()); | 
|  | DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); | 
|  | if (Chain) | 
|  | DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); | 
|  | SDValue Extract0 = | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, | 
|  | VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); | 
|  | if (Chain) | 
|  | return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), | 
|  | N->getVTList(), Extract0, Chain); | 
|  | return Extract0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineFP_EXTEND( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  |  | 
|  | if (!Subtarget.hasVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | // (fpextend (extract_vector_elt X 0)) | 
|  | // (fpextend (extract_vector_elt X 2)) -> | 
|  | // (extract_vector_elt (VEXTEND X) 0) | 
|  | // (extract_vector_elt (VEXTEND X) 1) | 
|  | // | 
|  | // This is a special case since the target doesn't really support v2f32s. | 
|  | unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue Op0 = N->getOperand(OpNo); | 
|  | if (N->getValueType(0) == MVT::f64 && | 
|  | Op0.hasOneUse() && | 
|  | Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | Op0.getOperand(0).getValueType() == MVT::v4f32 && | 
|  | Op0.getOperand(1).getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { | 
|  | SDValue Vec = Op0.getOperand(0); | 
|  | for (auto *U : Vec->uses()) { | 
|  | if (U != Op0.getNode() && | 
|  | U->hasOneUse() && | 
|  | U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | U->getOperand(0) == Vec && | 
|  | U->getOperand(1).getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { | 
|  | SDValue OtherExtend = SDValue(*U->use_begin(), 0); | 
|  | if (OtherExtend.getOpcode() == N->getOpcode() && | 
|  | OtherExtend.getOperand(OpNo) == SDValue(U, 0) && | 
|  | OtherExtend.getValueType() == MVT::f64) { | 
|  | SDValue VExtend, Chain; | 
|  | if (N->isStrictFPOpcode()) { | 
|  | Chain = MergeInputChains(N, OtherExtend.getNode()); | 
|  | if (!Chain) | 
|  | continue; | 
|  | VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), | 
|  | {MVT::v2f64, MVT::Other}, {Chain, Vec}); | 
|  | Chain = VExtend.getValue(1); | 
|  | } else | 
|  | VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), | 
|  | MVT::v2f64, Vec); | 
|  | DCI.AddToWorklist(VExtend.getNode()); | 
|  | SDValue Extract1 = | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, | 
|  | VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); | 
|  | DCI.AddToWorklist(Extract1.getNode()); | 
|  | DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); | 
|  | if (Chain) | 
|  | DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); | 
|  | SDValue Extract0 = | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, | 
|  | VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); | 
|  | if (Chain) | 
|  | return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), | 
|  | N->getVTList(), Extract0, Chain); | 
|  | return Extract0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineINT_TO_FP( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | if (DCI.Level != BeforeLegalizeTypes) | 
|  | return SDValue(); | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | EVT OutVT = N->getValueType(0); | 
|  | Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx); | 
|  | SDValue Op = N->getOperand(0); | 
|  | unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits(); | 
|  | unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); | 
|  |  | 
|  | // Insert an extension before type-legalization to avoid scalarization, e.g.: | 
|  | // v2f64 = uint_to_fp v2i16 | 
|  | // => | 
|  | // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) | 
|  | if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits && | 
|  | OutScalarBits <= 64) { | 
|  | unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements(); | 
|  | EVT ExtVT = EVT::getVectorVT( | 
|  | Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts); | 
|  | unsigned ExtOpcode = | 
|  | (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); | 
|  | SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); | 
|  | return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineBSWAP( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR | 
|  | if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && | 
|  | N->getOperand(0).hasOneUse() && | 
|  | canLoadStoreByteSwapped(N->getValueType(0))) { | 
|  | SDValue Load = N->getOperand(0); | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Load); | 
|  |  | 
|  | // Create the byte-swapping load. | 
|  | SDValue Ops[] = { | 
|  | LD->getChain(),    // Chain | 
|  | LD->getBasePtr()   // Ptr | 
|  | }; | 
|  | EVT LoadVT = N->getValueType(0); | 
|  | if (LoadVT == MVT::i16) | 
|  | LoadVT = MVT::i32; | 
|  | SDValue BSLoad = | 
|  | DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), | 
|  | DAG.getVTList(LoadVT, MVT::Other), | 
|  | Ops, LD->getMemoryVT(), LD->getMemOperand()); | 
|  |  | 
|  | // If this is an i16 load, insert the truncate. | 
|  | SDValue ResVal = BSLoad; | 
|  | if (N->getValueType(0) == MVT::i16) | 
|  | ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); | 
|  |  | 
|  | // First, combine the bswap away.  This makes the value produced by the | 
|  | // load dead. | 
|  | DCI.CombineTo(N, ResVal); | 
|  |  | 
|  | // Next, combine the load away, we give it a bogus result value but a real | 
|  | // chain result.  The result value is dead because the bswap is dead. | 
|  | DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); | 
|  |  | 
|  | // Return N so it doesn't get rechecked! | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | // Look through bitcasts that retain the number of vector elements. | 
|  | SDValue Op = N->getOperand(0); | 
|  | if (Op.getOpcode() == ISD::BITCAST && | 
|  | Op.getValueType().isVector() && | 
|  | Op.getOperand(0).getValueType().isVector() && | 
|  | Op.getValueType().getVectorNumElements() == | 
|  | Op.getOperand(0).getValueType().getVectorNumElements()) | 
|  | Op = Op.getOperand(0); | 
|  |  | 
|  | // Push BSWAP into a vector insertion if at least one side then simplifies. | 
|  | if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | SDValue Elt = Op.getOperand(1); | 
|  | SDValue Idx = Op.getOperand(2); | 
|  |  | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || | 
|  | Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || | 
|  | DAG.isConstantIntBuildVectorOrConstantInt(Elt) || | 
|  | Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || | 
|  | (canLoadStoreByteSwapped(N->getValueType(0)) && | 
|  | ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { | 
|  | EVT VecVT = N->getValueType(0); | 
|  | EVT EltVT = N->getValueType(0).getVectorElementType(); | 
|  | if (VecVT != Vec.getValueType()) { | 
|  | Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); | 
|  | DCI.AddToWorklist(Vec.getNode()); | 
|  | } | 
|  | if (EltVT != Elt.getValueType()) { | 
|  | Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); | 
|  | DCI.AddToWorklist(Elt.getNode()); | 
|  | } | 
|  | Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); | 
|  | DCI.AddToWorklist(Vec.getNode()); | 
|  | Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); | 
|  | DCI.AddToWorklist(Elt.getNode()); | 
|  | return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, | 
|  | Vec, Elt, Idx); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Push BSWAP into a vector shuffle if at least one side then simplifies. | 
|  | ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); | 
|  | if (SV && Op.hasOneUse()) { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  |  | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || | 
|  | Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || | 
|  | DAG.isConstantIntBuildVectorOrConstantInt(Op1) || | 
|  | Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { | 
|  | EVT VecVT = N->getValueType(0); | 
|  | if (VecVT != Op0.getValueType()) { | 
|  | Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); | 
|  | DCI.AddToWorklist(Op0.getNode()); | 
|  | } | 
|  | if (VecVT != Op1.getValueType()) { | 
|  | Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); | 
|  | DCI.AddToWorklist(Op1.getNode()); | 
|  | } | 
|  | Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); | 
|  | DCI.AddToWorklist(Op0.getNode()); | 
|  | Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); | 
|  | DCI.AddToWorklist(Op1.getNode()); | 
|  | return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { | 
|  | // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code | 
|  | // set by the CCReg instruction using the CCValid / CCMask masks, | 
|  | // If the CCReg instruction is itself a ICMP testing the condition | 
|  | // code set by some other instruction, see whether we can directly | 
|  | // use that condition code. | 
|  |  | 
|  | // Verify that we have an ICMP against some constant. | 
|  | if (CCValid != SystemZ::CCMASK_ICMP) | 
|  | return false; | 
|  | auto *ICmp = CCReg.getNode(); | 
|  | if (ICmp->getOpcode() != SystemZISD::ICMP) | 
|  | return false; | 
|  | auto *CompareLHS = ICmp->getOperand(0).getNode(); | 
|  | auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); | 
|  | if (!CompareRHS) | 
|  | return false; | 
|  |  | 
|  | // Optimize the case where CompareLHS is a SELECT_CCMASK. | 
|  | if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { | 
|  | // Verify that we have an appropriate mask for a EQ or NE comparison. | 
|  | bool Invert = false; | 
|  | if (CCMask == SystemZ::CCMASK_CMP_NE) | 
|  | Invert = !Invert; | 
|  | else if (CCMask != SystemZ::CCMASK_CMP_EQ) | 
|  | return false; | 
|  |  | 
|  | // Verify that the ICMP compares against one of select values. | 
|  | auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); | 
|  | if (!TrueVal) | 
|  | return false; | 
|  | auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); | 
|  | if (!FalseVal) | 
|  | return false; | 
|  | if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) | 
|  | Invert = !Invert; | 
|  | else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) | 
|  | return false; | 
|  |  | 
|  | // Compute the effective CC mask for the new branch or select. | 
|  | auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); | 
|  | auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); | 
|  | if (!NewCCValid || !NewCCMask) | 
|  | return false; | 
|  | CCValid = NewCCValid->getZExtValue(); | 
|  | CCMask = NewCCMask->getZExtValue(); | 
|  | if (Invert) | 
|  | CCMask ^= CCValid; | 
|  |  | 
|  | // Return the updated CCReg link. | 
|  | CCReg = CompareLHS->getOperand(4); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Optimize the case where CompareRHS is (SRA (SHL (IPM))). | 
|  | if (CompareLHS->getOpcode() == ISD::SRA) { | 
|  | auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); | 
|  | if (!SRACount || SRACount->getZExtValue() != 30) | 
|  | return false; | 
|  | auto *SHL = CompareLHS->getOperand(0).getNode(); | 
|  | if (SHL->getOpcode() != ISD::SHL) | 
|  | return false; | 
|  | auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); | 
|  | if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) | 
|  | return false; | 
|  | auto *IPM = SHL->getOperand(0).getNode(); | 
|  | if (IPM->getOpcode() != SystemZISD::IPM) | 
|  | return false; | 
|  |  | 
|  | // Avoid introducing CC spills (because SRA would clobber CC). | 
|  | if (!CompareLHS->hasOneUse()) | 
|  | return false; | 
|  | // Verify that the ICMP compares against zero. | 
|  | if (CompareRHS->getZExtValue() != 0) | 
|  | return false; | 
|  |  | 
|  | // Compute the effective CC mask for the new branch or select. | 
|  | CCMask = SystemZ::reverseCCMask(CCMask); | 
|  |  | 
|  | // Return the updated CCReg link. | 
|  | CCReg = IPM->getOperand(0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineBR_CCMASK( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  |  | 
|  | // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. | 
|  | auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); | 
|  | if (!CCValid || !CCMask) | 
|  | return SDValue(); | 
|  |  | 
|  | int CCValidVal = CCValid->getZExtValue(); | 
|  | int CCMaskVal = CCMask->getZExtValue(); | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue CCReg = N->getOperand(4); | 
|  |  | 
|  | if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) | 
|  | return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), | 
|  | Chain, | 
|  | DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), | 
|  | DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), | 
|  | N->getOperand(3), CCReg); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineSELECT_CCMASK( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  |  | 
|  | // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. | 
|  | auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); | 
|  | auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); | 
|  | if (!CCValid || !CCMask) | 
|  | return SDValue(); | 
|  |  | 
|  | int CCValidVal = CCValid->getZExtValue(); | 
|  | int CCMaskVal = CCMask->getZExtValue(); | 
|  | SDValue CCReg = N->getOperand(4); | 
|  |  | 
|  | if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) | 
|  | return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), | 
|  | N->getOperand(0), N->getOperand(1), | 
|  | DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), | 
|  | DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), | 
|  | CCReg); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineGET_CCMASK( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  |  | 
|  | // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible | 
|  | auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); | 
|  | if (!CCValid || !CCMask) | 
|  | return SDValue(); | 
|  | int CCValidVal = CCValid->getZExtValue(); | 
|  | int CCMaskVal = CCMask->getZExtValue(); | 
|  |  | 
|  | SDValue Select = N->getOperand(0); | 
|  | if (Select->getOpcode() == ISD::TRUNCATE) | 
|  | Select = Select->getOperand(0); | 
|  | if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) | 
|  | return SDValue(); | 
|  |  | 
|  | auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); | 
|  | auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); | 
|  | if (!SelectCCValid || !SelectCCMask) | 
|  | return SDValue(); | 
|  | int SelectCCValidVal = SelectCCValid->getZExtValue(); | 
|  | int SelectCCMaskVal = SelectCCMask->getZExtValue(); | 
|  |  | 
|  | auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); | 
|  | auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); | 
|  | if (!TrueVal || !FalseVal) | 
|  | return SDValue(); | 
|  | if (TrueVal->getZExtValue() == 1 && FalseVal->getZExtValue() == 0) | 
|  | ; | 
|  | else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() == 1) | 
|  | SelectCCMaskVal ^= SelectCCValidVal; | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | if (SelectCCValidVal & ~CCValidVal) | 
|  | return SDValue(); | 
|  | if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) | 
|  | return SDValue(); | 
|  |  | 
|  | return Select->getOperand(4); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineIntDIVREM( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N->getValueType(0); | 
|  | // In the case where the divisor is a vector of constants a cheaper | 
|  | // sequence of instructions can replace the divide. BuildSDIV is called to | 
|  | // do this during DAG combining, but it only succeeds when it can build a | 
|  | // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and | 
|  | // since it is not Legal but Custom it can only happen before | 
|  | // legalization. Therefore we must scalarize this early before Combine | 
|  | // 1. For widened vectors, this is already the result of type legalization. | 
|  | if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && | 
|  | DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) | 
|  | return DAG.UnrollVectorOp(N); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::combineINTRINSIC( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  |  | 
|  | unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | 
|  | switch (Id) { | 
|  | // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 | 
|  | // or larger is simply a vector load. | 
|  | case Intrinsic::s390_vll: | 
|  | case Intrinsic::s390_vlrl: | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) | 
|  | if (C->getZExtValue() >= 15) | 
|  | return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), | 
|  | N->getOperand(3), MachinePointerInfo()); | 
|  | break; | 
|  | // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. | 
|  | case Intrinsic::s390_vstl: | 
|  | case Intrinsic::s390_vstrl: | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) | 
|  | if (C->getZExtValue() >= 15) | 
|  | return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), | 
|  | N->getOperand(4), MachinePointerInfo()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { | 
|  | if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) | 
|  | return N->getOperand(0); | 
|  | return N; | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | switch(N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI); | 
|  | case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI); | 
|  | case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI); | 
|  | case SystemZISD::MERGE_HIGH: | 
|  | case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI); | 
|  | case ISD::LOAD:               return combineLOAD(N, DCI); | 
|  | case ISD::STORE:              return combineSTORE(N, DCI); | 
|  | case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI); | 
|  | case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); | 
|  | case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); | 
|  | case ISD::STRICT_FP_ROUND: | 
|  | case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI); | 
|  | case ISD::STRICT_FP_EXTEND: | 
|  | case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI); | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI); | 
|  | case ISD::BSWAP:              return combineBSWAP(N, DCI); | 
|  | case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI); | 
|  | case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); | 
|  | case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI); | 
|  | case ISD::SDIV: | 
|  | case ISD::UDIV: | 
|  | case ISD::SREM: | 
|  | case ISD::UREM:               return combineIntDIVREM(N, DCI); | 
|  | case ISD::INTRINSIC_W_CHAIN: | 
|  | case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Return the demanded elements for the OpNo source operand of Op. DemandedElts | 
|  | // are for Op. | 
|  | static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, | 
|  | unsigned OpNo) { | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); | 
|  | APInt SrcDemE; | 
|  | unsigned Opcode = Op.getOpcode(); | 
|  | if (Opcode == ISD::INTRINSIC_WO_CHAIN) { | 
|  | unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | switch (Id) { | 
|  | case Intrinsic::s390_vpksh:   // PACKS | 
|  | case Intrinsic::s390_vpksf: | 
|  | case Intrinsic::s390_vpksg: | 
|  | case Intrinsic::s390_vpkshs:  // PACKS_CC | 
|  | case Intrinsic::s390_vpksfs: | 
|  | case Intrinsic::s390_vpksgs: | 
|  | case Intrinsic::s390_vpklsh:  // PACKLS | 
|  | case Intrinsic::s390_vpklsf: | 
|  | case Intrinsic::s390_vpklsg: | 
|  | case Intrinsic::s390_vpklshs: // PACKLS_CC | 
|  | case Intrinsic::s390_vpklsfs: | 
|  | case Intrinsic::s390_vpklsgs: | 
|  | // VECTOR PACK truncates the elements of two source vectors into one. | 
|  | SrcDemE = DemandedElts; | 
|  | if (OpNo == 2) | 
|  | SrcDemE.lshrInPlace(NumElts / 2); | 
|  | SrcDemE = SrcDemE.trunc(NumElts / 2); | 
|  | break; | 
|  | // VECTOR UNPACK extends half the elements of the source vector. | 
|  | case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH | 
|  | case Intrinsic::s390_vuphh: | 
|  | case Intrinsic::s390_vuphf: | 
|  | case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH | 
|  | case Intrinsic::s390_vuplhh: | 
|  | case Intrinsic::s390_vuplhf: | 
|  | SrcDemE = APInt(NumElts * 2, 0); | 
|  | SrcDemE.insertBits(DemandedElts, 0); | 
|  | break; | 
|  | case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW | 
|  | case Intrinsic::s390_vuplhw: | 
|  | case Intrinsic::s390_vuplf: | 
|  | case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW | 
|  | case Intrinsic::s390_vupllh: | 
|  | case Intrinsic::s390_vupllf: | 
|  | SrcDemE = APInt(NumElts * 2, 0); | 
|  | SrcDemE.insertBits(DemandedElts, NumElts); | 
|  | break; | 
|  | case Intrinsic::s390_vpdi: { | 
|  | // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. | 
|  | SrcDemE = APInt(NumElts, 0); | 
|  | if (!DemandedElts[OpNo - 1]) | 
|  | break; | 
|  | unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); | 
|  | unsigned MaskBit = ((OpNo - 1) ? 1 : 4); | 
|  | // Demand input element 0 or 1, given by the mask bit value. | 
|  | SrcDemE.setBit((Mask & MaskBit)? 1 : 0); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::s390_vsldb: { | 
|  | // VECTOR SHIFT LEFT DOUBLE BY BYTE | 
|  | assert(VT == MVT::v16i8 && "Unexpected type."); | 
|  | unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); | 
|  | assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); | 
|  | unsigned NumSrc0Els = 16 - FirstIdx; | 
|  | SrcDemE = APInt(NumElts, 0); | 
|  | if (OpNo == 1) { | 
|  | APInt DemEls = DemandedElts.trunc(NumSrc0Els); | 
|  | SrcDemE.insertBits(DemEls, FirstIdx); | 
|  | } else { | 
|  | APInt DemEls = DemandedElts.lshr(NumSrc0Els); | 
|  | SrcDemE.insertBits(DemEls, 0); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Intrinsic::s390_vperm: | 
|  | SrcDemE = APInt(NumElts, 1); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unhandled intrinsic."); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch (Opcode) { | 
|  | case SystemZISD::JOIN_DWORDS: | 
|  | // Scalar operand. | 
|  | SrcDemE = APInt(1, 1); | 
|  | break; | 
|  | case SystemZISD::SELECT_CCMASK: | 
|  | SrcDemE = DemandedElts; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unhandled opcode."); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return SrcDemE; | 
|  | } | 
|  |  | 
|  | static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, | 
|  | const APInt &DemandedElts, | 
|  | const SelectionDAG &DAG, unsigned Depth, | 
|  | unsigned OpNo) { | 
|  | APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); | 
|  | APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); | 
|  | KnownBits LHSKnown = | 
|  | DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); | 
|  | KnownBits RHSKnown = | 
|  | DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); | 
|  | Known = LHSKnown.intersectWith(RHSKnown); | 
|  | } | 
|  |  | 
|  | void | 
|  | SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, | 
|  | KnownBits &Known, | 
|  | const APInt &DemandedElts, | 
|  | const SelectionDAG &DAG, | 
|  | unsigned Depth) const { | 
|  | Known.resetAll(); | 
|  |  | 
|  | // Intrinsic CC result is returned in the two low bits. | 
|  | unsigned tmp0, tmp1; // not used | 
|  | if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { | 
|  | Known.Zero.setBitsFrom(2); | 
|  | return; | 
|  | } | 
|  | EVT VT = Op.getValueType(); | 
|  | if (Op.getResNo() != 0 || VT == MVT::Untyped) | 
|  | return; | 
|  | assert (Known.getBitWidth() == VT.getScalarSizeInBits() && | 
|  | "KnownBits does not match VT in bitwidth"); | 
|  | assert ((!VT.isVector() || | 
|  | (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && | 
|  | "DemandedElts does not match VT number of elements"); | 
|  | unsigned BitWidth = Known.getBitWidth(); | 
|  | unsigned Opcode = Op.getOpcode(); | 
|  | if (Opcode == ISD::INTRINSIC_WO_CHAIN) { | 
|  | bool IsLogical = false; | 
|  | unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | switch (Id) { | 
|  | case Intrinsic::s390_vpksh:   // PACKS | 
|  | case Intrinsic::s390_vpksf: | 
|  | case Intrinsic::s390_vpksg: | 
|  | case Intrinsic::s390_vpkshs:  // PACKS_CC | 
|  | case Intrinsic::s390_vpksfs: | 
|  | case Intrinsic::s390_vpksgs: | 
|  | case Intrinsic::s390_vpklsh:  // PACKLS | 
|  | case Intrinsic::s390_vpklsf: | 
|  | case Intrinsic::s390_vpklsg: | 
|  | case Intrinsic::s390_vpklshs: // PACKLS_CC | 
|  | case Intrinsic::s390_vpklsfs: | 
|  | case Intrinsic::s390_vpklsgs: | 
|  | case Intrinsic::s390_vpdi: | 
|  | case Intrinsic::s390_vsldb: | 
|  | case Intrinsic::s390_vperm: | 
|  | computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); | 
|  | break; | 
|  | case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH | 
|  | case Intrinsic::s390_vuplhh: | 
|  | case Intrinsic::s390_vuplhf: | 
|  | case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW | 
|  | case Intrinsic::s390_vupllh: | 
|  | case Intrinsic::s390_vupllf: | 
|  | IsLogical = true; | 
|  | [[fallthrough]]; | 
|  | case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH | 
|  | case Intrinsic::s390_vuphh: | 
|  | case Intrinsic::s390_vuphf: | 
|  | case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW | 
|  | case Intrinsic::s390_vuplhw: | 
|  | case Intrinsic::s390_vuplf: { | 
|  | SDValue SrcOp = Op.getOperand(1); | 
|  | APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); | 
|  | Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); | 
|  | if (IsLogical) { | 
|  | Known = Known.zext(BitWidth); | 
|  | } else | 
|  | Known = Known.sext(BitWidth); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch (Opcode) { | 
|  | case SystemZISD::JOIN_DWORDS: | 
|  | case SystemZISD::SELECT_CCMASK: | 
|  | computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); | 
|  | break; | 
|  | case SystemZISD::REPLICATE: { | 
|  | SDValue SrcOp = Op.getOperand(0); | 
|  | Known = DAG.computeKnownBits(SrcOp, Depth + 1); | 
|  | if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) | 
|  | Known = Known.sext(BitWidth); // VREPI sign extends the immedate. | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Known has the width of the source operand(s). Adjust if needed to match | 
|  | // the passed bitwidth. | 
|  | if (Known.getBitWidth() != BitWidth) | 
|  | Known = Known.anyextOrTrunc(BitWidth); | 
|  | } | 
|  |  | 
|  | static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, | 
|  | const SelectionDAG &DAG, unsigned Depth, | 
|  | unsigned OpNo) { | 
|  | APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); | 
|  | unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); | 
|  | if (LHS == 1) return 1; // Early out. | 
|  | APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); | 
|  | unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); | 
|  | if (RHS == 1) return 1; // Early out. | 
|  | unsigned Common = std::min(LHS, RHS); | 
|  | unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned VTBits = VT.getScalarSizeInBits(); | 
|  | if (SrcBitWidth > VTBits) { // PACK | 
|  | unsigned SrcExtraBits = SrcBitWidth - VTBits; | 
|  | if (Common > SrcExtraBits) | 
|  | return (Common - SrcExtraBits); | 
|  | return 1; | 
|  | } | 
|  | assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); | 
|  | return Common; | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | SystemZTargetLowering::ComputeNumSignBitsForTargetNode( | 
|  | SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, | 
|  | unsigned Depth) const { | 
|  | if (Op.getResNo() != 0) | 
|  | return 1; | 
|  | unsigned Opcode = Op.getOpcode(); | 
|  | if (Opcode == ISD::INTRINSIC_WO_CHAIN) { | 
|  | unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | switch (Id) { | 
|  | case Intrinsic::s390_vpksh:   // PACKS | 
|  | case Intrinsic::s390_vpksf: | 
|  | case Intrinsic::s390_vpksg: | 
|  | case Intrinsic::s390_vpkshs:  // PACKS_CC | 
|  | case Intrinsic::s390_vpksfs: | 
|  | case Intrinsic::s390_vpksgs: | 
|  | case Intrinsic::s390_vpklsh:  // PACKLS | 
|  | case Intrinsic::s390_vpklsf: | 
|  | case Intrinsic::s390_vpklsg: | 
|  | case Intrinsic::s390_vpklshs: // PACKLS_CC | 
|  | case Intrinsic::s390_vpklsfs: | 
|  | case Intrinsic::s390_vpklsgs: | 
|  | case Intrinsic::s390_vpdi: | 
|  | case Intrinsic::s390_vsldb: | 
|  | case Intrinsic::s390_vperm: | 
|  | return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); | 
|  | case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH | 
|  | case Intrinsic::s390_vuphh: | 
|  | case Intrinsic::s390_vuphf: | 
|  | case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW | 
|  | case Intrinsic::s390_vuplhw: | 
|  | case Intrinsic::s390_vuplf: { | 
|  | SDValue PackedOp = Op.getOperand(1); | 
|  | APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); | 
|  | unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned VTBits = VT.getScalarSizeInBits(); | 
|  | Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); | 
|  | return Tmp; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch (Opcode) { | 
|  | case SystemZISD::SELECT_CCMASK: | 
|  | return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | bool SystemZTargetLowering:: | 
|  | isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, | 
|  | const APInt &DemandedElts, const SelectionDAG &DAG, | 
|  | bool PoisonOnly, unsigned Depth) const { | 
|  | switch (Op->getOpcode()) { | 
|  | case SystemZISD::PCREL_WRAPPER: | 
|  | case SystemZISD::PCREL_OFFSET: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | SystemZTargetLowering::getStackProbeSize(const MachineFunction &MF) const { | 
|  | const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); | 
|  | unsigned StackAlign = TFI->getStackAlignment(); | 
|  | assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && | 
|  | "Unexpected stack alignment"); | 
|  | // The default stack probe size is 4096 if the function has no | 
|  | // stack-probe-size attribute. | 
|  | unsigned StackProbeSize = | 
|  | MF.getFunction().getFnAttributeAsParsedInteger("stack-probe-size", 4096); | 
|  | // Round down to the stack alignment. | 
|  | StackProbeSize &= ~(StackAlign - 1); | 
|  | return StackProbeSize ? StackProbeSize : StackAlign; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Custom insertion | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Force base value Base into a register before MI.  Return the register. | 
|  | static Register forceReg(MachineInstr &MI, MachineOperand &Base, | 
|  | const SystemZInstrInfo *TII) { | 
|  | MachineBasicBlock *MBB = MI.getParent(); | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  |  | 
|  | if (Base.isReg()) { | 
|  | // Copy Base into a new virtual register to help register coalescing in | 
|  | // cases with multiple uses. | 
|  | Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); | 
|  | BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg) | 
|  | .add(Base); | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); | 
|  | BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) | 
|  | .add(Base) | 
|  | .addImm(0) | 
|  | .addReg(0); | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | // The CC operand of MI might be missing a kill marker because there | 
|  | // were multiple uses of CC, and ISel didn't know which to mark. | 
|  | // Figure out whether MI should have had a kill marker. | 
|  | static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { | 
|  | // Scan forward through BB for a use/def of CC. | 
|  | MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); | 
|  | for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { | 
|  | const MachineInstr& mi = *miI; | 
|  | if (mi.readsRegister(SystemZ::CC)) | 
|  | return false; | 
|  | if (mi.definesRegister(SystemZ::CC)) | 
|  | break; // Should have kill-flag - update below. | 
|  | } | 
|  |  | 
|  | // If we hit the end of the block, check whether CC is live into a | 
|  | // successor. | 
|  | if (miI == MBB->end()) { | 
|  | for (const MachineBasicBlock *Succ : MBB->successors()) | 
|  | if (Succ->isLiveIn(SystemZ::CC)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Return true if it is OK for this Select pseudo-opcode to be cascaded | 
|  | // together with other Select pseudo-opcodes into a single basic-block with | 
|  | // a conditional jump around it. | 
|  | static bool isSelectPseudo(MachineInstr &MI) { | 
|  | switch (MI.getOpcode()) { | 
|  | case SystemZ::Select32: | 
|  | case SystemZ::Select64: | 
|  | case SystemZ::SelectF32: | 
|  | case SystemZ::SelectF64: | 
|  | case SystemZ::SelectF128: | 
|  | case SystemZ::SelectVR32: | 
|  | case SystemZ::SelectVR64: | 
|  | case SystemZ::SelectVR128: | 
|  | return true; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Helper function, which inserts PHI functions into SinkMBB: | 
|  | //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], | 
|  | // where %FalseValue(i) and %TrueValue(i) are taken from Selects. | 
|  | static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, | 
|  | MachineBasicBlock *TrueMBB, | 
|  | MachineBasicBlock *FalseMBB, | 
|  | MachineBasicBlock *SinkMBB) { | 
|  | MachineFunction *MF = TrueMBB->getParent(); | 
|  | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); | 
|  |  | 
|  | MachineInstr *FirstMI = Selects.front(); | 
|  | unsigned CCValid = FirstMI->getOperand(3).getImm(); | 
|  | unsigned CCMask = FirstMI->getOperand(4).getImm(); | 
|  |  | 
|  | MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); | 
|  |  | 
|  | // As we are creating the PHIs, we have to be careful if there is more than | 
|  | // one.  Later Selects may reference the results of earlier Selects, but later | 
|  | // PHIs have to reference the individual true/false inputs from earlier PHIs. | 
|  | // That also means that PHI construction must work forward from earlier to | 
|  | // later, and that the code must maintain a mapping from earlier PHI's | 
|  | // destination registers, and the registers that went into the PHI. | 
|  | DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; | 
|  |  | 
|  | for (auto *MI : Selects) { | 
|  | Register DestReg = MI->getOperand(0).getReg(); | 
|  | Register TrueReg = MI->getOperand(1).getReg(); | 
|  | Register FalseReg = MI->getOperand(2).getReg(); | 
|  |  | 
|  | // If this Select we are generating is the opposite condition from | 
|  | // the jump we generated, then we have to swap the operands for the | 
|  | // PHI that is going to be generated. | 
|  | if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) | 
|  | std::swap(TrueReg, FalseReg); | 
|  |  | 
|  | if (RegRewriteTable.contains(TrueReg)) | 
|  | TrueReg = RegRewriteTable[TrueReg].first; | 
|  |  | 
|  | if (RegRewriteTable.contains(FalseReg)) | 
|  | FalseReg = RegRewriteTable[FalseReg].second; | 
|  |  | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) | 
|  | .addReg(TrueReg).addMBB(TrueMBB) | 
|  | .addReg(FalseReg).addMBB(FalseMBB); | 
|  |  | 
|  | // Add this PHI to the rewrite table. | 
|  | RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); | 
|  | } | 
|  |  | 
|  | MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); | 
|  | } | 
|  |  | 
|  | // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. | 
|  | MachineBasicBlock * | 
|  | SystemZTargetLowering::emitSelect(MachineInstr &MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); | 
|  | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  |  | 
|  | unsigned CCValid = MI.getOperand(3).getImm(); | 
|  | unsigned CCMask = MI.getOperand(4).getImm(); | 
|  |  | 
|  | // If we have a sequence of Select* pseudo instructions using the | 
|  | // same condition code value, we want to expand all of them into | 
|  | // a single pair of basic blocks using the same condition. | 
|  | SmallVector<MachineInstr*, 8> Selects; | 
|  | SmallVector<MachineInstr*, 8> DbgValues; | 
|  | Selects.push_back(&MI); | 
|  | unsigned Count = 0; | 
|  | for (MachineInstr &NextMI : llvm::make_range( | 
|  | std::next(MachineBasicBlock::iterator(MI)), MBB->end())) { | 
|  | if (isSelectPseudo(NextMI)) { | 
|  | assert(NextMI.getOperand(3).getImm() == CCValid && | 
|  | "Bad CCValid operands since CC was not redefined."); | 
|  | if (NextMI.getOperand(4).getImm() == CCMask || | 
|  | NextMI.getOperand(4).getImm() == (CCValid ^ CCMask)) { | 
|  | Selects.push_back(&NextMI); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | if (NextMI.definesRegister(SystemZ::CC) || NextMI.usesCustomInsertionHook()) | 
|  | break; | 
|  | bool User = false; | 
|  | for (auto *SelMI : Selects) | 
|  | if (NextMI.readsVirtualRegister(SelMI->getOperand(0).getReg())) { | 
|  | User = true; | 
|  | break; | 
|  | } | 
|  | if (NextMI.isDebugInstr()) { | 
|  | if (User) { | 
|  | assert(NextMI.isDebugValue() && "Unhandled debug opcode."); | 
|  | DbgValues.push_back(&NextMI); | 
|  | } | 
|  | } else if (User || ++Count > 20) | 
|  | break; | 
|  | } | 
|  |  | 
|  | MachineInstr *LastMI = Selects.back(); | 
|  | bool CCKilled = | 
|  | (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); | 
|  | MachineBasicBlock *StartMBB = MBB; | 
|  | MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB); | 
|  | MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); | 
|  |  | 
|  | // Unless CC was killed in the last Select instruction, mark it as | 
|  | // live-in to both FalseMBB and JoinMBB. | 
|  | if (!CCKilled) { | 
|  | FalseMBB->addLiveIn(SystemZ::CC); | 
|  | JoinMBB->addLiveIn(SystemZ::CC); | 
|  | } | 
|  |  | 
|  | //  StartMBB: | 
|  | //   BRC CCMask, JoinMBB | 
|  | //   # fallthrough to FalseMBB | 
|  | MBB = StartMBB; | 
|  | BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) | 
|  | .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); | 
|  | MBB->addSuccessor(JoinMBB); | 
|  | MBB->addSuccessor(FalseMBB); | 
|  |  | 
|  | //  FalseMBB: | 
|  | //   # fallthrough to JoinMBB | 
|  | MBB = FalseMBB; | 
|  | MBB->addSuccessor(JoinMBB); | 
|  |  | 
|  | //  JoinMBB: | 
|  | //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] | 
|  | //  ... | 
|  | MBB = JoinMBB; | 
|  | createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); | 
|  | for (auto *SelMI : Selects) | 
|  | SelMI->eraseFromParent(); | 
|  |  | 
|  | MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); | 
|  | for (auto *DbgMI : DbgValues) | 
|  | MBB->splice(InsertPos, StartMBB, DbgMI); | 
|  |  | 
|  | return JoinMBB; | 
|  | } | 
|  |  | 
|  | // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. | 
|  | // StoreOpcode is the store to use and Invert says whether the store should | 
|  | // happen when the condition is false rather than true.  If a STORE ON | 
|  | // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. | 
|  | MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, | 
|  | MachineBasicBlock *MBB, | 
|  | unsigned StoreOpcode, | 
|  | unsigned STOCOpcode, | 
|  | bool Invert) const { | 
|  | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  |  | 
|  | Register SrcReg = MI.getOperand(0).getReg(); | 
|  | MachineOperand Base = MI.getOperand(1); | 
|  | int64_t Disp = MI.getOperand(2).getImm(); | 
|  | Register IndexReg = MI.getOperand(3).getReg(); | 
|  | unsigned CCValid = MI.getOperand(4).getImm(); | 
|  | unsigned CCMask = MI.getOperand(5).getImm(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  |  | 
|  | StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); | 
|  |  | 
|  | // ISel pattern matching also adds a load memory operand of the same | 
|  | // address, so take special care to find the storing memory operand. | 
|  | MachineMemOperand *MMO = nullptr; | 
|  | for (auto *I : MI.memoperands()) | 
|  | if (I->isStore()) { | 
|  | MMO = I; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Use STOCOpcode if possible.  We could use different store patterns in | 
|  | // order to avoid matching the index register, but the performance trade-offs | 
|  | // might be more complicated in that case. | 
|  | if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { | 
|  | if (Invert) | 
|  | CCMask ^= CCValid; | 
|  |  | 
|  | BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) | 
|  | .addReg(SrcReg) | 
|  | .add(Base) | 
|  | .addImm(Disp) | 
|  | .addImm(CCValid) | 
|  | .addImm(CCMask) | 
|  | .addMemOperand(MMO); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return MBB; | 
|  | } | 
|  |  | 
|  | // Get the condition needed to branch around the store. | 
|  | if (!Invert) | 
|  | CCMask ^= CCValid; | 
|  |  | 
|  | MachineBasicBlock *StartMBB = MBB; | 
|  | MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB); | 
|  | MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); | 
|  |  | 
|  | // Unless CC was killed in the CondStore instruction, mark it as | 
|  | // live-in to both FalseMBB and JoinMBB. | 
|  | if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { | 
|  | FalseMBB->addLiveIn(SystemZ::CC); | 
|  | JoinMBB->addLiveIn(SystemZ::CC); | 
|  | } | 
|  |  | 
|  | //  StartMBB: | 
|  | //   BRC CCMask, JoinMBB | 
|  | //   # fallthrough to FalseMBB | 
|  | MBB = StartMBB; | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::BRC)) | 
|  | .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); | 
|  | MBB->addSuccessor(JoinMBB); | 
|  | MBB->addSuccessor(FalseMBB); | 
|  |  | 
|  | //  FalseMBB: | 
|  | //   store %SrcReg, %Disp(%Index,%Base) | 
|  | //   # fallthrough to JoinMBB | 
|  | MBB = FalseMBB; | 
|  | BuildMI(MBB, DL, TII->get(StoreOpcode)) | 
|  | .addReg(SrcReg) | 
|  | .add(Base) | 
|  | .addImm(Disp) | 
|  | .addReg(IndexReg) | 
|  | .addMemOperand(MMO); | 
|  | MBB->addSuccessor(JoinMBB); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return JoinMBB; | 
|  | } | 
|  |  | 
|  | // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* | 
|  | // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that | 
|  | // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. | 
|  | // BitSize is the width of the field in bits, or 0 if this is a partword | 
|  | // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize | 
|  | // is one of the operands.  Invert says whether the field should be | 
|  | // inverted after performing BinOpcode (e.g. for NAND). | 
|  | MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( | 
|  | MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, | 
|  | unsigned BitSize, bool Invert) const { | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | bool IsSubWord = (BitSize < 32); | 
|  |  | 
|  | // Extract the operands.  Base can be a register or a frame index. | 
|  | // Src2 can be a register or immediate. | 
|  | Register Dest = MI.getOperand(0).getReg(); | 
|  | MachineOperand Base = earlyUseOperand(MI.getOperand(1)); | 
|  | int64_t Disp = MI.getOperand(2).getImm(); | 
|  | MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); | 
|  | Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); | 
|  | Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | if (IsSubWord) | 
|  | BitSize = MI.getOperand(6).getImm(); | 
|  |  | 
|  | // Subword operations use 32-bit registers. | 
|  | const TargetRegisterClass *RC = (BitSize <= 32 ? | 
|  | &SystemZ::GR32BitRegClass : | 
|  | &SystemZ::GR64BitRegClass); | 
|  | unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG; | 
|  | unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; | 
|  |  | 
|  | // Get the right opcodes for the displacement. | 
|  | LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp); | 
|  | CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); | 
|  | assert(LOpcode && CSOpcode && "Displacement out of range"); | 
|  |  | 
|  | // Create virtual registers for temporary results. | 
|  | Register OrigVal       = MRI.createVirtualRegister(RC); | 
|  | Register OldVal        = MRI.createVirtualRegister(RC); | 
|  | Register NewVal        = (BinOpcode || IsSubWord ? | 
|  | MRI.createVirtualRegister(RC) : Src2.getReg()); | 
|  | Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); | 
|  | Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); | 
|  |  | 
|  | // Insert a basic block for the main loop. | 
|  | MachineBasicBlock *StartMBB = MBB; | 
|  | MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB); | 
|  | MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB); | 
|  |  | 
|  | //  StartMBB: | 
|  | //   ... | 
|  | //   %OrigVal = L Disp(%Base) | 
|  | //   # fall through to LoopMBB | 
|  | MBB = StartMBB; | 
|  | BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); | 
|  | MBB->addSuccessor(LoopMBB); | 
|  |  | 
|  | //  LoopMBB: | 
|  | //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] | 
|  | //   %RotatedOldVal = RLL %OldVal, 0(%BitShift) | 
|  | //   %RotatedNewVal = OP %RotatedOldVal, %Src2 | 
|  | //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift) | 
|  | //   %Dest          = CS %OldVal, %NewVal, Disp(%Base) | 
|  | //   JNE LoopMBB | 
|  | //   # fall through to DoneMBB | 
|  | MBB = LoopMBB; | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) | 
|  | .addReg(OrigVal).addMBB(StartMBB) | 
|  | .addReg(Dest).addMBB(LoopMBB); | 
|  | if (IsSubWord) | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) | 
|  | .addReg(OldVal).addReg(BitShift).addImm(0); | 
|  | if (Invert) { | 
|  | // Perform the operation normally and then invert every bit of the field. | 
|  | Register Tmp = MRI.createVirtualRegister(RC); | 
|  | BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); | 
|  | if (BitSize <= 32) | 
|  | // XILF with the upper BitSize bits set. | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) | 
|  | .addReg(Tmp).addImm(-1U << (32 - BitSize)); | 
|  | else { | 
|  | // Use LCGR and add -1 to the result, which is more compact than | 
|  | // an XILF, XILH pair. | 
|  | Register Tmp2 = MRI.createVirtualRegister(RC); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) | 
|  | .addReg(Tmp2).addImm(-1); | 
|  | } | 
|  | } else if (BinOpcode) | 
|  | // A simply binary operation. | 
|  | BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) | 
|  | .addReg(RotatedOldVal) | 
|  | .add(Src2); | 
|  | else if (IsSubWord) | 
|  | // Use RISBG to rotate Src2 into position and use it to replace the | 
|  | // field in RotatedOldVal. | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) | 
|  | .addReg(RotatedOldVal).addReg(Src2.getReg()) | 
|  | .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); | 
|  | if (IsSubWord) | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) | 
|  | .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); | 
|  | BuildMI(MBB, DL, TII->get(CSOpcode), Dest) | 
|  | .addReg(OldVal) | 
|  | .addReg(NewVal) | 
|  | .add(Base) | 
|  | .addImm(Disp); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::BRC)) | 
|  | .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); | 
|  | MBB->addSuccessor(LoopMBB); | 
|  | MBB->addSuccessor(DoneMBB); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return DoneMBB; | 
|  | } | 
|  |  | 
|  | // Implement EmitInstrWithCustomInserter for pseudo | 
|  | // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the | 
|  | // instruction that should be used to compare the current field with the | 
|  | // minimum or maximum value.  KeepOldMask is the BRC condition-code mask | 
|  | // for when the current field should be kept.  BitSize is the width of | 
|  | // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. | 
|  | MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( | 
|  | MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, | 
|  | unsigned KeepOldMask, unsigned BitSize) const { | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | bool IsSubWord = (BitSize < 32); | 
|  |  | 
|  | // Extract the operands.  Base can be a register or a frame index. | 
|  | Register Dest = MI.getOperand(0).getReg(); | 
|  | MachineOperand Base = earlyUseOperand(MI.getOperand(1)); | 
|  | int64_t Disp = MI.getOperand(2).getImm(); | 
|  | Register Src2 = MI.getOperand(3).getReg(); | 
|  | Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); | 
|  | Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | if (IsSubWord) | 
|  | BitSize = MI.getOperand(6).getImm(); | 
|  |  | 
|  | // Subword operations use 32-bit registers. | 
|  | const TargetRegisterClass *RC = (BitSize <= 32 ? | 
|  | &SystemZ::GR32BitRegClass : | 
|  | &SystemZ::GR64BitRegClass); | 
|  | unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG; | 
|  | unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; | 
|  |  | 
|  | // Get the right opcodes for the displacement. | 
|  | LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp); | 
|  | CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); | 
|  | assert(LOpcode && CSOpcode && "Displacement out of range"); | 
|  |  | 
|  | // Create virtual registers for temporary results. | 
|  | Register OrigVal       = MRI.createVirtualRegister(RC); | 
|  | Register OldVal        = MRI.createVirtualRegister(RC); | 
|  | Register NewVal        = MRI.createVirtualRegister(RC); | 
|  | Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); | 
|  | Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); | 
|  | Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); | 
|  |  | 
|  | // Insert 3 basic blocks for the loop. | 
|  | MachineBasicBlock *StartMBB  = MBB; | 
|  | MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB); | 
|  | MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB); | 
|  | MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); | 
|  | MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); | 
|  |  | 
|  | //  StartMBB: | 
|  | //   ... | 
|  | //   %OrigVal     = L Disp(%Base) | 
|  | //   # fall through to LoopMBB | 
|  | MBB = StartMBB; | 
|  | BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); | 
|  | MBB->addSuccessor(LoopMBB); | 
|  |  | 
|  | //  LoopMBB: | 
|  | //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] | 
|  | //   %RotatedOldVal = RLL %OldVal, 0(%BitShift) | 
|  | //   CompareOpcode %RotatedOldVal, %Src2 | 
|  | //   BRC KeepOldMask, UpdateMBB | 
|  | MBB = LoopMBB; | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) | 
|  | .addReg(OrigVal).addMBB(StartMBB) | 
|  | .addReg(Dest).addMBB(UpdateMBB); | 
|  | if (IsSubWord) | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) | 
|  | .addReg(OldVal).addReg(BitShift).addImm(0); | 
|  | BuildMI(MBB, DL, TII->get(CompareOpcode)) | 
|  | .addReg(RotatedOldVal).addReg(Src2); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::BRC)) | 
|  | .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); | 
|  | MBB->addSuccessor(UpdateMBB); | 
|  | MBB->addSuccessor(UseAltMBB); | 
|  |  | 
|  | //  UseAltMBB: | 
|  | //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 | 
|  | //   # fall through to UpdateMBB | 
|  | MBB = UseAltMBB; | 
|  | if (IsSubWord) | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) | 
|  | .addReg(RotatedOldVal).addReg(Src2) | 
|  | .addImm(32).addImm(31 + BitSize).addImm(0); | 
|  | MBB->addSuccessor(UpdateMBB); | 
|  |  | 
|  | //  UpdateMBB: | 
|  | //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], | 
|  | //                        [ %RotatedAltVal, UseAltMBB ] | 
|  | //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift) | 
|  | //   %Dest          = CS %OldVal, %NewVal, Disp(%Base) | 
|  | //   JNE LoopMBB | 
|  | //   # fall through to DoneMBB | 
|  | MBB = UpdateMBB; | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) | 
|  | .addReg(RotatedOldVal).addMBB(LoopMBB) | 
|  | .addReg(RotatedAltVal).addMBB(UseAltMBB); | 
|  | if (IsSubWord) | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) | 
|  | .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); | 
|  | BuildMI(MBB, DL, TII->get(CSOpcode), Dest) | 
|  | .addReg(OldVal) | 
|  | .addReg(NewVal) | 
|  | .add(Base) | 
|  | .addImm(Disp); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::BRC)) | 
|  | .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); | 
|  | MBB->addSuccessor(LoopMBB); | 
|  | MBB->addSuccessor(DoneMBB); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return DoneMBB; | 
|  | } | 
|  |  | 
|  | // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW | 
|  | // instruction MI. | 
|  | MachineBasicBlock * | 
|  | SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  |  | 
|  | // Extract the operands.  Base can be a register or a frame index. | 
|  | Register Dest = MI.getOperand(0).getReg(); | 
|  | MachineOperand Base = earlyUseOperand(MI.getOperand(1)); | 
|  | int64_t Disp = MI.getOperand(2).getImm(); | 
|  | Register CmpVal = MI.getOperand(3).getReg(); | 
|  | Register OrigSwapVal = MI.getOperand(4).getReg(); | 
|  | Register BitShift = MI.getOperand(5).getReg(); | 
|  | Register NegBitShift = MI.getOperand(6).getReg(); | 
|  | int64_t BitSize = MI.getOperand(7).getImm(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  |  | 
|  | const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; | 
|  |  | 
|  | // Get the right opcodes for the displacement and zero-extension. | 
|  | unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp); | 
|  | unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); | 
|  | unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR; | 
|  | assert(LOpcode && CSOpcode && "Displacement out of range"); | 
|  |  | 
|  | // Create virtual registers for temporary results. | 
|  | Register OrigOldVal = MRI.createVirtualRegister(RC); | 
|  | Register OldVal = MRI.createVirtualRegister(RC); | 
|  | Register SwapVal = MRI.createVirtualRegister(RC); | 
|  | Register StoreVal = MRI.createVirtualRegister(RC); | 
|  | Register OldValRot = MRI.createVirtualRegister(RC); | 
|  | Register RetryOldVal = MRI.createVirtualRegister(RC); | 
|  | Register RetrySwapVal = MRI.createVirtualRegister(RC); | 
|  |  | 
|  | // Insert 2 basic blocks for the loop. | 
|  | MachineBasicBlock *StartMBB = MBB; | 
|  | MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB); | 
|  | MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB); | 
|  | MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB); | 
|  |  | 
|  | //  StartMBB: | 
|  | //   ... | 
|  | //   %OrigOldVal     = L Disp(%Base) | 
|  | //   # fall through to LoopMBB | 
|  | MBB = StartMBB; | 
|  | BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) | 
|  | .add(Base) | 
|  | .addImm(Disp) | 
|  | .addReg(0); | 
|  | MBB->addSuccessor(LoopMBB); | 
|  |  | 
|  | //  LoopMBB: | 
|  | //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] | 
|  | //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] | 
|  | //   %OldValRot     = RLL %OldVal, BitSize(%BitShift) | 
|  | //                      ^^ The low BitSize bits contain the field | 
|  | //                         of interest. | 
|  | //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0 | 
|  | //                      ^^ Replace the upper 32-BitSize bits of the | 
|  | //                         swap value with those that we loaded and rotated. | 
|  | //   %Dest = LL[CH] %OldValRot | 
|  | //   CR %Dest, %CmpVal | 
|  | //   JNE DoneMBB | 
|  | //   # Fall through to SetMBB | 
|  | MBB = LoopMBB; | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) | 
|  | .addReg(OrigOldVal).addMBB(StartMBB) | 
|  | .addReg(RetryOldVal).addMBB(SetMBB); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) | 
|  | .addReg(OrigSwapVal).addMBB(StartMBB) | 
|  | .addReg(RetrySwapVal).addMBB(SetMBB); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot) | 
|  | .addReg(OldVal).addReg(BitShift).addImm(BitSize); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) | 
|  | .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0); | 
|  | BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest) | 
|  | .addReg(OldValRot); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::CR)) | 
|  | .addReg(Dest).addReg(CmpVal); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::BRC)) | 
|  | .addImm(SystemZ::CCMASK_ICMP) | 
|  | .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); | 
|  | MBB->addSuccessor(DoneMBB); | 
|  | MBB->addSuccessor(SetMBB); | 
|  |  | 
|  | //  SetMBB: | 
|  | //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift) | 
|  | //                      ^^ Rotate the new field to its proper position. | 
|  | //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base) | 
|  | //   JNE LoopMBB | 
|  | //   # fall through to ExitMBB | 
|  | MBB = SetMBB; | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) | 
|  | .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); | 
|  | BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) | 
|  | .addReg(OldVal) | 
|  | .addReg(StoreVal) | 
|  | .add(Base) | 
|  | .addImm(Disp); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::BRC)) | 
|  | .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); | 
|  | MBB->addSuccessor(LoopMBB); | 
|  | MBB->addSuccessor(DoneMBB); | 
|  |  | 
|  | // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in | 
|  | // to the block after the loop.  At this point, CC may have been defined | 
|  | // either by the CR in LoopMBB or by the CS in SetMBB. | 
|  | if (!MI.registerDefIsDead(SystemZ::CC)) | 
|  | DoneMBB->addLiveIn(SystemZ::CC); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return DoneMBB; | 
|  | } | 
|  |  | 
|  | // Emit a move from two GR64s to a GR128. | 
|  | MachineBasicBlock * | 
|  | SystemZTargetLowering::emitPair128(MachineInstr &MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  |  | 
|  | Register Dest = MI.getOperand(0).getReg(); | 
|  | Register Hi = MI.getOperand(1).getReg(); | 
|  | Register Lo = MI.getOperand(2).getReg(); | 
|  | Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); | 
|  | Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); | 
|  |  | 
|  | BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); | 
|  | BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) | 
|  | .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); | 
|  | BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) | 
|  | .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return MBB; | 
|  | } | 
|  |  | 
|  | // Emit an extension from a GR64 to a GR128.  ClearEven is true | 
|  | // if the high register of the GR128 value must be cleared or false if | 
|  | // it's "don't care". | 
|  | MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, | 
|  | MachineBasicBlock *MBB, | 
|  | bool ClearEven) const { | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  |  | 
|  | Register Dest = MI.getOperand(0).getReg(); | 
|  | Register Src = MI.getOperand(1).getReg(); | 
|  | Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); | 
|  |  | 
|  | BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); | 
|  | if (ClearEven) { | 
|  | Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); | 
|  | Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); | 
|  |  | 
|  | BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) | 
|  | .addImm(0); | 
|  | BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) | 
|  | .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); | 
|  | In128 = NewIn128; | 
|  | } | 
|  | BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) | 
|  | .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return MBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI, | 
|  | MachineBasicBlock *MBB, | 
|  | unsigned Opcode, bool IsMemset) const { | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  |  | 
|  | MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); | 
|  | uint64_t DestDisp = MI.getOperand(1).getImm(); | 
|  | MachineOperand SrcBase = MachineOperand::CreateReg(0U, false); | 
|  | uint64_t SrcDisp; | 
|  |  | 
|  | // Fold the displacement Disp if it is out of range. | 
|  | auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void { | 
|  | if (!isUInt<12>(Disp)) { | 
|  | Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); | 
|  | unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp); | 
|  | BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg) | 
|  | .add(Base).addImm(Disp).addReg(0); | 
|  | Base = MachineOperand::CreateReg(Reg, false); | 
|  | Disp = 0; | 
|  | } | 
|  | }; | 
|  |  | 
|  | if (!IsMemset) { | 
|  | SrcBase = earlyUseOperand(MI.getOperand(2)); | 
|  | SrcDisp = MI.getOperand(3).getImm(); | 
|  | } else { | 
|  | SrcBase = DestBase; | 
|  | SrcDisp = DestDisp++; | 
|  | foldDisplIfNeeded(DestBase, DestDisp); | 
|  | } | 
|  |  | 
|  | MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4); | 
|  | bool IsImmForm = LengthMO.isImm(); | 
|  | bool IsRegForm = !IsImmForm; | 
|  |  | 
|  | // Build and insert one Opcode of Length, with special treatment for memset. | 
|  | auto insertMemMemOp = [&](MachineBasicBlock *InsMBB, | 
|  | MachineBasicBlock::iterator InsPos, | 
|  | MachineOperand DBase, uint64_t DDisp, | 
|  | MachineOperand SBase, uint64_t SDisp, | 
|  | unsigned Length) -> void { | 
|  | assert(Length > 0 && Length <= 256 && "Building memory op with bad length."); | 
|  | if (IsMemset) { | 
|  | MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3)); | 
|  | if (ByteMO.isImm()) | 
|  | BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI)) | 
|  | .add(SBase).addImm(SDisp).add(ByteMO); | 
|  | else | 
|  | BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC)) | 
|  | .add(ByteMO).add(SBase).addImm(SDisp).addReg(0); | 
|  | if (--Length == 0) | 
|  | return; | 
|  | } | 
|  | BuildMI(*MBB, InsPos, DL, TII->get(Opcode)) | 
|  | .add(DBase).addImm(DDisp).addImm(Length) | 
|  | .add(SBase).addImm(SDisp) | 
|  | .setMemRefs(MI.memoperands()); | 
|  | }; | 
|  |  | 
|  | bool NeedsLoop = false; | 
|  | uint64_t ImmLength = 0; | 
|  | Register LenAdjReg = SystemZ::NoRegister; | 
|  | if (IsImmForm) { | 
|  | ImmLength = LengthMO.getImm(); | 
|  | ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment. | 
|  | if (ImmLength == 0) { | 
|  | MI.eraseFromParent(); | 
|  | return MBB; | 
|  | } | 
|  | if (Opcode == SystemZ::CLC) { | 
|  | if (ImmLength > 3 * 256) | 
|  | // A two-CLC sequence is a clear win over a loop, not least because | 
|  | // it needs only one branch.  A three-CLC sequence needs the same | 
|  | // number of branches as a loop (i.e. 2), but is shorter.  That | 
|  | // brings us to lengths greater than 768 bytes.  It seems relatively | 
|  | // likely that a difference will be found within the first 768 bytes, | 
|  | // so we just optimize for the smallest number of branch | 
|  | // instructions, in order to avoid polluting the prediction buffer | 
|  | // too much. | 
|  | NeedsLoop = true; | 
|  | } else if (ImmLength > 6 * 256) | 
|  | // The heuristic we use is to prefer loops for anything that would | 
|  | // require 7 or more MVCs.  With these kinds of sizes there isn't much | 
|  | // to choose between straight-line code and looping code, since the | 
|  | // time will be dominated by the MVCs themselves. | 
|  | NeedsLoop = true; | 
|  | } else { | 
|  | NeedsLoop = true; | 
|  | LenAdjReg = LengthMO.getReg(); | 
|  | } | 
|  |  | 
|  | // When generating more than one CLC, all but the last will need to | 
|  | // branch to the end when a difference is found. | 
|  | MachineBasicBlock *EndMBB = | 
|  | (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop) | 
|  | ? SystemZ::splitBlockAfter(MI, MBB) | 
|  | : nullptr); | 
|  |  | 
|  | if (NeedsLoop) { | 
|  | Register StartCountReg = | 
|  | MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); | 
|  | if (IsImmForm) { | 
|  | TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256); | 
|  | ImmLength &= 255; | 
|  | } else { | 
|  | BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg) | 
|  | .addReg(LenAdjReg) | 
|  | .addReg(0) | 
|  | .addImm(8); | 
|  | } | 
|  |  | 
|  | bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); | 
|  | auto loadZeroAddress = [&]() -> MachineOperand { | 
|  | Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); | 
|  | BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0); | 
|  | return MachineOperand::CreateReg(Reg, false); | 
|  | }; | 
|  | if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister) | 
|  | DestBase = loadZeroAddress(); | 
|  | if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister) | 
|  | SrcBase = HaveSingleBase ? DestBase : loadZeroAddress(); | 
|  |  | 
|  | MachineBasicBlock *StartMBB = nullptr; | 
|  | MachineBasicBlock *LoopMBB = nullptr; | 
|  | MachineBasicBlock *NextMBB = nullptr; | 
|  | MachineBasicBlock *DoneMBB = nullptr; | 
|  | MachineBasicBlock *AllDoneMBB = nullptr; | 
|  |  | 
|  | Register StartSrcReg = forceReg(MI, SrcBase, TII); | 
|  | Register StartDestReg = | 
|  | (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII)); | 
|  |  | 
|  | const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; | 
|  | Register ThisSrcReg  = MRI.createVirtualRegister(RC); | 
|  | Register ThisDestReg = | 
|  | (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC)); | 
|  | Register NextSrcReg  = MRI.createVirtualRegister(RC); | 
|  | Register NextDestReg = | 
|  | (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC)); | 
|  | RC = &SystemZ::GR64BitRegClass; | 
|  | Register ThisCountReg = MRI.createVirtualRegister(RC); | 
|  | Register NextCountReg = MRI.createVirtualRegister(RC); | 
|  |  | 
|  | if (IsRegForm) { | 
|  | AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB); | 
|  | StartMBB = SystemZ::emitBlockAfter(MBB); | 
|  | LoopMBB = SystemZ::emitBlockAfter(StartMBB); | 
|  | NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); | 
|  | DoneMBB = SystemZ::emitBlockAfter(NextMBB); | 
|  |  | 
|  | //  MBB: | 
|  | //   # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB. | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) | 
|  | .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::BRC)) | 
|  | .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) | 
|  | .addMBB(AllDoneMBB); | 
|  | MBB->addSuccessor(AllDoneMBB); | 
|  | if (!IsMemset) | 
|  | MBB->addSuccessor(StartMBB); | 
|  | else { | 
|  | // MemsetOneCheckMBB: | 
|  | // # Jump to MemsetOneMBB for a memset of length 1, or | 
|  | // # fall thru to StartMBB. | 
|  | MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB); | 
|  | MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin()); | 
|  | MBB->addSuccessor(MemsetOneCheckMBB); | 
|  | MBB = MemsetOneCheckMBB; | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) | 
|  | .addReg(LenAdjReg).addImm(-1); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::BRC)) | 
|  | .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) | 
|  | .addMBB(MemsetOneMBB); | 
|  | MBB->addSuccessor(MemsetOneMBB, {10, 100}); | 
|  | MBB->addSuccessor(StartMBB, {90, 100}); | 
|  |  | 
|  | // MemsetOneMBB: | 
|  | // # Jump back to AllDoneMBB after a single MVI or STC. | 
|  | MBB = MemsetOneMBB; | 
|  | insertMemMemOp(MBB, MBB->end(), | 
|  | MachineOperand::CreateReg(StartDestReg, false), DestDisp, | 
|  | MachineOperand::CreateReg(StartSrcReg, false), SrcDisp, | 
|  | 1); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB); | 
|  | MBB->addSuccessor(AllDoneMBB); | 
|  | } | 
|  |  | 
|  | // StartMBB: | 
|  | // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB. | 
|  | MBB = StartMBB; | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) | 
|  | .addReg(StartCountReg).addImm(0); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::BRC)) | 
|  | .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) | 
|  | .addMBB(DoneMBB); | 
|  | MBB->addSuccessor(DoneMBB); | 
|  | MBB->addSuccessor(LoopMBB); | 
|  | } | 
|  | else { | 
|  | StartMBB = MBB; | 
|  | DoneMBB = SystemZ::splitBlockBefore(MI, MBB); | 
|  | LoopMBB = SystemZ::emitBlockAfter(StartMBB); | 
|  | NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); | 
|  |  | 
|  | //  StartMBB: | 
|  | //   # fall through to LoopMBB | 
|  | MBB->addSuccessor(LoopMBB); | 
|  |  | 
|  | DestBase = MachineOperand::CreateReg(NextDestReg, false); | 
|  | SrcBase = MachineOperand::CreateReg(NextSrcReg, false); | 
|  | if (EndMBB && !ImmLength) | 
|  | // If the loop handled the whole CLC range, DoneMBB will be empty with | 
|  | // CC live-through into EndMBB, so add it as live-in. | 
|  | DoneMBB->addLiveIn(SystemZ::CC); | 
|  | } | 
|  |  | 
|  | //  LoopMBB: | 
|  | //   %ThisDestReg = phi [ %StartDestReg, StartMBB ], | 
|  | //                      [ %NextDestReg, NextMBB ] | 
|  | //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], | 
|  | //                     [ %NextSrcReg, NextMBB ] | 
|  | //   %ThisCountReg = phi [ %StartCountReg, StartMBB ], | 
|  | //                       [ %NextCountReg, NextMBB ] | 
|  | //   ( PFD 2, 768+DestDisp(%ThisDestReg) ) | 
|  | //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) | 
|  | //   ( JLH EndMBB ) | 
|  | // | 
|  | // The prefetch is used only for MVC.  The JLH is used only for CLC. | 
|  | MBB = LoopMBB; | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) | 
|  | .addReg(StartDestReg).addMBB(StartMBB) | 
|  | .addReg(NextDestReg).addMBB(NextMBB); | 
|  | if (!HaveSingleBase) | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) | 
|  | .addReg(StartSrcReg).addMBB(StartMBB) | 
|  | .addReg(NextSrcReg).addMBB(NextMBB); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) | 
|  | .addReg(StartCountReg).addMBB(StartMBB) | 
|  | .addReg(NextCountReg).addMBB(NextMBB); | 
|  | if (Opcode == SystemZ::MVC) | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::PFD)) | 
|  | .addImm(SystemZ::PFD_WRITE) | 
|  | .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0); | 
|  | insertMemMemOp(MBB, MBB->end(), | 
|  | MachineOperand::CreateReg(ThisDestReg, false), DestDisp, | 
|  | MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256); | 
|  | if (EndMBB) { | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::BRC)) | 
|  | .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) | 
|  | .addMBB(EndMBB); | 
|  | MBB->addSuccessor(EndMBB); | 
|  | MBB->addSuccessor(NextMBB); | 
|  | } | 
|  |  | 
|  | // NextMBB: | 
|  | //   %NextDestReg = LA 256(%ThisDestReg) | 
|  | //   %NextSrcReg = LA 256(%ThisSrcReg) | 
|  | //   %NextCountReg = AGHI %ThisCountReg, -1 | 
|  | //   CGHI %NextCountReg, 0 | 
|  | //   JLH LoopMBB | 
|  | //   # fall through to DoneMBB | 
|  | // | 
|  | // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. | 
|  | MBB = NextMBB; | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) | 
|  | .addReg(ThisDestReg).addImm(256).addReg(0); | 
|  | if (!HaveSingleBase) | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) | 
|  | .addReg(ThisSrcReg).addImm(256).addReg(0); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) | 
|  | .addReg(ThisCountReg).addImm(-1); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) | 
|  | .addReg(NextCountReg).addImm(0); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::BRC)) | 
|  | .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) | 
|  | .addMBB(LoopMBB); | 
|  | MBB->addSuccessor(LoopMBB); | 
|  | MBB->addSuccessor(DoneMBB); | 
|  |  | 
|  | MBB = DoneMBB; | 
|  | if (IsRegForm) { | 
|  | // DoneMBB: | 
|  | // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run. | 
|  | // # Use EXecute Relative Long for the remainder of the bytes. The target | 
|  | //   instruction of the EXRL will have a length field of 1 since 0 is an | 
|  | //   illegal value. The number of bytes processed becomes (%LenAdjReg & | 
|  | //   0xff) + 1. | 
|  | // # Fall through to AllDoneMBB. | 
|  | Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); | 
|  | Register RemDestReg = HaveSingleBase ? RemSrcReg | 
|  | : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg) | 
|  | .addReg(StartDestReg).addMBB(StartMBB) | 
|  | .addReg(NextDestReg).addMBB(NextMBB); | 
|  | if (!HaveSingleBase) | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg) | 
|  | .addReg(StartSrcReg).addMBB(StartMBB) | 
|  | .addReg(NextSrcReg).addMBB(NextMBB); | 
|  | if (IsMemset) | 
|  | insertMemMemOp(MBB, MBB->end(), | 
|  | MachineOperand::CreateReg(RemDestReg, false), DestDisp, | 
|  | MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1); | 
|  | MachineInstrBuilder EXRL_MIB = | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo)) | 
|  | .addImm(Opcode) | 
|  | .addReg(LenAdjReg) | 
|  | .addReg(RemDestReg).addImm(DestDisp) | 
|  | .addReg(RemSrcReg).addImm(SrcDisp); | 
|  | MBB->addSuccessor(AllDoneMBB); | 
|  | MBB = AllDoneMBB; | 
|  | if (Opcode != SystemZ::MVC) { | 
|  | EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine); | 
|  | if (EndMBB) | 
|  | MBB->addLiveIn(SystemZ::CC); | 
|  | } | 
|  | } | 
|  | MF.getProperties().reset(MachineFunctionProperties::Property::NoPHIs); | 
|  | } | 
|  |  | 
|  | // Handle any remaining bytes with straight-line code. | 
|  | while (ImmLength > 0) { | 
|  | uint64_t ThisLength = std::min(ImmLength, uint64_t(256)); | 
|  | // The previous iteration might have created out-of-range displacements. | 
|  | // Apply them using LA/LAY if so. | 
|  | foldDisplIfNeeded(DestBase, DestDisp); | 
|  | foldDisplIfNeeded(SrcBase, SrcDisp); | 
|  | insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength); | 
|  | DestDisp += ThisLength; | 
|  | SrcDisp += ThisLength; | 
|  | ImmLength -= ThisLength; | 
|  | // If there's another CLC to go, branch to the end if a difference | 
|  | // was found. | 
|  | if (EndMBB && ImmLength > 0) { | 
|  | MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::BRC)) | 
|  | .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) | 
|  | .addMBB(EndMBB); | 
|  | MBB->addSuccessor(EndMBB); | 
|  | MBB->addSuccessor(NextMBB); | 
|  | MBB = NextMBB; | 
|  | } | 
|  | } | 
|  | if (EndMBB) { | 
|  | MBB->addSuccessor(EndMBB); | 
|  | MBB = EndMBB; | 
|  | MBB->addLiveIn(SystemZ::CC); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return MBB; | 
|  | } | 
|  |  | 
|  | // Decompose string pseudo-instruction MI into a loop that continually performs | 
|  | // Opcode until CC != 3. | 
|  | MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( | 
|  | MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  |  | 
|  | uint64_t End1Reg = MI.getOperand(0).getReg(); | 
|  | uint64_t Start1Reg = MI.getOperand(1).getReg(); | 
|  | uint64_t Start2Reg = MI.getOperand(2).getReg(); | 
|  | uint64_t CharReg = MI.getOperand(3).getReg(); | 
|  |  | 
|  | const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; | 
|  | uint64_t This1Reg = MRI.createVirtualRegister(RC); | 
|  | uint64_t This2Reg = MRI.createVirtualRegister(RC); | 
|  | uint64_t End2Reg  = MRI.createVirtualRegister(RC); | 
|  |  | 
|  | MachineBasicBlock *StartMBB = MBB; | 
|  | MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); | 
|  | MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); | 
|  |  | 
|  | //  StartMBB: | 
|  | //   # fall through to LoopMBB | 
|  | MBB->addSuccessor(LoopMBB); | 
|  |  | 
|  | //  LoopMBB: | 
|  | //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] | 
|  | //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] | 
|  | //   R0L = %CharReg | 
|  | //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L | 
|  | //   JO LoopMBB | 
|  | //   # fall through to DoneMBB | 
|  | // | 
|  | // The load of R0L can be hoisted by post-RA LICM. | 
|  | MBB = LoopMBB; | 
|  |  | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) | 
|  | .addReg(Start1Reg).addMBB(StartMBB) | 
|  | .addReg(End1Reg).addMBB(LoopMBB); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) | 
|  | .addReg(Start2Reg).addMBB(StartMBB) | 
|  | .addReg(End2Reg).addMBB(LoopMBB); | 
|  | BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); | 
|  | BuildMI(MBB, DL, TII->get(Opcode)) | 
|  | .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) | 
|  | .addReg(This1Reg).addReg(This2Reg); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::BRC)) | 
|  | .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); | 
|  | MBB->addSuccessor(LoopMBB); | 
|  | MBB->addSuccessor(DoneMBB); | 
|  |  | 
|  | DoneMBB->addLiveIn(SystemZ::CC); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return DoneMBB; | 
|  | } | 
|  |  | 
|  | // Update TBEGIN instruction with final opcode and register clobbers. | 
|  | MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( | 
|  | MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, | 
|  | bool NoFloat) const { | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  | const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); | 
|  | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  |  | 
|  | // Update opcode. | 
|  | MI.setDesc(TII->get(Opcode)); | 
|  |  | 
|  | // We cannot handle a TBEGIN that clobbers the stack or frame pointer. | 
|  | // Make sure to add the corresponding GRSM bits if they are missing. | 
|  | uint64_t Control = MI.getOperand(2).getImm(); | 
|  | static const unsigned GPRControlBit[16] = { | 
|  | 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, | 
|  | 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 | 
|  | }; | 
|  | Control |= GPRControlBit[15]; | 
|  | if (TFI->hasFP(MF)) | 
|  | Control |= GPRControlBit[11]; | 
|  | MI.getOperand(2).setImm(Control); | 
|  |  | 
|  | // Add GPR clobbers. | 
|  | for (int I = 0; I < 16; I++) { | 
|  | if ((Control & GPRControlBit[I]) == 0) { | 
|  | unsigned Reg = SystemZMC::GR64Regs[I]; | 
|  | MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add FPR/VR clobbers. | 
|  | if (!NoFloat && (Control & 4) != 0) { | 
|  | if (Subtarget.hasVector()) { | 
|  | for (unsigned Reg : SystemZMC::VR128Regs) { | 
|  | MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); | 
|  | } | 
|  | } else { | 
|  | for (unsigned Reg : SystemZMC::FP64Regs) { | 
|  | MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return MBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( | 
|  | MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  | MachineRegisterInfo *MRI = &MF.getRegInfo(); | 
|  | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  |  | 
|  | Register SrcReg = MI.getOperand(0).getReg(); | 
|  |  | 
|  | // Create new virtual register of the same class as source. | 
|  | const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); | 
|  | Register DstReg = MRI->createVirtualRegister(RC); | 
|  |  | 
|  | // Replace pseudo with a normal load-and-test that models the def as | 
|  | // well. | 
|  | BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) | 
|  | .addReg(SrcReg) | 
|  | .setMIFlags(MI.getFlags()); | 
|  | MI.eraseFromParent(); | 
|  |  | 
|  | return MBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( | 
|  | MachineInstr &MI, MachineBasicBlock *MBB) const { | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  | MachineRegisterInfo *MRI = &MF.getRegInfo(); | 
|  | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | const unsigned ProbeSize = getStackProbeSize(MF); | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  | Register SizeReg = MI.getOperand(2).getReg(); | 
|  |  | 
|  | MachineBasicBlock *StartMBB = MBB; | 
|  | MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB); | 
|  | MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB); | 
|  | MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); | 
|  | MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); | 
|  | MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); | 
|  |  | 
|  | MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), | 
|  | MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); | 
|  |  | 
|  | Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); | 
|  | Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); | 
|  |  | 
|  | //  LoopTestMBB | 
|  | //  BRC TailTestMBB | 
|  | //  # fallthrough to LoopBodyMBB | 
|  | StartMBB->addSuccessor(LoopTestMBB); | 
|  | MBB = LoopTestMBB; | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) | 
|  | .addReg(SizeReg) | 
|  | .addMBB(StartMBB) | 
|  | .addReg(IncReg) | 
|  | .addMBB(LoopBodyMBB); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) | 
|  | .addReg(PHIReg) | 
|  | .addImm(ProbeSize); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::BRC)) | 
|  | .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) | 
|  | .addMBB(TailTestMBB); | 
|  | MBB->addSuccessor(LoopBodyMBB); | 
|  | MBB->addSuccessor(TailTestMBB); | 
|  |  | 
|  | //  LoopBodyMBB: Allocate and probe by means of a volatile compare. | 
|  | //  J LoopTestMBB | 
|  | MBB = LoopBodyMBB; | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) | 
|  | .addReg(PHIReg) | 
|  | .addImm(ProbeSize); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) | 
|  | .addReg(SystemZ::R15D) | 
|  | .addImm(ProbeSize); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) | 
|  | .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) | 
|  | .setMemRefs(VolLdMMO); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); | 
|  | MBB->addSuccessor(LoopTestMBB); | 
|  |  | 
|  | //  TailTestMBB | 
|  | //  BRC DoneMBB | 
|  | //  # fallthrough to TailMBB | 
|  | MBB = TailTestMBB; | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) | 
|  | .addReg(PHIReg) | 
|  | .addImm(0); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::BRC)) | 
|  | .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) | 
|  | .addMBB(DoneMBB); | 
|  | MBB->addSuccessor(TailMBB); | 
|  | MBB->addSuccessor(DoneMBB); | 
|  |  | 
|  | //  TailMBB | 
|  | //  # fallthrough to DoneMBB | 
|  | MBB = TailMBB; | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) | 
|  | .addReg(SystemZ::R15D) | 
|  | .addReg(PHIReg); | 
|  | BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) | 
|  | .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) | 
|  | .setMemRefs(VolLdMMO); | 
|  | MBB->addSuccessor(DoneMBB); | 
|  |  | 
|  | //  DoneMBB | 
|  | MBB = DoneMBB; | 
|  | BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) | 
|  | .addReg(SystemZ::R15D); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return DoneMBB; | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering:: | 
|  | getBackchainAddress(SDValue SP, SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); | 
|  | SDLoc DL(SP); | 
|  | return DAG.getNode(ISD::ADD, DL, MVT::i64, SP, | 
|  | DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL)); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( | 
|  | MachineInstr &MI, MachineBasicBlock *MBB) const { | 
|  | switch (MI.getOpcode()) { | 
|  | case SystemZ::Select32: | 
|  | case SystemZ::Select64: | 
|  | case SystemZ::SelectF32: | 
|  | case SystemZ::SelectF64: | 
|  | case SystemZ::SelectF128: | 
|  | case SystemZ::SelectVR32: | 
|  | case SystemZ::SelectVR64: | 
|  | case SystemZ::SelectVR128: | 
|  | return emitSelect(MI, MBB); | 
|  |  | 
|  | case SystemZ::CondStore8Mux: | 
|  | return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); | 
|  | case SystemZ::CondStore8MuxInv: | 
|  | return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); | 
|  | case SystemZ::CondStore16Mux: | 
|  | return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); | 
|  | case SystemZ::CondStore16MuxInv: | 
|  | return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); | 
|  | case SystemZ::CondStore32Mux: | 
|  | return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); | 
|  | case SystemZ::CondStore32MuxInv: | 
|  | return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); | 
|  | case SystemZ::CondStore8: | 
|  | return emitCondStore(MI, MBB, SystemZ::STC, 0, false); | 
|  | case SystemZ::CondStore8Inv: | 
|  | return emitCondStore(MI, MBB, SystemZ::STC, 0, true); | 
|  | case SystemZ::CondStore16: | 
|  | return emitCondStore(MI, MBB, SystemZ::STH, 0, false); | 
|  | case SystemZ::CondStore16Inv: | 
|  | return emitCondStore(MI, MBB, SystemZ::STH, 0, true); | 
|  | case SystemZ::CondStore32: | 
|  | return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); | 
|  | case SystemZ::CondStore32Inv: | 
|  | return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); | 
|  | case SystemZ::CondStore64: | 
|  | return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); | 
|  | case SystemZ::CondStore64Inv: | 
|  | return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); | 
|  | case SystemZ::CondStoreF32: | 
|  | return emitCondStore(MI, MBB, SystemZ::STE, 0, false); | 
|  | case SystemZ::CondStoreF32Inv: | 
|  | return emitCondStore(MI, MBB, SystemZ::STE, 0, true); | 
|  | case SystemZ::CondStoreF64: | 
|  | return emitCondStore(MI, MBB, SystemZ::STD, 0, false); | 
|  | case SystemZ::CondStoreF64Inv: | 
|  | return emitCondStore(MI, MBB, SystemZ::STD, 0, true); | 
|  |  | 
|  | case SystemZ::PAIR128: | 
|  | return emitPair128(MI, MBB); | 
|  | case SystemZ::AEXT128: | 
|  | return emitExt128(MI, MBB, false); | 
|  | case SystemZ::ZEXT128: | 
|  | return emitExt128(MI, MBB, true); | 
|  |  | 
|  | case SystemZ::ATOMIC_SWAPW: | 
|  | return emitAtomicLoadBinary(MI, MBB, 0, 0); | 
|  | case SystemZ::ATOMIC_SWAP_32: | 
|  | return emitAtomicLoadBinary(MI, MBB, 0, 32); | 
|  | case SystemZ::ATOMIC_SWAP_64: | 
|  | return emitAtomicLoadBinary(MI, MBB, 0, 64); | 
|  |  | 
|  | case SystemZ::ATOMIC_LOADW_AR: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); | 
|  | case SystemZ::ATOMIC_LOADW_AFI: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); | 
|  | case SystemZ::ATOMIC_LOAD_AR: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); | 
|  | case SystemZ::ATOMIC_LOAD_AHI: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); | 
|  | case SystemZ::ATOMIC_LOAD_AFI: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); | 
|  | case SystemZ::ATOMIC_LOAD_AGR: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); | 
|  | case SystemZ::ATOMIC_LOAD_AGHI: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); | 
|  | case SystemZ::ATOMIC_LOAD_AGFI: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); | 
|  |  | 
|  | case SystemZ::ATOMIC_LOADW_SR: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); | 
|  | case SystemZ::ATOMIC_LOAD_SR: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); | 
|  | case SystemZ::ATOMIC_LOAD_SGR: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); | 
|  |  | 
|  | case SystemZ::ATOMIC_LOADW_NR: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); | 
|  | case SystemZ::ATOMIC_LOADW_NILH: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); | 
|  | case SystemZ::ATOMIC_LOAD_NR: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); | 
|  | case SystemZ::ATOMIC_LOAD_NILL: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); | 
|  | case SystemZ::ATOMIC_LOAD_NILH: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); | 
|  | case SystemZ::ATOMIC_LOAD_NILF: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); | 
|  | case SystemZ::ATOMIC_LOAD_NGR: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); | 
|  | case SystemZ::ATOMIC_LOAD_NILL64: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); | 
|  | case SystemZ::ATOMIC_LOAD_NILH64: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); | 
|  | case SystemZ::ATOMIC_LOAD_NIHL64: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); | 
|  | case SystemZ::ATOMIC_LOAD_NIHH64: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); | 
|  | case SystemZ::ATOMIC_LOAD_NILF64: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); | 
|  | case SystemZ::ATOMIC_LOAD_NIHF64: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); | 
|  |  | 
|  | case SystemZ::ATOMIC_LOADW_OR: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); | 
|  | case SystemZ::ATOMIC_LOADW_OILH: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); | 
|  | case SystemZ::ATOMIC_LOAD_OR: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); | 
|  | case SystemZ::ATOMIC_LOAD_OILL: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); | 
|  | case SystemZ::ATOMIC_LOAD_OILH: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); | 
|  | case SystemZ::ATOMIC_LOAD_OILF: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); | 
|  | case SystemZ::ATOMIC_LOAD_OGR: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); | 
|  | case SystemZ::ATOMIC_LOAD_OILL64: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); | 
|  | case SystemZ::ATOMIC_LOAD_OILH64: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); | 
|  | case SystemZ::ATOMIC_LOAD_OIHL64: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); | 
|  | case SystemZ::ATOMIC_LOAD_OIHH64: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); | 
|  | case SystemZ::ATOMIC_LOAD_OILF64: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); | 
|  | case SystemZ::ATOMIC_LOAD_OIHF64: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); | 
|  |  | 
|  | case SystemZ::ATOMIC_LOADW_XR: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); | 
|  | case SystemZ::ATOMIC_LOADW_XILF: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); | 
|  | case SystemZ::ATOMIC_LOAD_XR: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); | 
|  | case SystemZ::ATOMIC_LOAD_XILF: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); | 
|  | case SystemZ::ATOMIC_LOAD_XGR: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); | 
|  | case SystemZ::ATOMIC_LOAD_XILF64: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); | 
|  | case SystemZ::ATOMIC_LOAD_XIHF64: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); | 
|  |  | 
|  | case SystemZ::ATOMIC_LOADW_NRi: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); | 
|  | case SystemZ::ATOMIC_LOADW_NILHi: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); | 
|  | case SystemZ::ATOMIC_LOAD_NRi: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); | 
|  | case SystemZ::ATOMIC_LOAD_NILLi: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); | 
|  | case SystemZ::ATOMIC_LOAD_NILHi: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); | 
|  | case SystemZ::ATOMIC_LOAD_NILFi: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); | 
|  | case SystemZ::ATOMIC_LOAD_NGRi: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); | 
|  | case SystemZ::ATOMIC_LOAD_NILL64i: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); | 
|  | case SystemZ::ATOMIC_LOAD_NILH64i: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); | 
|  | case SystemZ::ATOMIC_LOAD_NIHL64i: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); | 
|  | case SystemZ::ATOMIC_LOAD_NIHH64i: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); | 
|  | case SystemZ::ATOMIC_LOAD_NILF64i: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); | 
|  | case SystemZ::ATOMIC_LOAD_NIHF64i: | 
|  | return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); | 
|  |  | 
|  | case SystemZ::ATOMIC_LOADW_MIN: | 
|  | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, | 
|  | SystemZ::CCMASK_CMP_LE, 0); | 
|  | case SystemZ::ATOMIC_LOAD_MIN_32: | 
|  | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, | 
|  | SystemZ::CCMASK_CMP_LE, 32); | 
|  | case SystemZ::ATOMIC_LOAD_MIN_64: | 
|  | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, | 
|  | SystemZ::CCMASK_CMP_LE, 64); | 
|  |  | 
|  | case SystemZ::ATOMIC_LOADW_MAX: | 
|  | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, | 
|  | SystemZ::CCMASK_CMP_GE, 0); | 
|  | case SystemZ::ATOMIC_LOAD_MAX_32: | 
|  | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, | 
|  | SystemZ::CCMASK_CMP_GE, 32); | 
|  | case SystemZ::ATOMIC_LOAD_MAX_64: | 
|  | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, | 
|  | SystemZ::CCMASK_CMP_GE, 64); | 
|  |  | 
|  | case SystemZ::ATOMIC_LOADW_UMIN: | 
|  | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, | 
|  | SystemZ::CCMASK_CMP_LE, 0); | 
|  | case SystemZ::ATOMIC_LOAD_UMIN_32: | 
|  | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, | 
|  | SystemZ::CCMASK_CMP_LE, 32); | 
|  | case SystemZ::ATOMIC_LOAD_UMIN_64: | 
|  | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, | 
|  | SystemZ::CCMASK_CMP_LE, 64); | 
|  |  | 
|  | case SystemZ::ATOMIC_LOADW_UMAX: | 
|  | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, | 
|  | SystemZ::CCMASK_CMP_GE, 0); | 
|  | case SystemZ::ATOMIC_LOAD_UMAX_32: | 
|  | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, | 
|  | SystemZ::CCMASK_CMP_GE, 32); | 
|  | case SystemZ::ATOMIC_LOAD_UMAX_64: | 
|  | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, | 
|  | SystemZ::CCMASK_CMP_GE, 64); | 
|  |  | 
|  | case SystemZ::ATOMIC_CMP_SWAPW: | 
|  | return emitAtomicCmpSwapW(MI, MBB); | 
|  | case SystemZ::MVCImm: | 
|  | case SystemZ::MVCReg: | 
|  | return emitMemMemWrapper(MI, MBB, SystemZ::MVC); | 
|  | case SystemZ::NCImm: | 
|  | return emitMemMemWrapper(MI, MBB, SystemZ::NC); | 
|  | case SystemZ::OCImm: | 
|  | return emitMemMemWrapper(MI, MBB, SystemZ::OC); | 
|  | case SystemZ::XCImm: | 
|  | case SystemZ::XCReg: | 
|  | return emitMemMemWrapper(MI, MBB, SystemZ::XC); | 
|  | case SystemZ::CLCImm: | 
|  | case SystemZ::CLCReg: | 
|  | return emitMemMemWrapper(MI, MBB, SystemZ::CLC); | 
|  | case SystemZ::MemsetImmImm: | 
|  | case SystemZ::MemsetImmReg: | 
|  | case SystemZ::MemsetRegImm: | 
|  | case SystemZ::MemsetRegReg: | 
|  | return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/); | 
|  | case SystemZ::CLSTLoop: | 
|  | return emitStringWrapper(MI, MBB, SystemZ::CLST); | 
|  | case SystemZ::MVSTLoop: | 
|  | return emitStringWrapper(MI, MBB, SystemZ::MVST); | 
|  | case SystemZ::SRSTLoop: | 
|  | return emitStringWrapper(MI, MBB, SystemZ::SRST); | 
|  | case SystemZ::TBEGIN: | 
|  | return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); | 
|  | case SystemZ::TBEGIN_nofloat: | 
|  | return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); | 
|  | case SystemZ::TBEGINC: | 
|  | return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); | 
|  | case SystemZ::LTEBRCompare_VecPseudo: | 
|  | return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); | 
|  | case SystemZ::LTDBRCompare_VecPseudo: | 
|  | return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); | 
|  | case SystemZ::LTXBRCompare_VecPseudo: | 
|  | return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); | 
|  |  | 
|  | case SystemZ::PROBED_ALLOCA: | 
|  | return emitProbedAlloca(MI, MBB); | 
|  |  | 
|  | case TargetOpcode::STACKMAP: | 
|  | case TargetOpcode::PATCHPOINT: | 
|  | return emitPatchPoint(MI, MBB); | 
|  |  | 
|  | default: | 
|  | llvm_unreachable("Unexpected instr type to insert"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is only used by the isel schedulers, and is needed only to prevent | 
|  | // compiler from crashing when list-ilp is used. | 
|  | const TargetRegisterClass * | 
|  | SystemZTargetLowering::getRepRegClassFor(MVT VT) const { | 
|  | if (VT == MVT::Untyped) | 
|  | return &SystemZ::ADDR128BitRegClass; | 
|  | return TargetLowering::getRepRegClassFor(VT); | 
|  | } | 
|  |  | 
|  | SDValue SystemZTargetLowering::lowerGET_ROUNDING(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | /* | 
|  | The rounding method is in FPC Byte 3 bits 6-7, and has the following | 
|  | settings: | 
|  | 00 Round to nearest | 
|  | 01 Round to 0 | 
|  | 10 Round to +inf | 
|  | 11 Round to -inf | 
|  |  | 
|  | FLT_ROUNDS, on the other hand, expects the following: | 
|  | -1 Undefined | 
|  | 0 Round to 0 | 
|  | 1 Round to nearest | 
|  | 2 Round to +inf | 
|  | 3 Round to -inf | 
|  | */ | 
|  |  | 
|  | // Save FPC to register. | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue EFPC( | 
|  | DAG.getMachineNode(SystemZ::EFPC, dl, {MVT::i32, MVT::Other}, Chain), 0); | 
|  | Chain = EFPC.getValue(1); | 
|  |  | 
|  | // Transform as necessary | 
|  | SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, EFPC, | 
|  | DAG.getConstant(3, dl, MVT::i32)); | 
|  | // RetVal = (CWD1 ^ (CWD1 >> 1)) ^ 1 | 
|  | SDValue CWD2 = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, | 
|  | DAG.getNode(ISD::SRL, dl, MVT::i32, CWD1, | 
|  | DAG.getConstant(1, dl, MVT::i32))); | 
|  |  | 
|  | SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD2, | 
|  | DAG.getConstant(1, dl, MVT::i32)); | 
|  | RetVal = DAG.getZExtOrTrunc(RetVal, dl, Op.getValueType()); | 
|  |  | 
|  | return DAG.getMergeValues({RetVal, Chain}, dl); | 
|  | } |