| //===- LoadStoreOpt.cpp ----------- Generic memory optimizations -*- C++ -*-==// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file implements the LoadStoreOpt optimization pass. |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
| #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" |
| #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" |
| #include "llvm/CodeGen/GlobalISel/Utils.h" |
| #include "llvm/CodeGen/LowLevelTypeUtils.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Register.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <algorithm> |
| |
| #define DEBUG_TYPE "loadstore-opt" |
| |
| using namespace llvm; |
| using namespace ore; |
| using namespace MIPatternMatch; |
| |
| STATISTIC(NumStoresMerged, "Number of stores merged"); |
| |
| const unsigned MaxStoreSizeToForm = 128; |
| |
| char LoadStoreOpt::ID = 0; |
| INITIALIZE_PASS_BEGIN(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations", |
| false, false) |
| INITIALIZE_PASS_END(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations", |
| false, false) |
| |
| LoadStoreOpt::LoadStoreOpt(std::function<bool(const MachineFunction &)> F) |
| : MachineFunctionPass(ID), DoNotRunPass(F) {} |
| |
| LoadStoreOpt::LoadStoreOpt() |
| : LoadStoreOpt([](const MachineFunction &) { return false; }) {} |
| |
| void LoadStoreOpt::init(MachineFunction &MF) { |
| this->MF = &MF; |
| MRI = &MF.getRegInfo(); |
| AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| TLI = MF.getSubtarget().getTargetLowering(); |
| LI = MF.getSubtarget().getLegalizerInfo(); |
| Builder.setMF(MF); |
| IsPreLegalizer = !MF.getProperties().hasProperty( |
| MachineFunctionProperties::Property::Legalized); |
| InstsToErase.clear(); |
| } |
| |
| void LoadStoreOpt::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.setPreservesAll(); |
| getSelectionDAGFallbackAnalysisUsage(AU); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| BaseIndexOffset GISelAddressing::getPointerInfo(Register Ptr, |
| MachineRegisterInfo &MRI) { |
| BaseIndexOffset Info; |
| Register PtrAddRHS; |
| Register BaseReg; |
| if (!mi_match(Ptr, MRI, m_GPtrAdd(m_Reg(BaseReg), m_Reg(PtrAddRHS)))) { |
| Info.setBase(Ptr); |
| Info.setOffset(0); |
| return Info; |
| } |
| Info.setBase(BaseReg); |
| auto RHSCst = getIConstantVRegValWithLookThrough(PtrAddRHS, MRI); |
| if (RHSCst) |
| Info.setOffset(RHSCst->Value.getSExtValue()); |
| |
| // Just recognize a simple case for now. In future we'll need to match |
| // indexing patterns for base + index + constant. |
| Info.setIndex(PtrAddRHS); |
| return Info; |
| } |
| |
| bool GISelAddressing::aliasIsKnownForLoadStore(const MachineInstr &MI1, |
| const MachineInstr &MI2, |
| bool &IsAlias, |
| MachineRegisterInfo &MRI) { |
| auto *LdSt1 = dyn_cast<GLoadStore>(&MI1); |
| auto *LdSt2 = dyn_cast<GLoadStore>(&MI2); |
| if (!LdSt1 || !LdSt2) |
| return false; |
| |
| BaseIndexOffset BasePtr0 = getPointerInfo(LdSt1->getPointerReg(), MRI); |
| BaseIndexOffset BasePtr1 = getPointerInfo(LdSt2->getPointerReg(), MRI); |
| |
| if (!BasePtr0.getBase().isValid() || !BasePtr1.getBase().isValid()) |
| return false; |
| |
| LocationSize Size1 = LdSt1->getMemSize(); |
| LocationSize Size2 = LdSt2->getMemSize(); |
| |
| int64_t PtrDiff; |
| if (BasePtr0.getBase() == BasePtr1.getBase() && BasePtr0.hasValidOffset() && |
| BasePtr1.hasValidOffset()) { |
| PtrDiff = BasePtr1.getOffset() - BasePtr0.getOffset(); |
| // If the size of memory access is unknown, do not use it to do analysis. |
| // One example of unknown size memory access is to load/store scalable |
| // vector objects on the stack. |
| // BasePtr1 is PtrDiff away from BasePtr0. They alias if none of the |
| // following situations arise: |
| if (PtrDiff >= 0 && Size1.hasValue() && !Size1.isScalable()) { |
| // [----BasePtr0----] |
| // [---BasePtr1--] |
| // ========PtrDiff========> |
| IsAlias = !((int64_t)Size1.getValue() <= PtrDiff); |
| return true; |
| } |
| if (PtrDiff < 0 && Size2.hasValue() && !Size2.isScalable()) { |
| // [----BasePtr0----] |
| // [---BasePtr1--] |
| // =====(-PtrDiff)====> |
| IsAlias = !((PtrDiff + (int64_t)Size2.getValue()) <= 0); |
| return true; |
| } |
| return false; |
| } |
| |
| // If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be |
| // able to calculate their relative offset if at least one arises |
| // from an alloca. However, these allocas cannot overlap and we |
| // can infer there is no alias. |
| auto *Base0Def = getDefIgnoringCopies(BasePtr0.getBase(), MRI); |
| auto *Base1Def = getDefIgnoringCopies(BasePtr1.getBase(), MRI); |
| if (!Base0Def || !Base1Def) |
| return false; // Couldn't tell anything. |
| |
| |
| if (Base0Def->getOpcode() != Base1Def->getOpcode()) |
| return false; |
| |
| if (Base0Def->getOpcode() == TargetOpcode::G_FRAME_INDEX) { |
| MachineFrameInfo &MFI = Base0Def->getMF()->getFrameInfo(); |
| // If the bases have the same frame index but we couldn't find a |
| // constant offset, (indices are different) be conservative. |
| if (Base0Def != Base1Def && |
| (!MFI.isFixedObjectIndex(Base0Def->getOperand(1).getIndex()) || |
| !MFI.isFixedObjectIndex(Base1Def->getOperand(1).getIndex()))) { |
| IsAlias = false; |
| return true; |
| } |
| } |
| |
| // This implementation is a lot more primitive than the SDAG one for now. |
| // FIXME: what about constant pools? |
| if (Base0Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) { |
| auto GV0 = Base0Def->getOperand(1).getGlobal(); |
| auto GV1 = Base1Def->getOperand(1).getGlobal(); |
| if (GV0 != GV1) { |
| IsAlias = false; |
| return true; |
| } |
| } |
| |
| // Can't tell anything about aliasing. |
| return false; |
| } |
| |
| bool GISelAddressing::instMayAlias(const MachineInstr &MI, |
| const MachineInstr &Other, |
| MachineRegisterInfo &MRI, |
| AliasAnalysis *AA) { |
| struct MemUseCharacteristics { |
| bool IsVolatile; |
| bool IsAtomic; |
| Register BasePtr; |
| int64_t Offset; |
| LocationSize NumBytes; |
| MachineMemOperand *MMO; |
| }; |
| |
| auto getCharacteristics = |
| [&](const MachineInstr *MI) -> MemUseCharacteristics { |
| if (const auto *LS = dyn_cast<GLoadStore>(MI)) { |
| Register BaseReg; |
| int64_t Offset = 0; |
| // No pre/post-inc addressing modes are considered here, unlike in SDAG. |
| if (!mi_match(LS->getPointerReg(), MRI, |
| m_GPtrAdd(m_Reg(BaseReg), m_ICst(Offset)))) { |
| BaseReg = LS->getPointerReg(); |
| Offset = 0; |
| } |
| |
| LocationSize Size = LS->getMMO().getSize(); |
| return {LS->isVolatile(), LS->isAtomic(), BaseReg, |
| Offset /*base offset*/, Size, &LS->getMMO()}; |
| } |
| // FIXME: support recognizing lifetime instructions. |
| // Default. |
| return {false /*isvolatile*/, |
| /*isAtomic*/ false, |
| Register(), |
| (int64_t)0 /*offset*/, |
| LocationSize::beforeOrAfterPointer() /*size*/, |
| (MachineMemOperand *)nullptr}; |
| }; |
| MemUseCharacteristics MUC0 = getCharacteristics(&MI), |
| MUC1 = getCharacteristics(&Other); |
| |
| // If they are to the same address, then they must be aliases. |
| if (MUC0.BasePtr.isValid() && MUC0.BasePtr == MUC1.BasePtr && |
| MUC0.Offset == MUC1.Offset) |
| return true; |
| |
| // If they are both volatile then they cannot be reordered. |
| if (MUC0.IsVolatile && MUC1.IsVolatile) |
| return true; |
| |
| // Be conservative about atomics for the moment |
| // TODO: This is way overconservative for unordered atomics (see D66309) |
| if (MUC0.IsAtomic && MUC1.IsAtomic) |
| return true; |
| |
| // If one operation reads from invariant memory, and the other may store, they |
| // cannot alias. |
| if (MUC0.MMO && MUC1.MMO) { |
| if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || |
| (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) |
| return false; |
| } |
| |
| // If NumBytes is scalable and offset is not 0, conservatively return may |
| // alias |
| if ((MUC0.NumBytes.isScalable() && MUC0.Offset != 0) || |
| (MUC1.NumBytes.isScalable() && MUC1.Offset != 0)) |
| return true; |
| |
| const bool BothNotScalable = |
| !MUC0.NumBytes.isScalable() && !MUC1.NumBytes.isScalable(); |
| |
| // Try to prove that there is aliasing, or that there is no aliasing. Either |
| // way, we can return now. If nothing can be proved, proceed with more tests. |
| bool IsAlias; |
| if (BothNotScalable && |
| GISelAddressing::aliasIsKnownForLoadStore(MI, Other, IsAlias, MRI)) |
| return IsAlias; |
| |
| // The following all rely on MMO0 and MMO1 being valid. |
| if (!MUC0.MMO || !MUC1.MMO) |
| return true; |
| |
| // FIXME: port the alignment based alias analysis from SDAG's isAlias(). |
| int64_t SrcValOffset0 = MUC0.MMO->getOffset(); |
| int64_t SrcValOffset1 = MUC1.MMO->getOffset(); |
| LocationSize Size0 = MUC0.NumBytes; |
| LocationSize Size1 = MUC1.NumBytes; |
| if (AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && Size0.hasValue() && |
| Size1.hasValue()) { |
| // Use alias analysis information. |
| int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); |
| int64_t Overlap0 = |
| Size0.getValue().getKnownMinValue() + SrcValOffset0 - MinOffset; |
| int64_t Overlap1 = |
| Size1.getValue().getKnownMinValue() + SrcValOffset1 - MinOffset; |
| LocationSize Loc0 = |
| Size0.isScalable() ? Size0 : LocationSize::precise(Overlap0); |
| LocationSize Loc1 = |
| Size1.isScalable() ? Size1 : LocationSize::precise(Overlap1); |
| |
| if (AA->isNoAlias( |
| MemoryLocation(MUC0.MMO->getValue(), Loc0, MUC0.MMO->getAAInfo()), |
| MemoryLocation(MUC1.MMO->getValue(), Loc1, MUC1.MMO->getAAInfo()))) |
| return false; |
| } |
| |
| // Otherwise we have to assume they alias. |
| return true; |
| } |
| |
| /// Returns true if the instruction creates an unavoidable hazard that |
| /// forces a boundary between store merge candidates. |
| static bool isInstHardMergeHazard(MachineInstr &MI) { |
| return MI.hasUnmodeledSideEffects() || MI.hasOrderedMemoryRef(); |
| } |
| |
| bool LoadStoreOpt::mergeStores(SmallVectorImpl<GStore *> &StoresToMerge) { |
| // Try to merge all the stores in the vector, splitting into separate segments |
| // as necessary. |
| assert(StoresToMerge.size() > 1 && "Expected multiple stores to merge"); |
| LLT OrigTy = MRI->getType(StoresToMerge[0]->getValueReg()); |
| LLT PtrTy = MRI->getType(StoresToMerge[0]->getPointerReg()); |
| unsigned AS = PtrTy.getAddressSpace(); |
| // Ensure the legal store info is computed for this address space. |
| initializeStoreMergeTargetInfo(AS); |
| const auto &LegalSizes = LegalStoreSizes[AS]; |
| |
| #ifndef NDEBUG |
| for (auto *StoreMI : StoresToMerge) |
| assert(MRI->getType(StoreMI->getValueReg()) == OrigTy); |
| #endif |
| |
| bool AnyMerged = false; |
| do { |
| unsigned NumPow2 = llvm::bit_floor(StoresToMerge.size()); |
| unsigned MaxSizeBits = NumPow2 * OrigTy.getSizeInBits().getFixedValue(); |
| // Compute the biggest store we can generate to handle the number of stores. |
| unsigned MergeSizeBits; |
| for (MergeSizeBits = MaxSizeBits; MergeSizeBits > 1; MergeSizeBits /= 2) { |
| LLT StoreTy = LLT::scalar(MergeSizeBits); |
| EVT StoreEVT = |
| getApproximateEVTForLLT(StoreTy, MF->getFunction().getContext()); |
| if (LegalSizes.size() > MergeSizeBits && LegalSizes[MergeSizeBits] && |
| TLI->canMergeStoresTo(AS, StoreEVT, *MF) && |
| (TLI->isTypeLegal(StoreEVT))) |
| break; // We can generate a MergeSize bits store. |
| } |
| if (MergeSizeBits <= OrigTy.getSizeInBits()) |
| return AnyMerged; // No greater merge. |
| |
| unsigned NumStoresToMerge = MergeSizeBits / OrigTy.getSizeInBits(); |
| // Perform the actual merging. |
| SmallVector<GStore *, 8> SingleMergeStores( |
| StoresToMerge.begin(), StoresToMerge.begin() + NumStoresToMerge); |
| AnyMerged |= doSingleStoreMerge(SingleMergeStores); |
| StoresToMerge.erase(StoresToMerge.begin(), |
| StoresToMerge.begin() + NumStoresToMerge); |
| } while (StoresToMerge.size() > 1); |
| return AnyMerged; |
| } |
| |
| bool LoadStoreOpt::isLegalOrBeforeLegalizer(const LegalityQuery &Query, |
| MachineFunction &MF) const { |
| auto Action = LI->getAction(Query).Action; |
| // If the instruction is unsupported, it can't be legalized at all. |
| if (Action == LegalizeActions::Unsupported) |
| return false; |
| return IsPreLegalizer || Action == LegalizeAction::Legal; |
| } |
| |
| bool LoadStoreOpt::doSingleStoreMerge(SmallVectorImpl<GStore *> &Stores) { |
| assert(Stores.size() > 1); |
| // We know that all the stores are consecutive and there are no aliasing |
| // operations in the range. However, the values that are being stored may be |
| // generated anywhere before each store. To ensure we have the values |
| // available, we materialize the wide value and new store at the place of the |
| // final store in the merge sequence. |
| GStore *FirstStore = Stores[0]; |
| const unsigned NumStores = Stores.size(); |
| LLT SmallTy = MRI->getType(FirstStore->getValueReg()); |
| LLT WideValueTy = |
| LLT::scalar(NumStores * SmallTy.getSizeInBits().getFixedValue()); |
| |
| // For each store, compute pairwise merged debug locs. |
| DebugLoc MergedLoc = Stores.front()->getDebugLoc(); |
| for (auto *Store : drop_begin(Stores)) |
| MergedLoc = DILocation::getMergedLocation(MergedLoc, Store->getDebugLoc()); |
| |
| Builder.setInstr(*Stores.back()); |
| Builder.setDebugLoc(MergedLoc); |
| |
| // If all of the store values are constants, then create a wide constant |
| // directly. Otherwise, we need to generate some instructions to merge the |
| // existing values together into a wider type. |
| SmallVector<APInt, 8> ConstantVals; |
| for (auto *Store : Stores) { |
| auto MaybeCst = |
| getIConstantVRegValWithLookThrough(Store->getValueReg(), *MRI); |
| if (!MaybeCst) { |
| ConstantVals.clear(); |
| break; |
| } |
| ConstantVals.emplace_back(MaybeCst->Value); |
| } |
| |
| Register WideReg; |
| auto *WideMMO = |
| MF->getMachineMemOperand(&FirstStore->getMMO(), 0, WideValueTy); |
| if (ConstantVals.empty()) { |
| // Mimic the SDAG behaviour here and don't try to do anything for unknown |
| // values. In future, we should also support the cases of loads and |
| // extracted vector elements. |
| return false; |
| } |
| |
| assert(ConstantVals.size() == NumStores); |
| // Check if our wide constant is legal. |
| if (!isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {WideValueTy}}, *MF)) |
| return false; |
| APInt WideConst(WideValueTy.getSizeInBits(), 0); |
| for (unsigned Idx = 0; Idx < ConstantVals.size(); ++Idx) { |
| // Insert the smaller constant into the corresponding position in the |
| // wider one. |
| WideConst.insertBits(ConstantVals[Idx], Idx * SmallTy.getSizeInBits()); |
| } |
| WideReg = Builder.buildConstant(WideValueTy, WideConst).getReg(0); |
| auto NewStore = |
| Builder.buildStore(WideReg, FirstStore->getPointerReg(), *WideMMO); |
| (void) NewStore; |
| LLVM_DEBUG(dbgs() << "Merged " << Stores.size() |
| << " stores into merged store: " << *NewStore); |
| LLVM_DEBUG(for (auto *MI : Stores) dbgs() << " " << *MI;); |
| NumStoresMerged += Stores.size(); |
| |
| MachineOptimizationRemarkEmitter MORE(*MF, nullptr); |
| MORE.emit([&]() { |
| MachineOptimizationRemark R(DEBUG_TYPE, "MergedStore", |
| FirstStore->getDebugLoc(), |
| FirstStore->getParent()); |
| R << "Merged " << NV("NumMerged", Stores.size()) << " stores of " |
| << NV("OrigWidth", SmallTy.getSizeInBytes()) |
| << " bytes into a single store of " |
| << NV("NewWidth", WideValueTy.getSizeInBytes()) << " bytes"; |
| return R; |
| }); |
| |
| InstsToErase.insert_range(Stores); |
| return true; |
| } |
| |
| bool LoadStoreOpt::processMergeCandidate(StoreMergeCandidate &C) { |
| if (C.Stores.size() < 2) { |
| C.reset(); |
| return false; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Checking store merge candidate with " << C.Stores.size() |
| << " stores, starting with " << *C.Stores[0]); |
| // We know that the stores in the candidate are adjacent. |
| // Now we need to check if any potential aliasing instructions recorded |
| // during the search alias with load/stores added to the candidate after. |
| // For example, if we have the candidate: |
| // C.Stores = [ST1, ST2, ST3, ST4] |
| // and after seeing ST2 we saw a load LD1, which did not alias with ST1 or |
| // ST2, then we would have recorded it into the PotentialAliases structure |
| // with the associated index value of "1". Then we see ST3 and ST4 and add |
| // them to the candidate group. We know that LD1 does not alias with ST1 or |
| // ST2, since we already did that check. However we don't yet know if it |
| // may alias ST3 and ST4, so we perform those checks now. |
| SmallVector<GStore *> StoresToMerge; |
| |
| auto DoesStoreAliasWithPotential = [&](unsigned Idx, GStore &CheckStore) { |
| for (auto AliasInfo : reverse(C.PotentialAliases)) { |
| MachineInstr *PotentialAliasOp = AliasInfo.first; |
| unsigned PreCheckedIdx = AliasInfo.second; |
| if (static_cast<unsigned>(Idx) < PreCheckedIdx) { |
| // Once our store index is lower than the index associated with the |
| // potential alias, we know that we've already checked for this alias |
| // and all of the earlier potential aliases too. |
| return false; |
| } |
| // Need to check this alias. |
| if (GISelAddressing::instMayAlias(CheckStore, *PotentialAliasOp, *MRI, |
| AA)) { |
| LLVM_DEBUG(dbgs() << "Potential alias " << *PotentialAliasOp |
| << " detected\n"); |
| return true; |
| } |
| } |
| return false; |
| }; |
| // Start from the last store in the group, and check if it aliases with any |
| // of the potential aliasing operations in the list. |
| for (int StoreIdx = C.Stores.size() - 1; StoreIdx >= 0; --StoreIdx) { |
| auto *CheckStore = C.Stores[StoreIdx]; |
| if (DoesStoreAliasWithPotential(StoreIdx, *CheckStore)) |
| continue; |
| StoresToMerge.emplace_back(CheckStore); |
| } |
| |
| LLVM_DEBUG(dbgs() << StoresToMerge.size() |
| << " stores remaining after alias checks. Merging...\n"); |
| |
| // Now we've checked for aliasing hazards, merge any stores left. |
| C.reset(); |
| if (StoresToMerge.size() < 2) |
| return false; |
| return mergeStores(StoresToMerge); |
| } |
| |
| bool LoadStoreOpt::operationAliasesWithCandidate(MachineInstr &MI, |
| StoreMergeCandidate &C) { |
| if (C.Stores.empty()) |
| return false; |
| return llvm::any_of(C.Stores, [&](MachineInstr *OtherMI) { |
| return instMayAlias(MI, *OtherMI, *MRI, AA); |
| }); |
| } |
| |
| void LoadStoreOpt::StoreMergeCandidate::addPotentialAlias(MachineInstr &MI) { |
| PotentialAliases.emplace_back(std::make_pair(&MI, Stores.size() - 1)); |
| } |
| |
| bool LoadStoreOpt::addStoreToCandidate(GStore &StoreMI, |
| StoreMergeCandidate &C) { |
| // Check if the given store writes to an adjacent address, and other |
| // requirements. |
| LLT ValueTy = MRI->getType(StoreMI.getValueReg()); |
| LLT PtrTy = MRI->getType(StoreMI.getPointerReg()); |
| |
| // Only handle scalars. |
| if (!ValueTy.isScalar()) |
| return false; |
| |
| // Don't allow truncating stores for now. |
| if (StoreMI.getMemSizeInBits() != ValueTy.getSizeInBits()) |
| return false; |
| |
| // Avoid adding volatile or ordered stores to the candidate. We already have a |
| // check for this in instMayAlias() but that only get's called later between |
| // potential aliasing hazards. |
| if (!StoreMI.isSimple()) |
| return false; |
| |
| Register StoreAddr = StoreMI.getPointerReg(); |
| auto BIO = getPointerInfo(StoreAddr, *MRI); |
| Register StoreBase = BIO.getBase(); |
| if (C.Stores.empty()) { |
| C.BasePtr = StoreBase; |
| if (!BIO.hasValidOffset()) { |
| C.CurrentLowestOffset = 0; |
| } else { |
| C.CurrentLowestOffset = BIO.getOffset(); |
| } |
| // This is the first store of the candidate. |
| // If the offset can't possibly allow for a lower addressed store with the |
| // same base, don't bother adding it. |
| if (BIO.hasValidOffset() && |
| BIO.getOffset() < static_cast<int64_t>(ValueTy.getSizeInBytes())) |
| return false; |
| C.Stores.emplace_back(&StoreMI); |
| LLVM_DEBUG(dbgs() << "Starting a new merge candidate group with: " |
| << StoreMI); |
| return true; |
| } |
| |
| // Check the store is the same size as the existing ones in the candidate. |
| if (MRI->getType(C.Stores[0]->getValueReg()).getSizeInBits() != |
| ValueTy.getSizeInBits()) |
| return false; |
| |
| if (MRI->getType(C.Stores[0]->getPointerReg()).getAddressSpace() != |
| PtrTy.getAddressSpace()) |
| return false; |
| |
| // There are other stores in the candidate. Check that the store address |
| // writes to the next lowest adjacent address. |
| if (C.BasePtr != StoreBase) |
| return false; |
| // If we don't have a valid offset, we can't guarantee to be an adjacent |
| // offset. |
| if (!BIO.hasValidOffset()) |
| return false; |
| if ((C.CurrentLowestOffset - |
| static_cast<int64_t>(ValueTy.getSizeInBytes())) != BIO.getOffset()) |
| return false; |
| |
| // This writes to an adjacent address. Allow it. |
| C.Stores.emplace_back(&StoreMI); |
| C.CurrentLowestOffset = C.CurrentLowestOffset - ValueTy.getSizeInBytes(); |
| LLVM_DEBUG(dbgs() << "Candidate added store: " << StoreMI); |
| return true; |
| } |
| |
| bool LoadStoreOpt::mergeBlockStores(MachineBasicBlock &MBB) { |
| bool Changed = false; |
| // Walk through the block bottom-up, looking for merging candidates. |
| StoreMergeCandidate Candidate; |
| for (MachineInstr &MI : llvm::reverse(MBB)) { |
| if (InstsToErase.contains(&MI)) |
| continue; |
| |
| if (auto *StoreMI = dyn_cast<GStore>(&MI)) { |
| // We have a G_STORE. Add it to the candidate if it writes to an adjacent |
| // address. |
| if (!addStoreToCandidate(*StoreMI, Candidate)) { |
| // Store wasn't eligible to be added. May need to record it as a |
| // potential alias. |
| if (operationAliasesWithCandidate(*StoreMI, Candidate)) { |
| Changed |= processMergeCandidate(Candidate); |
| continue; |
| } |
| Candidate.addPotentialAlias(*StoreMI); |
| } |
| continue; |
| } |
| |
| // If we don't have any stores yet, this instruction can't pose a problem. |
| if (Candidate.Stores.empty()) |
| continue; |
| |
| // We're dealing with some other kind of instruction. |
| if (isInstHardMergeHazard(MI)) { |
| Changed |= processMergeCandidate(Candidate); |
| Candidate.Stores.clear(); |
| continue; |
| } |
| |
| if (!MI.mayLoadOrStore()) |
| continue; |
| |
| if (operationAliasesWithCandidate(MI, Candidate)) { |
| // We have a potential alias, so process the current candidate if we can |
| // and then continue looking for a new candidate. |
| Changed |= processMergeCandidate(Candidate); |
| continue; |
| } |
| |
| // Record this instruction as a potential alias for future stores that are |
| // added to the candidate. |
| Candidate.addPotentialAlias(MI); |
| } |
| |
| // Process any candidate left after finishing searching the entire block. |
| Changed |= processMergeCandidate(Candidate); |
| |
| // Erase instructions now that we're no longer iterating over the block. |
| for (auto *MI : InstsToErase) |
| MI->eraseFromParent(); |
| InstsToErase.clear(); |
| return Changed; |
| } |
| |
| /// Check if the store \p Store is a truncstore that can be merged. That is, |
| /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty |
| /// Register then it does not need to match and SrcVal is set to the source |
| /// value found. |
| /// On match, returns the start byte offset of the \p SrcVal that is being |
| /// stored. |
| static std::optional<int64_t> |
| getTruncStoreByteOffset(GStore &Store, Register &SrcVal, |
| MachineRegisterInfo &MRI) { |
| Register TruncVal; |
| if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) |
| return std::nullopt; |
| |
| // The shift amount must be a constant multiple of the narrow type. |
| // It is translated to the offset address in the wide source value "y". |
| // |
| // x = G_LSHR y, ShiftAmtC |
| // s8 z = G_TRUNC x |
| // store z, ... |
| Register FoundSrcVal; |
| int64_t ShiftAmt; |
| if (!mi_match(TruncVal, MRI, |
| m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), |
| m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { |
| if (!SrcVal.isValid() || TruncVal == SrcVal) { |
| if (!SrcVal.isValid()) |
| SrcVal = TruncVal; |
| return 0; // If it's the lowest index store. |
| } |
| return std::nullopt; |
| } |
| |
| unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); |
| if (ShiftAmt % NarrowBits != 0) |
| return std::nullopt; |
| const unsigned Offset = ShiftAmt / NarrowBits; |
| |
| if (SrcVal.isValid() && FoundSrcVal != SrcVal) |
| return std::nullopt; |
| |
| if (!SrcVal.isValid()) |
| SrcVal = FoundSrcVal; |
| else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) |
| return std::nullopt; |
| return Offset; |
| } |
| |
| /// Match a pattern where a wide type scalar value is stored by several narrow |
| /// stores. Fold it into a single store or a BSWAP and a store if the targets |
| /// supports it. |
| /// |
| /// Assuming little endian target: |
| /// i8 *p = ... |
| /// i32 val = ... |
| /// p[0] = (val >> 0) & 0xFF; |
| /// p[1] = (val >> 8) & 0xFF; |
| /// p[2] = (val >> 16) & 0xFF; |
| /// p[3] = (val >> 24) & 0xFF; |
| /// => |
| /// *((i32)p) = val; |
| /// |
| /// i8 *p = ... |
| /// i32 val = ... |
| /// p[0] = (val >> 24) & 0xFF; |
| /// p[1] = (val >> 16) & 0xFF; |
| /// p[2] = (val >> 8) & 0xFF; |
| /// p[3] = (val >> 0) & 0xFF; |
| /// => |
| /// *((i32)p) = BSWAP(val); |
| bool LoadStoreOpt::mergeTruncStore(GStore &StoreMI, |
| SmallPtrSetImpl<GStore *> &DeletedStores) { |
| LLT MemTy = StoreMI.getMMO().getMemoryType(); |
| |
| // We only handle merging simple stores of 1-4 bytes. |
| if (!MemTy.isScalar()) |
| return false; |
| switch (MemTy.getSizeInBits()) { |
| case 8: |
| case 16: |
| case 32: |
| break; |
| default: |
| return false; |
| } |
| if (!StoreMI.isSimple()) |
| return false; |
| |
| // We do a simple search for mergeable stores prior to this one. |
| // Any potential alias hazard along the way terminates the search. |
| SmallVector<GStore *> FoundStores; |
| |
| // We're looking for: |
| // 1) a (store(trunc(...))) |
| // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get |
| // the partial value stored. |
| // 3) where the offsets form either a little or big-endian sequence. |
| |
| auto &LastStore = StoreMI; |
| |
| // The single base pointer that all stores must use. |
| Register BaseReg; |
| int64_t LastOffset; |
| if (!mi_match(LastStore.getPointerReg(), *MRI, |
| m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { |
| BaseReg = LastStore.getPointerReg(); |
| LastOffset = 0; |
| } |
| |
| GStore *LowestIdxStore = &LastStore; |
| int64_t LowestIdxOffset = LastOffset; |
| |
| Register WideSrcVal; |
| auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, *MRI); |
| if (!LowestShiftAmt) |
| return false; // Didn't match a trunc. |
| assert(WideSrcVal.isValid()); |
| |
| LLT WideStoreTy = MRI->getType(WideSrcVal); |
| // The wide type might not be a multiple of the memory type, e.g. s48 and s32. |
| if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0) |
| return false; |
| const unsigned NumStoresRequired = |
| WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); |
| |
| SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); |
| OffsetMap[*LowestShiftAmt] = LastOffset; |
| FoundStores.emplace_back(&LastStore); |
| |
| const int MaxInstsToCheck = 10; |
| int NumInstsChecked = 0; |
| for (auto II = ++LastStore.getReverseIterator(); |
| II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; |
| ++II) { |
| NumInstsChecked++; |
| GStore *NewStore; |
| if ((NewStore = dyn_cast<GStore>(&*II))) { |
| if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) |
| break; |
| } else if (II->isLoadFoldBarrier() || II->mayLoad()) { |
| break; |
| } else { |
| continue; // This is a safe instruction we can look past. |
| } |
| |
| Register NewBaseReg; |
| int64_t MemOffset; |
| // Check we're storing to the same base + some offset. |
| if (!mi_match(NewStore->getPointerReg(), *MRI, |
| m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { |
| NewBaseReg = NewStore->getPointerReg(); |
| MemOffset = 0; |
| } |
| if (BaseReg != NewBaseReg) |
| break; |
| |
| auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, *MRI); |
| if (!ShiftByteOffset) |
| break; |
| if (MemOffset < LowestIdxOffset) { |
| LowestIdxOffset = MemOffset; |
| LowestIdxStore = NewStore; |
| } |
| |
| // Map the offset in the store and the offset in the combined value, and |
| // early return if it has been set before. |
| if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || |
| OffsetMap[*ShiftByteOffset] != INT64_MAX) |
| break; |
| OffsetMap[*ShiftByteOffset] = MemOffset; |
| |
| FoundStores.emplace_back(NewStore); |
| // Reset counter since we've found a matching inst. |
| NumInstsChecked = 0; |
| if (FoundStores.size() == NumStoresRequired) |
| break; |
| } |
| |
| if (FoundStores.size() != NumStoresRequired) { |
| if (FoundStores.size() == 1) |
| return false; |
| // We didn't find enough stores to merge into the size of the original |
| // source value, but we may be able to generate a smaller store if we |
| // truncate the source value. |
| WideStoreTy = LLT::scalar(FoundStores.size() * MemTy.getScalarSizeInBits()); |
| } |
| |
| unsigned NumStoresFound = FoundStores.size(); |
| |
| const auto &DL = LastStore.getMF()->getDataLayout(); |
| auto &C = LastStore.getMF()->getFunction().getContext(); |
| // Check that a store of the wide type is both allowed and fast on the target |
| unsigned Fast = 0; |
| bool Allowed = TLI->allowsMemoryAccess( |
| C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); |
| if (!Allowed || !Fast) |
| return false; |
| |
| // Check if the pieces of the value are going to the expected places in memory |
| // to merge the stores. |
| unsigned NarrowBits = MemTy.getScalarSizeInBits(); |
| auto checkOffsets = [&](bool MatchLittleEndian) { |
| if (MatchLittleEndian) { |
| for (unsigned i = 0; i != NumStoresFound; ++i) |
| if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) |
| return false; |
| } else { // MatchBigEndian by reversing loop counter. |
| for (unsigned i = 0, j = NumStoresFound - 1; i != NumStoresFound; |
| ++i, --j) |
| if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) |
| return false; |
| } |
| return true; |
| }; |
| |
| // Check if the offsets line up for the native data layout of this target. |
| bool NeedBswap = false; |
| bool NeedRotate = false; |
| if (!checkOffsets(DL.isLittleEndian())) { |
| // Special-case: check if byte offsets line up for the opposite endian. |
| if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) |
| NeedBswap = true; |
| else if (NumStoresFound == 2 && checkOffsets(DL.isBigEndian())) |
| NeedRotate = true; |
| else |
| return false; |
| } |
| |
| if (NeedBswap && |
| !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}}, *MF)) |
| return false; |
| if (NeedRotate && |
| !isLegalOrBeforeLegalizer( |
| {TargetOpcode::G_ROTR, {WideStoreTy, WideStoreTy}}, *MF)) |
| return false; |
| |
| Builder.setInstrAndDebugLoc(StoreMI); |
| |
| if (WideStoreTy != MRI->getType(WideSrcVal)) |
| WideSrcVal = Builder.buildTrunc(WideStoreTy, WideSrcVal).getReg(0); |
| |
| if (NeedBswap) { |
| WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); |
| } else if (NeedRotate) { |
| assert(WideStoreTy.getSizeInBits() % 2 == 0 && |
| "Unexpected type for rotate"); |
| auto RotAmt = |
| Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); |
| WideSrcVal = |
| Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); |
| } |
| |
| Builder.buildStore(WideSrcVal, LowestIdxStore->getPointerReg(), |
| LowestIdxStore->getMMO().getPointerInfo(), |
| LowestIdxStore->getMMO().getAlign()); |
| |
| // Erase the old stores. |
| for (auto *ST : FoundStores) { |
| ST->eraseFromParent(); |
| DeletedStores.insert(ST); |
| } |
| return true; |
| } |
| |
| bool LoadStoreOpt::mergeTruncStoresBlock(MachineBasicBlock &BB) { |
| bool Changed = false; |
| SmallVector<GStore *, 16> Stores; |
| SmallPtrSet<GStore *, 8> DeletedStores; |
| // Walk up the block so we can see the most eligible stores. |
| for (MachineInstr &MI : llvm::reverse(BB)) |
| if (auto *StoreMI = dyn_cast<GStore>(&MI)) |
| Stores.emplace_back(StoreMI); |
| |
| for (auto *StoreMI : Stores) { |
| if (DeletedStores.count(StoreMI)) |
| continue; |
| if (mergeTruncStore(*StoreMI, DeletedStores)) |
| Changed = true; |
| } |
| return Changed; |
| } |
| |
| bool LoadStoreOpt::mergeFunctionStores(MachineFunction &MF) { |
| bool Changed = false; |
| for (auto &BB : MF){ |
| Changed |= mergeBlockStores(BB); |
| Changed |= mergeTruncStoresBlock(BB); |
| } |
| |
| // Erase all dead instructions left over by the merging. |
| if (Changed) { |
| for (auto &BB : MF) { |
| for (auto &I : make_early_inc_range(reverse(BB))) { |
| if (isTriviallyDead(I, *MRI)) |
| I.eraseFromParent(); |
| } |
| } |
| } |
| |
| return Changed; |
| } |
| |
| void LoadStoreOpt::initializeStoreMergeTargetInfo(unsigned AddrSpace) { |
| // Query the legalizer info to record what store types are legal. |
| // We record this because we don't want to bother trying to merge stores into |
| // illegal ones, which would just result in being split again. |
| |
| if (LegalStoreSizes.count(AddrSpace)) { |
| assert(LegalStoreSizes[AddrSpace].any()); |
| return; // Already cached sizes for this address space. |
| } |
| |
| // Need to reserve at least MaxStoreSizeToForm + 1 bits. |
| BitVector LegalSizes(MaxStoreSizeToForm * 2); |
| const auto &LI = *MF->getSubtarget().getLegalizerInfo(); |
| const auto &DL = MF->getFunction().getDataLayout(); |
| Type *IRPtrTy = PointerType::get(MF->getFunction().getContext(), AddrSpace); |
| LLT PtrTy = getLLTForType(*IRPtrTy, DL); |
| // We assume that we're not going to be generating any stores wider than |
| // MaxStoreSizeToForm bits for now. |
| for (unsigned Size = 2; Size <= MaxStoreSizeToForm; Size *= 2) { |
| LLT Ty = LLT::scalar(Size); |
| SmallVector<LegalityQuery::MemDesc, 2> MemDescrs( |
| {{Ty, Ty.getSizeInBits(), AtomicOrdering::NotAtomic}}); |
| SmallVector<LLT> StoreTys({Ty, PtrTy}); |
| LegalityQuery Q(TargetOpcode::G_STORE, StoreTys, MemDescrs); |
| LegalizeActionStep ActionStep = LI.getAction(Q); |
| if (ActionStep.Action == LegalizeActions::Legal) |
| LegalSizes.set(Size); |
| } |
| assert(LegalSizes.any() && "Expected some store sizes to be legal!"); |
| LegalStoreSizes[AddrSpace] = LegalSizes; |
| } |
| |
| bool LoadStoreOpt::runOnMachineFunction(MachineFunction &MF) { |
| // If the ISel pipeline failed, do not bother running that pass. |
| if (MF.getProperties().hasProperty( |
| MachineFunctionProperties::Property::FailedISel)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Begin memory optimizations for: " << MF.getName() |
| << '\n'); |
| |
| init(MF); |
| bool Changed = false; |
| Changed |= mergeFunctionStores(MF); |
| |
| LegalStoreSizes.clear(); |
| return Changed; |
| } |