| ; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py UTC_ARGS: --version 5 |
| ; RUN: llc < %s -mtriple=nvptx64 -mcpu=sm_20 -nvptx-prec-divf32=0 -nvptx-prec-sqrtf32=0 \ |
| ; RUN: | FileCheck %s |
| ; RUN: %if ptxas %{ \ |
| ; RUN: llc < %s -mtriple=nvptx64 -mcpu=sm_20 -nvptx-prec-divf32=0 -nvptx-prec-sqrtf32=0 \ |
| ; RUN: | %ptxas-verify \ |
| ; RUN: %} |
| |
| target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64" |
| |
| declare float @llvm.sqrt.f32(float) |
| declare double @llvm.sqrt.f64(double) |
| |
| ; -- reciprocal sqrt -- |
| |
| define float @test_rsqrt32(float %a) #0 { |
| ; CHECK-LABEL: test_rsqrt32( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<3>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b32 %r1, [test_rsqrt32_param_0]; |
| ; CHECK-NEXT: rsqrt.approx.f32 %r2, %r1; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r2; |
| ; CHECK-NEXT: ret; |
| %val = tail call float @llvm.sqrt.f32(float %a) |
| %ret = fdiv float 1.0, %val |
| ret float %ret |
| } |
| |
| define float @test_rsqrt_ftz(float %a) #0 #1 { |
| ; CHECK-LABEL: test_rsqrt_ftz( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<3>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b32 %r1, [test_rsqrt_ftz_param_0]; |
| ; CHECK-NEXT: rsqrt.approx.ftz.f32 %r2, %r1; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r2; |
| ; CHECK-NEXT: ret; |
| %val = tail call float @llvm.sqrt.f32(float %a) |
| %ret = fdiv float 1.0, %val |
| ret float %ret |
| } |
| |
| define double @test_rsqrt64(double %a) { |
| ; CHECK-LABEL: test_rsqrt64( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b64 %rd<3>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b64 %rd1, [test_rsqrt64_param_0]; |
| ; CHECK-NEXT: rsqrt.approx.f64 %rd2, %rd1; |
| ; CHECK-NEXT: st.param.b64 [func_retval0], %rd2; |
| ; CHECK-NEXT: ret; |
| %val = tail call double @llvm.sqrt.f64(double %a) |
| %ret = fdiv arcp double 1.0, %val |
| ret double %ret |
| } |
| |
| ; There's no rsqrt.approx.ftz.f64 instruction; we just use the non-ftz version. |
| define double @test_rsqrt64_ftz(double %a) #1 { |
| ; CHECK-LABEL: test_rsqrt64_ftz( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b64 %rd<3>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b64 %rd1, [test_rsqrt64_ftz_param_0]; |
| ; CHECK-NEXT: rsqrt.approx.f64 %rd2, %rd1; |
| ; CHECK-NEXT: st.param.b64 [func_retval0], %rd2; |
| ; CHECK-NEXT: ret; |
| %val = tail call double @llvm.sqrt.f64(double %a) |
| %ret = fdiv arcp double 1.0, %val |
| ret double %ret |
| } |
| |
| ; -- sqrt -- |
| |
| define float @test_sqrt32(float %a) #0 { |
| ; CHECK-LABEL: test_sqrt32( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<3>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b32 %r1, [test_sqrt32_param_0]; |
| ; CHECK-NEXT: sqrt.approx.f32 %r2, %r1; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r2; |
| ; CHECK-NEXT: ret; |
| %ret = tail call float @llvm.sqrt.f32(float %a) |
| ret float %ret |
| } |
| |
| define float @test_sqrt32_ninf(float %a) #0 { |
| ; CHECK-LABEL: test_sqrt32_ninf( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .pred %p<2>; |
| ; CHECK-NEXT: .reg .b32 %r<5>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b32 %r1, [test_sqrt32_ninf_param_0]; |
| ; CHECK-NEXT: sqrt.approx.f32 %r2, %r1; |
| ; CHECK-NEXT: abs.f32 %r3, %r1; |
| ; CHECK-NEXT: setp.lt.f32 %p1, %r3, 0f00800000; |
| ; CHECK-NEXT: selp.f32 %r4, 0f00000000, %r2, %p1; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r4; |
| ; CHECK-NEXT: ret; |
| %ret = tail call ninf afn float @llvm.sqrt.f32(float %a) |
| ret float %ret |
| } |
| |
| define float @test_sqrt_ftz(float %a) #0 #1 { |
| ; CHECK-LABEL: test_sqrt_ftz( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<3>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b32 %r1, [test_sqrt_ftz_param_0]; |
| ; CHECK-NEXT: sqrt.approx.ftz.f32 %r2, %r1; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r2; |
| ; CHECK-NEXT: ret; |
| %ret = tail call float @llvm.sqrt.f32(float %a) |
| ret float %ret |
| } |
| |
| define float @test_sqrt_ftz_ninf(float %a) #0 #1 { |
| ; CHECK-LABEL: test_sqrt_ftz_ninf( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .pred %p<2>; |
| ; CHECK-NEXT: .reg .b32 %r<4>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b32 %r1, [test_sqrt_ftz_ninf_param_0]; |
| ; CHECK-NEXT: setp.eq.ftz.f32 %p1, %r1, 0f00000000; |
| ; CHECK-NEXT: sqrt.approx.ftz.f32 %r2, %r1; |
| ; CHECK-NEXT: selp.f32 %r3, 0f00000000, %r2, %p1; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r3; |
| ; CHECK-NEXT: ret; |
| %ret = tail call ninf afn float @llvm.sqrt.f32(float %a) |
| ret float %ret |
| } |
| |
| define double @test_sqrt64(double %a) #0 { |
| ; CHECK-LABEL: test_sqrt64( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b64 %rd<3>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b64 %rd1, [test_sqrt64_param_0]; |
| ; CHECK-NEXT: sqrt.rn.f64 %rd2, %rd1; |
| ; CHECK-NEXT: st.param.b64 [func_retval0], %rd2; |
| ; CHECK-NEXT: ret; |
| %ret = tail call double @llvm.sqrt.f64(double %a) |
| ret double %ret |
| } |
| |
| ; There's no sqrt.approx.f64 instruction; we emit |
| ; reciprocal(rsqrt.approx.f64(x)). There's no non-ftz approximate reciprocal, |
| ; so we just use the ftz version. |
| define double @test_sqrt64_ninf(double %a) #0 { |
| ; CHECK-LABEL: test_sqrt64_ninf( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .pred %p<2>; |
| ; CHECK-NEXT: .reg .b64 %rd<6>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b64 %rd1, [test_sqrt64_ninf_param_0]; |
| ; CHECK-NEXT: abs.f64 %rd2, %rd1; |
| ; CHECK-NEXT: setp.lt.f64 %p1, %rd2, 0d0010000000000000; |
| ; CHECK-NEXT: rsqrt.approx.f64 %rd3, %rd1; |
| ; CHECK-NEXT: rcp.approx.ftz.f64 %rd4, %rd3; |
| ; CHECK-NEXT: selp.f64 %rd5, 0d0000000000000000, %rd4, %p1; |
| ; CHECK-NEXT: st.param.b64 [func_retval0], %rd5; |
| ; CHECK-NEXT: ret; |
| %ret = tail call ninf afn double @llvm.sqrt.f64(double %a) |
| ret double %ret |
| } |
| |
| define double @test_sqrt64_ftz(double %a) #0 #1 { |
| ; CHECK-LABEL: test_sqrt64_ftz( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b64 %rd<3>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b64 %rd1, [test_sqrt64_ftz_param_0]; |
| ; CHECK-NEXT: sqrt.rn.f64 %rd2, %rd1; |
| ; CHECK-NEXT: st.param.b64 [func_retval0], %rd2; |
| ; CHECK-NEXT: ret; |
| %ret = tail call double @llvm.sqrt.f64(double %a) |
| ret double %ret |
| } |
| |
| ; There's no sqrt.approx.ftz.f64 instruction; we just use the non-ftz version. |
| define double @test_sqrt64_ftz_ninf(double %a) #0 #1 { |
| ; CHECK-LABEL: test_sqrt64_ftz_ninf( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .pred %p<2>; |
| ; CHECK-NEXT: .reg .b64 %rd<6>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b64 %rd1, [test_sqrt64_ftz_ninf_param_0]; |
| ; CHECK-NEXT: abs.f64 %rd2, %rd1; |
| ; CHECK-NEXT: setp.lt.f64 %p1, %rd2, 0d0010000000000000; |
| ; CHECK-NEXT: rsqrt.approx.f64 %rd3, %rd1; |
| ; CHECK-NEXT: rcp.approx.ftz.f64 %rd4, %rd3; |
| ; CHECK-NEXT: selp.f64 %rd5, 0d0000000000000000, %rd4, %p1; |
| ; CHECK-NEXT: st.param.b64 [func_retval0], %rd5; |
| ; CHECK-NEXT: ret; |
| %ret = tail call ninf afn double @llvm.sqrt.f64(double %a) |
| ret double %ret |
| } |
| |
| ; -- refined sqrt and rsqrt -- |
| ; |
| ; The sqrt and rsqrt refinement algorithms both emit an rsqrt.approx, followed |
| ; by some math. |
| |
| define float @test_rsqrt32_refined(float %a) #0 #2 { |
| ; CHECK-LABEL: test_rsqrt32_refined( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<7>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b32 %r1, [test_rsqrt32_refined_param_0]; |
| ; CHECK-NEXT: rsqrt.approx.f32 %r2, %r1; |
| ; CHECK-NEXT: mul.f32 %r3, %r1, %r2; |
| ; CHECK-NEXT: fma.rn.f32 %r4, %r3, %r2, 0fC0400000; |
| ; CHECK-NEXT: mul.f32 %r5, %r2, 0fBF000000; |
| ; CHECK-NEXT: mul.f32 %r6, %r5, %r4; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r6; |
| ; CHECK-NEXT: ret; |
| %val = tail call float @llvm.sqrt.f32(float %a) |
| %ret = fdiv arcp float 1.0, %val |
| ret float %ret |
| } |
| |
| define float @test_sqrt32_refined(float %a) #0 #2 { |
| ; CHECK-LABEL: test_sqrt32_refined( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<3>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b32 %r1, [test_sqrt32_refined_param_0]; |
| ; CHECK-NEXT: sqrt.approx.f32 %r2, %r1; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r2; |
| ; CHECK-NEXT: ret; |
| %ret = tail call float @llvm.sqrt.f32(float %a) |
| ret float %ret |
| } |
| |
| define float @test_sqrt32_refined_ninf(float %a) #0 #2 { |
| ; CHECK-LABEL: test_sqrt32_refined_ninf( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .pred %p<2>; |
| ; CHECK-NEXT: .reg .b32 %r<9>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b32 %r1, [test_sqrt32_refined_ninf_param_0]; |
| ; CHECK-NEXT: rsqrt.approx.f32 %r2, %r1; |
| ; CHECK-NEXT: mul.f32 %r3, %r1, %r2; |
| ; CHECK-NEXT: fma.rn.f32 %r4, %r3, %r2, 0fC0400000; |
| ; CHECK-NEXT: mul.f32 %r5, %r3, 0fBF000000; |
| ; CHECK-NEXT: mul.f32 %r6, %r5, %r4; |
| ; CHECK-NEXT: abs.f32 %r7, %r1; |
| ; CHECK-NEXT: setp.lt.f32 %p1, %r7, 0f00800000; |
| ; CHECK-NEXT: selp.f32 %r8, 0f00000000, %r6, %p1; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r8; |
| ; CHECK-NEXT: ret; |
| %ret = tail call ninf afn float @llvm.sqrt.f32(float %a) |
| ret float %ret |
| } |
| |
| define double @test_rsqrt64_refined(double %a) #0 #2 { |
| ; CHECK-LABEL: test_rsqrt64_refined( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b64 %rd<7>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b64 %rd1, [test_rsqrt64_refined_param_0]; |
| ; CHECK-NEXT: rsqrt.approx.f64 %rd2, %rd1; |
| ; CHECK-NEXT: mul.f64 %rd3, %rd1, %rd2; |
| ; CHECK-NEXT: fma.rn.f64 %rd4, %rd3, %rd2, 0dC008000000000000; |
| ; CHECK-NEXT: mul.f64 %rd5, %rd2, 0dBFE0000000000000; |
| ; CHECK-NEXT: mul.f64 %rd6, %rd5, %rd4; |
| ; CHECK-NEXT: st.param.b64 [func_retval0], %rd6; |
| ; CHECK-NEXT: ret; |
| %val = tail call double @llvm.sqrt.f64(double %a) |
| %ret = fdiv arcp double 1.0, %val |
| ret double %ret |
| } |
| |
| define double @test_sqrt64_refined(double %a) #0 #2 { |
| ; CHECK-LABEL: test_sqrt64_refined( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b64 %rd<3>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b64 %rd1, [test_sqrt64_refined_param_0]; |
| ; CHECK-NEXT: sqrt.rn.f64 %rd2, %rd1; |
| ; CHECK-NEXT: st.param.b64 [func_retval0], %rd2; |
| ; CHECK-NEXT: ret; |
| %ret = tail call double @llvm.sqrt.f64(double %a) |
| ret double %ret |
| } |
| |
| define double @test_sqrt64_refined_ninf(double %a) #0 #2 { |
| ; CHECK-LABEL: test_sqrt64_refined_ninf( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .pred %p<2>; |
| ; CHECK-NEXT: .reg .b64 %rd<9>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b64 %rd1, [test_sqrt64_refined_ninf_param_0]; |
| ; CHECK-NEXT: rsqrt.approx.f64 %rd2, %rd1; |
| ; CHECK-NEXT: mul.f64 %rd3, %rd1, %rd2; |
| ; CHECK-NEXT: fma.rn.f64 %rd4, %rd3, %rd2, 0dC008000000000000; |
| ; CHECK-NEXT: mul.f64 %rd5, %rd3, 0dBFE0000000000000; |
| ; CHECK-NEXT: mul.f64 %rd6, %rd5, %rd4; |
| ; CHECK-NEXT: abs.f64 %rd7, %rd1; |
| ; CHECK-NEXT: setp.lt.f64 %p1, %rd7, 0d0010000000000000; |
| ; CHECK-NEXT: selp.f64 %rd8, 0d0000000000000000, %rd6, %p1; |
| ; CHECK-NEXT: st.param.b64 [func_retval0], %rd8; |
| ; CHECK-NEXT: ret; |
| %ret = tail call ninf afn double @llvm.sqrt.f64(double %a) |
| ret double %ret |
| } |
| |
| ; -- refined sqrt and rsqrt with ftz enabled -- |
| |
| define float @test_rsqrt32_refined_ftz(float %a) #0 #1 #2 { |
| ; CHECK-LABEL: test_rsqrt32_refined_ftz( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<7>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b32 %r1, [test_rsqrt32_refined_ftz_param_0]; |
| ; CHECK-NEXT: rsqrt.approx.ftz.f32 %r2, %r1; |
| ; CHECK-NEXT: mul.ftz.f32 %r3, %r1, %r2; |
| ; CHECK-NEXT: fma.rn.ftz.f32 %r4, %r3, %r2, 0fC0400000; |
| ; CHECK-NEXT: mul.ftz.f32 %r5, %r2, 0fBF000000; |
| ; CHECK-NEXT: mul.ftz.f32 %r6, %r5, %r4; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r6; |
| ; CHECK-NEXT: ret; |
| %val = tail call float @llvm.sqrt.f32(float %a) |
| %ret = fdiv arcp float 1.0, %val |
| ret float %ret |
| } |
| |
| define float @test_sqrt32_refined_ftz(float %a) #0 #1 #2 { |
| ; CHECK-LABEL: test_sqrt32_refined_ftz( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<3>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b32 %r1, [test_sqrt32_refined_ftz_param_0]; |
| ; CHECK-NEXT: sqrt.approx.ftz.f32 %r2, %r1; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r2; |
| ; CHECK-NEXT: ret; |
| %ret = tail call float @llvm.sqrt.f32(float %a) |
| ret float %ret |
| } |
| |
| define float @test_sqrt32_refined_ftz_ninf(float %a) #0 #1 #2 { |
| ; CHECK-LABEL: test_sqrt32_refined_ftz_ninf( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .pred %p<2>; |
| ; CHECK-NEXT: .reg .b32 %r<8>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b32 %r1, [test_sqrt32_refined_ftz_ninf_param_0]; |
| ; CHECK-NEXT: rsqrt.approx.ftz.f32 %r2, %r1; |
| ; CHECK-NEXT: mul.ftz.f32 %r3, %r1, %r2; |
| ; CHECK-NEXT: fma.rn.ftz.f32 %r4, %r3, %r2, 0fC0400000; |
| ; CHECK-NEXT: mul.ftz.f32 %r5, %r3, 0fBF000000; |
| ; CHECK-NEXT: mul.ftz.f32 %r6, %r5, %r4; |
| ; CHECK-NEXT: setp.eq.ftz.f32 %p1, %r1, 0f00000000; |
| ; CHECK-NEXT: selp.f32 %r7, 0f00000000, %r6, %p1; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r7; |
| ; CHECK-NEXT: ret; |
| %ret = tail call ninf afn float @llvm.sqrt.f32(float %a) |
| ret float %ret |
| } |
| |
| ; There's no rsqrt.approx.ftz.f64, so we just use the non-ftz version. |
| define double @test_rsqrt64_refined_ftz(double %a) #0 #1 #2 { |
| ; CHECK-LABEL: test_rsqrt64_refined_ftz( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b64 %rd<7>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b64 %rd1, [test_rsqrt64_refined_ftz_param_0]; |
| ; CHECK-NEXT: rsqrt.approx.f64 %rd2, %rd1; |
| ; CHECK-NEXT: mul.f64 %rd3, %rd1, %rd2; |
| ; CHECK-NEXT: fma.rn.f64 %rd4, %rd3, %rd2, 0dC008000000000000; |
| ; CHECK-NEXT: mul.f64 %rd5, %rd2, 0dBFE0000000000000; |
| ; CHECK-NEXT: mul.f64 %rd6, %rd5, %rd4; |
| ; CHECK-NEXT: st.param.b64 [func_retval0], %rd6; |
| ; CHECK-NEXT: ret; |
| %val = tail call double @llvm.sqrt.f64(double %a) |
| %ret = fdiv arcp double 1.0, %val |
| ret double %ret |
| } |
| |
| define double @test_sqrt64_refined_ftz(double %a) #0 #1 #2 { |
| ; CHECK-LABEL: test_sqrt64_refined_ftz( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b64 %rd<3>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b64 %rd1, [test_sqrt64_refined_ftz_param_0]; |
| ; CHECK-NEXT: sqrt.rn.f64 %rd2, %rd1; |
| ; CHECK-NEXT: st.param.b64 [func_retval0], %rd2; |
| ; CHECK-NEXT: ret; |
| %ret = tail call double @llvm.sqrt.f64(double %a) |
| ret double %ret |
| } |
| |
| define double @test_sqrt64_refined_ftz_ninf(double %a) #0 #1 #2 { |
| ; CHECK-LABEL: test_sqrt64_refined_ftz_ninf( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .pred %p<2>; |
| ; CHECK-NEXT: .reg .b64 %rd<9>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.b64 %rd1, [test_sqrt64_refined_ftz_ninf_param_0]; |
| ; CHECK-NEXT: rsqrt.approx.f64 %rd2, %rd1; |
| ; CHECK-NEXT: mul.f64 %rd3, %rd1, %rd2; |
| ; CHECK-NEXT: fma.rn.f64 %rd4, %rd3, %rd2, 0dC008000000000000; |
| ; CHECK-NEXT: mul.f64 %rd5, %rd3, 0dBFE0000000000000; |
| ; CHECK-NEXT: mul.f64 %rd6, %rd5, %rd4; |
| ; CHECK-NEXT: abs.f64 %rd7, %rd1; |
| ; CHECK-NEXT: setp.lt.f64 %p1, %rd7, 0d0010000000000000; |
| ; CHECK-NEXT: selp.f64 %rd8, 0d0000000000000000, %rd6, %p1; |
| ; CHECK-NEXT: st.param.b64 [func_retval0], %rd8; |
| ; CHECK-NEXT: ret; |
| %ret = tail call ninf afn double @llvm.sqrt.f64(double %a) |
| ret double %ret |
| } |
| |
| attributes #0 = { "unsafe-fp-math" = "true" } |
| attributes #1 = { "denormal-fp-math-f32" = "preserve-sign,preserve-sign" } |
| attributes #2 = { "reciprocal-estimates" = "rsqrtf:1,rsqrtd:1,sqrtf:1,sqrtd:1" } |