| //==- AArch64SchedCortexA55.td - ARM Cortex-A55 Scheduling Definitions -*- tablegen -*-=// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file defines the machine model for the ARM Cortex-A55 processors. Note | 
 | // that this schedule is currently used as the default for -mcpu=generic. As a | 
 | // result, some of the modelling decision made do not precisely model the | 
 | // Cortex-A55, instead aiming to be a good compromise between different cpus. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // ===---------------------------------------------------------------------===// | 
 | // The following definitions describe the per-operand machine model. | 
 | // This works with MachineScheduler. See MCSchedModel.h for details. | 
 |  | 
 | // Cortex-A55 machine model for scheduling and other instruction cost heuristics. | 
 | def CortexA55Model : SchedMachineModel { | 
 |   let MicroOpBufferSize = 0;  // The Cortex-A55 is an in-order processor | 
 |   let IssueWidth = 2;         // It dual-issues under most circumstances | 
 |   let LoadLatency = 4;        // Cycles for loads to access the cache. The | 
 |                               // optimisation guide shows that most loads have | 
 |                               // a latency of 3, but some have a latency of 4 | 
 |                               // or 5. Setting it 4 looked to be good trade-off. | 
 |   let MispredictPenalty = 8;  // A branch direction mispredict. | 
 |   let PostRAScheduler = 1;    // Enable PostRA scheduler pass. | 
 |   let CompleteModel = 0;      // Covers instructions applicable to Cortex-A55. | 
 |  | 
 |   list<Predicate> UnsupportedFeatures = [HasSVE, HasMTE]; | 
 |  | 
 |   // FIXME: Remove when all errors have been fixed. | 
 |   let FullInstRWOverlapCheck = 0; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Define each kind of processor resource and number available. | 
 |  | 
 | // Modeling each pipeline as a ProcResource using the BufferSize = 0 since the | 
 | // Cortex-A55 is in-order. | 
 |  | 
 | def CortexA55UnitALU    : ProcResource<2> { let BufferSize = 0; } // Int ALU | 
 | def CortexA55UnitMAC    : ProcResource<1> { let BufferSize = 0; } // Int MAC, 64-bi wide | 
 | def CortexA55UnitDiv    : ProcResource<1> { let BufferSize = 0; } // Int Division, not pipelined | 
 | def CortexA55UnitLd     : ProcResource<1> { let BufferSize = 0; } // Load pipe | 
 | def CortexA55UnitSt     : ProcResource<1> { let BufferSize = 0; } // Store pipe | 
 | def CortexA55UnitB      : ProcResource<1> { let BufferSize = 0; } // Branch | 
 |  | 
 | // The FP DIV/SQRT instructions execute totally differently from the FP ALU | 
 | // instructions, which can mostly be dual-issued; that's why for now we model | 
 | // them with 2 resources. | 
 | def CortexA55UnitFPALU  : ProcResource<2> { let BufferSize = 0; } // FP ALU | 
 | def CortexA55UnitFPMAC  : ProcResource<2> { let BufferSize = 0; } // FP MAC | 
 | def CortexA55UnitFPDIV  : ProcResource<1> { let BufferSize = 0; } // FP Div/SQRT, 64/128 | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Subtarget-specific SchedWrite types | 
 |  | 
 | let SchedModel = CortexA55Model in { | 
 |  | 
 | // These latencies are modeled without taking into account forwarding paths | 
 | // (the software optimisation guide lists latencies taking into account | 
 | // typical forwarding paths). | 
 | def : WriteRes<WriteImm, [CortexA55UnitALU]> { let Latency = 3; }    // MOVN, MOVZ | 
 | def : WriteRes<WriteI, [CortexA55UnitALU]> { let Latency = 3; }      // ALU | 
 | def : WriteRes<WriteISReg, [CortexA55UnitALU]> { let Latency = 3; }  // ALU of Shifted-Reg | 
 | def : WriteRes<WriteIEReg, [CortexA55UnitALU]> { let Latency = 3; }  // ALU of Extended-Reg | 
 | def : WriteRes<WriteExtr, [CortexA55UnitALU]> { let Latency = 3; }   // EXTR from a reg pair | 
 | def : WriteRes<WriteIS, [CortexA55UnitALU]> { let Latency = 3; }     // Shift/Scale | 
 |  | 
 | // MAC | 
 | def : WriteRes<WriteIM32, [CortexA55UnitMAC]> { let Latency = 4; }   // 32-bit Multiply | 
 | def : WriteRes<WriteIM64, [CortexA55UnitMAC]> { let Latency = 4; }   // 64-bit Multiply | 
 |  | 
 | // Div | 
 | def : WriteRes<WriteID32, [CortexA55UnitDiv]> { | 
 |   let Latency = 8; let ReleaseAtCycles = [8]; | 
 | } | 
 | def : WriteRes<WriteID64, [CortexA55UnitDiv]> { | 
 |   let Latency = 8; let ReleaseAtCycles = [8]; | 
 | } | 
 |  | 
 | // Load | 
 | def : WriteRes<WriteLD, [CortexA55UnitLd]> { let Latency = 3; } | 
 | def : WriteRes<WriteLDIdx, [CortexA55UnitLd]> { let Latency = 4; } | 
 | def : WriteRes<WriteLDHi, [CortexA55UnitLd]> { let Latency = 5; } | 
 |  | 
 | // Vector Load - Vector loads take 1-5 cycles to issue. For the WriteVecLd | 
 | //               below, choosing the median of 3 which makes the latency 6. | 
 | // An extra cycle is needed to get the swizzling right. | 
 | def : WriteRes<WriteVLD, [CortexA55UnitLd]> { let Latency = 6; | 
 |                                            let ReleaseAtCycles = [3]; } | 
 | def CortexA55WriteVLD1 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 4; } | 
 | def CortexA55WriteVLD1SI : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 4; let SingleIssue = 1; } | 
 | def CortexA55WriteVLD2 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 5; | 
 |                                                   let ReleaseAtCycles = [2]; } | 
 | def CortexA55WriteVLD3 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 6; | 
 |                                                   let ReleaseAtCycles = [3]; } | 
 | def CortexA55WriteVLD4 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 7; | 
 |                                                   let ReleaseAtCycles = [4]; } | 
 | def CortexA55WriteVLD5 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 8; | 
 |                                                   let ReleaseAtCycles = [5]; } | 
 | def CortexA55WriteVLD6 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 9; | 
 |                                                   let ReleaseAtCycles = [6]; } | 
 | def CortexA55WriteVLD7 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 10; | 
 |                                                   let ReleaseAtCycles = [7]; } | 
 | def CortexA55WriteVLD8 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 11; | 
 |                                                   let ReleaseAtCycles = [8]; } | 
 |  | 
 | def CortexA55WriteLDP1 : SchedWriteRes<[]> { let Latency = 4; } | 
 | def CortexA55WriteLDP2 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 5; } | 
 | def CortexA55WriteLDP4 : SchedWriteRes<[CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd]> { let Latency = 6; } | 
 |  | 
 | // Pre/Post Indexing - Performed as part of address generation | 
 | def : WriteRes<WriteAdr, []> { let Latency = 0; } | 
 |  | 
 | // Store | 
 | let RetireOOO = 1 in { | 
 | def : WriteRes<WriteST, [CortexA55UnitSt]> { let Latency = 1; } | 
 | def : WriteRes<WriteSTP, [CortexA55UnitSt]> { let Latency = 1; } | 
 | def : WriteRes<WriteSTIdx, [CortexA55UnitSt]> { let Latency = 1; } | 
 | } | 
 | def : WriteRes<WriteSTX, [CortexA55UnitSt]> { let Latency = 4; } | 
 |  | 
 | // Vector Store - Similar to vector loads, can take 1-3 cycles to issue. | 
 | def : WriteRes<WriteVST, [CortexA55UnitSt]> { let Latency = 5; | 
 |                                           let ReleaseAtCycles = [2];} | 
 | def CortexA55WriteVST1 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 4; } | 
 | def CortexA55WriteVST2 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5; | 
 |                                                   let ReleaseAtCycles = [2]; } | 
 | def CortexA55WriteVST3 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 6; | 
 |                                                   let ReleaseAtCycles = [3]; } | 
 | def CortexA55WriteVST4 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5; | 
 |                                                   let ReleaseAtCycles = [4]; } | 
 |  | 
 | def : WriteRes<WriteAtomic, []> { let Unsupported = 1; } | 
 |  | 
 | // Branch | 
 | def : WriteRes<WriteBr, [CortexA55UnitB]>; | 
 | def : WriteRes<WriteBrReg, [CortexA55UnitB]>; | 
 | def : WriteRes<WriteSys, [CortexA55UnitB]>; | 
 | def : WriteRes<WriteBarrier, [CortexA55UnitB]>; | 
 | def : WriteRes<WriteHint, [CortexA55UnitB]>; | 
 |  | 
 | // FP ALU | 
 | //   As WriteF result is produced in F5 and it can be mostly forwarded | 
 | //   to consumer at F1, the effectively latency is set as 4. | 
 | def : WriteRes<WriteF, [CortexA55UnitFPALU]> { let Latency = 4; } | 
 | def : WriteRes<WriteFCmp, [CortexA55UnitFPALU]> { let Latency = 3; } | 
 | def : WriteRes<WriteFCvt, [CortexA55UnitFPALU]> { let Latency = 4; } | 
 | def : WriteRes<WriteFCopy, [CortexA55UnitFPALU]> { let Latency = 3; } | 
 | def : WriteRes<WriteFImm, [CortexA55UnitFPALU]> { let Latency = 3; } | 
 |  | 
 | // NEON | 
 | class CortexA55WriteVd<int n, ProcResourceKind res> : SchedWriteRes<[res]> { | 
 |   let Latency = n; | 
 | } | 
 | class CortexA55WriteVq<int n, ProcResourceKind res> : SchedWriteRes<[res, res]> { | 
 |   let Latency = n; | 
 |   let BeginGroup = 1; | 
 | } | 
 | def CortexA55WriteDotScVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; | 
 | def CortexA55WriteDotVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; | 
 | def CortexA55WriteDotVd_4 : CortexA55WriteVd<4, CortexA55UnitFPALU>; | 
 | def CortexA55WriteMlaLVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; | 
 | def CortexA55WriteMlaIxVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; | 
 | def CortexA55WriteMlaVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; | 
 | def CortexA55WriteMlaVd_4 : CortexA55WriteVd<4, CortexA55UnitFPALU>; | 
 | def CortexA55WriteAluVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; | 
 | def CortexA55WriteAluVd_3 : CortexA55WriteVd<3, CortexA55UnitFPALU>; | 
 | def CortexA55WriteAluVq_3 : CortexA55WriteVq<3, CortexA55UnitFPALU>; | 
 | def CortexA55WriteAluVd_2 : CortexA55WriteVd<2, CortexA55UnitFPALU>; | 
 | def CortexA55WriteAluVq_2 : CortexA55WriteVq<2, CortexA55UnitFPALU>; | 
 | def CortexA55WriteAluVd_1 : CortexA55WriteVd<1, CortexA55UnitFPALU>; | 
 | def CortexA55WriteAluVq_1 : CortexA55WriteVq<1, CortexA55UnitFPALU>; | 
 | def : SchedAlias<WriteVd, CortexA55WriteVd<4, CortexA55UnitFPALU>>; | 
 | def : SchedAlias<WriteVq, CortexA55WriteVq<4, CortexA55UnitFPALU>>; | 
 |  | 
 | // FP ALU specific new schedwrite definitions | 
 | def CortexA55WriteFPALU_F2 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 2;} | 
 | def CortexA55WriteFPALU_F3 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 3;} | 
 | def CortexA55WriteFPALU_F4 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 4;} | 
 | def CortexA55WriteFPALU_F5 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 5;} | 
 |  | 
 | // FP Mul, Div, Sqrt. Div/Sqrt are not pipelined | 
 | def : WriteRes<WriteFMul, [CortexA55UnitFPMAC]> { let Latency = 4; } | 
 |  | 
 | let RetireOOO = 1 in { | 
 | def : WriteRes<WriteFDiv, [CortexA55UnitFPDIV]> { let Latency = 22; | 
 |                                             let ReleaseAtCycles = [29]; } | 
 | def CortexA55WriteFMAC : SchedWriteRes<[CortexA55UnitFPMAC]> { let Latency = 4; } | 
 | def CortexA55WriteFDivHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8; | 
 |                                                      let ReleaseAtCycles = [5]; } | 
 | def CortexA55WriteFDivSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 13; | 
 |                                                      let ReleaseAtCycles = [10]; } | 
 | def CortexA55WriteFDivDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22; | 
 |                                                      let ReleaseAtCycles = [19]; } | 
 | def CortexA55WriteFSqrtHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8; | 
 |                                                       let ReleaseAtCycles = [5]; } | 
 | def CortexA55WriteFSqrtSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 12; | 
 |                                                       let ReleaseAtCycles = [9]; } | 
 | def CortexA55WriteFSqrtDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22; | 
 |                                                       let ReleaseAtCycles = [19]; } | 
 | } | 
 | //===----------------------------------------------------------------------===// | 
 | // Subtarget-specific SchedRead types. | 
 |  | 
 | def : ReadAdvance<ReadVLD, 0>; | 
 | def : ReadAdvance<ReadExtrHi, 1>; | 
 | def : ReadAdvance<ReadAdrBase, 1>; | 
 | def : ReadAdvance<ReadST, 1>; | 
 |  | 
 | // ALU - ALU input operands are generally needed in EX1. An operand produced in | 
 | //       in say EX2 can be forwarded for consumption to ALU in EX1, thereby | 
 | //       allowing back-to-back ALU operations such as add. If an operand requires | 
 | //       a shift, it will, however, be required in ISS stage. | 
 | def : ReadAdvance<ReadI, 2, [WriteImm,WriteI, | 
 |                              WriteISReg, WriteIEReg,WriteIS, | 
 |                              WriteID32,WriteID64, | 
 |                              WriteIM32,WriteIM64]>; | 
 | // Shifted operand | 
 | def CortexA55ReadShifted : SchedReadAdvance<1, [WriteImm,WriteI, | 
 |                                           WriteISReg, WriteIEReg,WriteIS, | 
 |                                           WriteID32,WriteID64, | 
 |                                           WriteIM32,WriteIM64]>; | 
 | def CortexA55ReadNotShifted : SchedReadAdvance<2, [WriteImm,WriteI, | 
 |                                              WriteISReg, WriteIEReg,WriteIS, | 
 |                                              WriteID32,WriteID64, | 
 |                                              WriteIM32,WriteIM64]>; | 
 | def CortexA55ReadISReg : SchedReadVariant<[ | 
 |         SchedVar<RegShiftedPred, [CortexA55ReadShifted]>, | 
 |         SchedVar<NoSchedPred, [CortexA55ReadNotShifted]>]>; | 
 | def : SchedAlias<ReadISReg, CortexA55ReadISReg>; | 
 |  | 
 | def CortexA55ReadIEReg : SchedReadVariant<[ | 
 |         SchedVar<RegExtendedPred, [CortexA55ReadShifted]>, | 
 |         SchedVar<NoSchedPred, [CortexA55ReadNotShifted]>]>; | 
 | def : SchedAlias<ReadIEReg, CortexA55ReadIEReg>; | 
 |  | 
 | // MUL | 
 | def : ReadAdvance<ReadIM, 1, [WriteImm,WriteI, | 
 |                               WriteISReg, WriteIEReg,WriteIS, | 
 |                               WriteID32,WriteID64, | 
 |                               WriteIM32,WriteIM64]>; | 
 | def : ReadAdvance<ReadIMA, 2, [WriteImm,WriteI, | 
 |                                WriteISReg, WriteIEReg,WriteIS, | 
 |                                WriteID32,WriteID64, | 
 |                                WriteIM32,WriteIM64]>; | 
 |  | 
 | // Div | 
 | def : ReadAdvance<ReadID, 1, [WriteImm,WriteI, | 
 |                               WriteISReg, WriteIEReg,WriteIS, | 
 |                               WriteID32,WriteID64, | 
 |                               WriteIM32,WriteIM64]>; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Subtarget-specific InstRWs. | 
 |  | 
 | //--- | 
 | // Miscellaneous | 
 | //--- | 
 | def : InstRW<[CortexA55WriteVLD1SI,CortexA55WriteLDP1], (instregex "LDPS?Wi")>; | 
 | def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP1], (instregex "LDPSi")>; | 
 | def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP2], (instregex "LDP(X|D)i")>; | 
 | def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP4], (instregex "LDPQi")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD1SI,CortexA55WriteLDP1], (instregex "LDPS?W(pre|post)")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD1,CortexA55WriteLDP1], (instregex "LDPS(pre|post)")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD1,CortexA55WriteLDP2], (instregex "LDP(X|D)(pre|post)")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD1,CortexA55WriteLDP4], (instregex "LDPQ(pre|post)")>; | 
 | def : InstRW<[WriteI], (instrs COPY)>; | 
 | //--- | 
 | // Vector Loads - 64-bit per cycle | 
 | //--- | 
 | //   1-element structures | 
 | def : InstRW<[CortexA55WriteVLD1], (instregex "LD1i(8|16|32|64)$")>;                // single element | 
 | def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // replicate | 
 | def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d)$")>; | 
 | def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Onev(16b|8h|4s|2d)$")>; | 
 | def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d)$")>; // multiple structures | 
 | def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Twov(16b|8h|4s|2d)$")>; | 
 | def : InstRW<[CortexA55WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d)$")>; | 
 | def : InstRW<[CortexA55WriteVLD6], (instregex "LD1Threev(16b|8h|4s|2d)$")>; | 
 | def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d)$")>; | 
 | def : InstRW<[CortexA55WriteVLD8], (instregex "LD1Fourv(16b|8h|4s|2d)$")>; | 
 |  | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD1], (instregex "LD1i(8|16|32|64)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD1Onev(16b|8h|4s|2d)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD4], (instregex "LD1Twov(16b|8h|4s|2d)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD6], (instregex "LD1Threev(16b|8h|4s|2d)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD8], (instregex "LD1Fourv(16b|8h|4s|2d)_POST$")>; | 
 |  | 
 | //    2-element structures | 
 | def : InstRW<[CortexA55WriteVLD2], (instregex "LD2i(8|16|32|64)$")>; | 
 | def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; | 
 | def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Twov(8b|4h|2s)$")>; | 
 | def : InstRW<[CortexA55WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)$")>; | 
 |  | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD2i(8|16|32|64)(_POST)?$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD2Twov(8b|4h|2s)(_POST)?$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)(_POST)?$")>; | 
 |  | 
 | //    3-element structures | 
 | def : InstRW<[CortexA55WriteVLD2], (instregex "LD3i(8|16|32|64)$")>; | 
 | def : InstRW<[CortexA55WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; | 
 | def : InstRW<[CortexA55WriteVLD3], (instregex "LD3Threev(8b|4h|2s|1d)$")>; | 
 | def : InstRW<[CortexA55WriteVLD6], (instregex "LD3Threev(16b|8h|4s|2d)$")>; | 
 |  | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD3i(8|16|32|64)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD3], (instregex "LD3Threev(8b|4h|2s|1d)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD6], (instregex "LD3Threev(16b|8h|4s|2d)_POST$")>; | 
 |  | 
 | //    4-element structures | 
 | def : InstRW<[CortexA55WriteVLD2], (instregex "LD4i(8|16|32|64)$")>;                // load single 4-el structure to one lane of 4 regs. | 
 | def : InstRW<[CortexA55WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // load single 4-el structure, replicate to all lanes of 4 regs. | 
 | def : InstRW<[CortexA55WriteVLD4], (instregex "LD4Fourv(8b|4h|2s|1d)$")>;           // load multiple 4-el structures to 4 regs. | 
 | def : InstRW<[CortexA55WriteVLD8], (instregex "LD4Fourv(16b|8h|4s|2d)$")>; | 
 |  | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD4i(8|16|32|64)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD4], (instregex "LD4Fourv(8b|4h|2s|1d)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVLD8], (instregex "LD4Fourv(16b|8h|4s|2d)_POST$")>; | 
 |  | 
 | //--- | 
 | // Vector Stores | 
 | //--- | 
 | def : InstRW<[CortexA55WriteVST1], (instregex "ST1i(8|16|32|64)$")>; | 
 | def : InstRW<[CortexA55WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; | 
 | def : InstRW<[CortexA55WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>; | 
 | def : InstRW<[CortexA55WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; | 
 | def : InstRW<[CortexA55WriteVST4], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVST1], (instregex "ST1i(8|16|32|64)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVST4], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; | 
 |  | 
 | def : InstRW<[CortexA55WriteVST2], (instregex "ST2i(8|16|32|64)$")>; | 
 | def : InstRW<[CortexA55WriteVST2], (instregex "ST2Twov(8b|4h|2s)$")>; | 
 | def : InstRW<[CortexA55WriteVST4], (instregex "ST2Twov(16b|8h|4s|2d)$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVST2], (instregex "ST2i(8|16|32|64)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVST2], (instregex "ST2Twov(8b|4h|2s)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVST4], (instregex "ST2Twov(16b|8h|4s|2d)_POST$")>; | 
 |  | 
 | def : InstRW<[CortexA55WriteVST2], (instregex "ST3i(8|16|32|64)$")>; | 
 | def : InstRW<[CortexA55WriteVST4], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVST2], (instregex "ST3i(8|16|32|64)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVST4], (instregex "ST3Threev(8b|4h|2s|1d|2d|16b|8h|4s|4d)_POST$")>; | 
 |  | 
 | def : InstRW<[CortexA55WriteVST2], (instregex "ST4i(8|16|32|64)$")>; | 
 | def : InstRW<[CortexA55WriteVST4], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVST2], (instregex "ST4i(8|16|32|64)_POST$")>; | 
 | def : InstRW<[WriteAdr, CortexA55WriteVST4], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; | 
 |  | 
 | //--- | 
 | // Floating Point Conversions, MAC, DIV, SQRT | 
 | //--- | 
 | def : InstRW<[CortexA55WriteFPALU_F2], (instregex "^DUP(v2i64|v4i32|v8i16|v16i8)")>; | 
 | def : InstRW<[CortexA55WriteFPALU_F2], (instregex "^XTN")>; | 
 | def : InstRW<[CortexA55WriteFPALU_F3], (instregex "^FCVT[ALMNPZ][SU](S|U)?(W|X)")>; | 
 | def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^FCVT(X)?[ALMNPXZ](S|U|N)?v")>; | 
 |  | 
 | def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(S|U)(W|X)(H|S|D)")>; | 
 | def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(h|s|d)")>; | 
 | def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTFv")>; | 
 |  | 
 | def : InstRW<[CortexA55WriteFMAC], (instregex "^FN?M(ADD|SUB).*")>; | 
 | def : InstRW<[CortexA55WriteFMAC], (instregex "^FML(A|S).*")>; | 
 | def : InstRW<[CortexA55WriteFDivHP], (instrs FDIVHrr)>; | 
 | def : InstRW<[CortexA55WriteFDivSP], (instrs FDIVSrr)>; | 
 | def : InstRW<[CortexA55WriteFDivDP], (instrs FDIVDrr)>; | 
 | def : InstRW<[CortexA55WriteFDivHP], (instregex "^FDIVv.*16$")>; | 
 | def : InstRW<[CortexA55WriteFDivSP], (instregex "^FDIVv.*32$")>; | 
 | def : InstRW<[CortexA55WriteFDivDP], (instregex "^FDIVv.*64$")>; | 
 | def : InstRW<[CortexA55WriteFSqrtHP], (instregex "^.*SQRT.*16$")>; | 
 | def : InstRW<[CortexA55WriteFSqrtSP], (instregex "^.*SQRT.*32$")>; | 
 | def : InstRW<[CortexA55WriteFSqrtDP], (instregex "^.*SQRT.*64$")>; | 
 |  | 
 | // 4.15. Advanced SIMD integer instructions | 
 | // ASIMD absolute diff | 
 | def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]ABDv(2i32|4i16|8i8)")>; | 
 | def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]ABDv(16i8|4i32|8i16)")>; | 
 | // ASIMD absolute diff accum | 
 | def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]ABAL?v")>; | 
 | // ASIMD absolute diff long | 
 | def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]ABDLv")>; | 
 | // ASIMD arith #1 | 
 | def : InstRW<[CortexA55WriteAluVd_2], (instregex "(ADD|SUB|NEG)v(1i64|2i32|4i16|8i8)", | 
 |   "[SU]R?HADDv(2i32|4i16|8i8)", "[SU]HSUBv(2i32|4i16|8i8)")>; | 
 | def : InstRW<[CortexA55WriteAluVq_2], (instregex "(ADD|SUB|NEG)v(2i64|4i32|8i16|16i8)", | 
 |   "[SU]R?HADDv(8i16|4i32|16i8)", "[SU]HSUBv(8i16|4i32|16i8)")>; | 
 | // ASIMD arith #2 | 
 | def : InstRW<[CortexA55WriteAluVd_3], (instregex "ABSv(1i64|2i32|4i16|8i8)$", | 
 |   "[SU]ADDLPv(2i32_v1i64|4i16_v2i32|8i8_v4i16)$",  | 
 |   "([SU]QADD|[SU]QSUB|SQNEG|SUQADD|USQADD)v(1i16|1i32|1i64|1i8|2i32|4i16|8i8)$", | 
 |   "ADDPv(2i32|4i16|8i8)$")>; | 
 | def : InstRW<[CortexA55WriteAluVq_3], (instregex "ABSv(2i64|4i32|8i16|16i8)$", | 
 |   "[SU]ADDLPv(16i8_v8i16|4i32_v2i64|8i16_v4i32)$",  | 
 |   "([SU]QADD|[SU]QSUB|SQNEG|SUQADD|USQADD)v(16i8|2i64|4i32|8i16)$", | 
 |   "ADDPv(16i8|2i64|4i32|8i16)$")>; | 
 | // ASIMD arith #3 | 
 | def : InstRW<[CortexA55WriteAluVq_3], (instregex  "SADDLv", "UADDLv", "SADDWv", | 
 |   "UADDWv", "SSUBLv", "USUBLv", "SSUBWv", "USUBWv", "ADDHNv", "SUBHNv")>; | 
 | // ASIMD arith #5 | 
 | def : InstRW<[CortexA55WriteAluVq_4], (instregex "RADDHNv", "RSUBHNv")>; | 
 | // ASIMD arith, reduce | 
 | def : InstRW<[CortexA55WriteAluVq_3], (instregex  "ADDVv", "SADDLVv", "UADDLVv")>; | 
 | // ASIMD compare #1 | 
 | def : InstRW<[CortexA55WriteAluVd_2], (instregex "CM(EQ|GE|GT|HI|HS|LE|LT)v(1i64|2i32|4i16|8i8)")>; | 
 | def : InstRW<[CortexA55WriteAluVq_2], (instregex "CM(EQ|GE|GT|HI|HS|LE|LT)v(2i64|4i32|8i16|16i8)")>; | 
 | // ASIMD compare #2 | 
 | def : InstRW<[CortexA55WriteAluVd_3], (instregex "CMTSTv(1i64|2i32|4i16|8i8)")>; | 
 | def : InstRW<[CortexA55WriteAluVq_3], (instregex "CMTSTv(2i64|4i32|8i16|16i8)")>; | 
 | // ASIMD logical $1 | 
 | def : InstRW<[CortexA55WriteAluVd_1], (instregex "(AND|EOR|NOT|ORN)v8i8", | 
 |   "(ORR|BIC)v(2i32|4i16|8i8)$", "MVNIv(2i|2s|4i16)")>; | 
 | def : InstRW<[CortexA55WriteAluVq_1], (instregex "(AND|EOR|NOT|ORN)v16i8", | 
 |   "(ORR|BIC)v(16i8|4i32|8i16)$", "MVNIv(4i32|4s|8i16)")>; | 
 | // ASIMD max/min, basic | 
 | def : InstRW<[CortexA55WriteAluVd_2], (instregex "[SU](MIN|MAX)P?v(2i32|4i16|8i8)")>; | 
 | def : InstRW<[CortexA55WriteAluVq_2], (instregex "[SU](MIN|MAX)P?v(16i8|4i132|8i16)")>; | 
 | // SIMD max/min, reduce | 
 | def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU](MAX|MIN)Vv")>; | 
 | // ASIMD multiply, by element | 
 | def : InstRW<[CortexA55WriteAluVq_4], (instregex "MULv(2i32|4i16|4i32|8i16)_indexed$", | 
 |   "SQR?DMULHv(1i16|1i32|2i32|4i16|4i32|8i16)_indexed$")>; | 
 | // ASIMD multiply | 
 | def : InstRW<[CortexA55WriteAluVd_3], (instrs PMULv8i8)>; | 
 | def : InstRW<[CortexA55WriteAluVq_3], (instrs PMULv16i8)>; | 
 | // ASIMD multiply accumulate | 
 | def : InstRW<[CortexA55WriteMlaVd_4], (instregex "ML[AS]v(2i32|4i16|8i8)$")>; | 
 | def : InstRW<[CortexA55WriteMlaVq_4], (instregex "ML[AS]v(16i8|4i32|8i16)$")>; | 
 | def : InstRW<[CortexA55WriteMlaIxVq_4], (instregex "ML[AS]v(2i32|4i16|4i32|8i16)_indexed$")>; | 
 | // ASIMD multiply accumulate half | 
 | def : InstRW<[CortexA55WriteAluVq_4], (instregex "SQRDML[AS]H[vi]")>; | 
 | // ASIMD multiply accumulate long | 
 | def : InstRW<[CortexA55WriteMlaLVq_4], (instregex "[SU]ML[AS]Lv")>; | 
 | // ASIMD multiply accumulate long #2 | 
 | def : InstRW<[CortexA55WriteAluVq_4], (instregex "SQDML[AS]L[iv]")>; | 
 | // ASIMD dot product | 
 | def : InstRW<[CortexA55WriteDotVd_4], (instregex "[SU]DOTv8i8")>; | 
 | def : InstRW<[CortexA55WriteDotVq_4], (instregex "[SU]DOTv16i8")>; | 
 | // ASIMD dot product, by scalar | 
 | def : InstRW<[CortexA55WriteDotScVq_4], (instregex "[SU]DOTlanev")>; | 
 | // ASIMD multiply long | 
 | def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]MULLv", "SQDMULL[iv]")>; | 
 | // ASIMD polynomial (8x8) multiply long | 
 | def : InstRW<[CortexA55WriteAluVq_3], (instrs PMULLv8i8, PMULLv16i8)>; | 
 | // ASIMD pairwise add and accumulate | 
 | def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]ADALPv")>; | 
 | // ASIMD shift accumulate | 
 | def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]SRA(d|v2i32|v4i16|v8i8)")>; | 
 | def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]SRAv(16i8|2i64|4i32|8i16)")>; | 
 | // ASIMD shift accumulate #2 | 
 | def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]RSRA[vd]")>; | 
 | // ASIMD shift by immed | 
 | def : InstRW<[CortexA55WriteAluVd_2], (instregex "SHLd$", "SHLv", | 
 |   "SLId$", "SRId$", "[SU]SHR[vd]", "SHRNv")>; | 
 | // ASIMD shift by immed | 
 | // SXTL and UXTL are aliases for SHLL | 
 | def : InstRW<[CortexA55WriteAluVq_2], (instregex "[US]?SHLLv")>; | 
 | // ASIMD shift by immed #2 | 
 | def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]RSHR(d|v2i32|v4i16|v8i8)", | 
 |   "RSHRNv(2i32|4i16|8i8)")>; | 
 | def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]RSHRv(16i8|2i64|4i32|8i16)", | 
 |   "RSHRNv(16i8|4i32|8i16)")>; | 
 | // ASIMD shift by register | 
 | def : InstRW<[CortexA55WriteAluVd_2], (instregex "[SU]SHLv(1i64|2i32|4i16|8i8)")>; | 
 | def : InstRW<[CortexA55WriteAluVq_2], (instregex "[SU]SHLv(2i64|4i32|8i16|16i8)")>; | 
 | // ASIMD shift by register #2 | 
 | def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]RSHLv(1i64|2i32|4i16|8i8)")>; | 
 | def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]RSHLv(2i64|4i32|8i16|16i8)")>; | 
 |  | 
 | } |