|  | //===-- Memory.cpp ----------------------------------------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "lldb/Target/Memory.h" | 
|  | // C Includes | 
|  | #include <inttypes.h> | 
|  | // C++ Includes | 
|  | // Other libraries and framework includes | 
|  | // Project includes | 
|  | #include "lldb/Core/DataBufferHeap.h" | 
|  | #include "lldb/Core/Log.h" | 
|  | #include "lldb/Core/RangeMap.h" | 
|  | #include "lldb/Core/State.h" | 
|  | #include "lldb/Target/Process.h" | 
|  |  | 
|  | using namespace lldb; | 
|  | using namespace lldb_private; | 
|  |  | 
|  | //---------------------------------------------------------------------- | 
|  | // MemoryCache constructor | 
|  | //---------------------------------------------------------------------- | 
|  | MemoryCache::MemoryCache(Process &process) | 
|  | : m_mutex(), m_L1_cache(), m_L2_cache(), m_invalid_ranges(), | 
|  | m_process(process), | 
|  | m_L2_cache_line_byte_size(process.GetMemoryCacheLineSize()) {} | 
|  |  | 
|  | //---------------------------------------------------------------------- | 
|  | // Destructor | 
|  | //---------------------------------------------------------------------- | 
|  | MemoryCache::~MemoryCache() {} | 
|  |  | 
|  | void MemoryCache::Clear(bool clear_invalid_ranges) { | 
|  | std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
|  | m_L1_cache.clear(); | 
|  | m_L2_cache.clear(); | 
|  | if (clear_invalid_ranges) | 
|  | m_invalid_ranges.Clear(); | 
|  | m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize(); | 
|  | } | 
|  |  | 
|  | void MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src, | 
|  | size_t src_len) { | 
|  | AddL1CacheData( | 
|  | addr, DataBufferSP(new DataBufferHeap(DataBufferHeap(src, src_len)))); | 
|  | } | 
|  |  | 
|  | void MemoryCache::AddL1CacheData(lldb::addr_t addr, | 
|  | const DataBufferSP &data_buffer_sp) { | 
|  | std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
|  | m_L1_cache[addr] = data_buffer_sp; | 
|  | } | 
|  |  | 
|  | void MemoryCache::Flush(addr_t addr, size_t size) { | 
|  | if (size == 0) | 
|  | return; | 
|  |  | 
|  | std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
|  |  | 
|  | // Erase any blocks from the L1 cache that intersect with the flush range | 
|  | if (!m_L1_cache.empty()) { | 
|  | AddrRange flush_range(addr, size); | 
|  | BlockMap::iterator pos = m_L1_cache.upper_bound(addr); | 
|  | if (pos != m_L1_cache.begin()) { | 
|  | --pos; | 
|  | } | 
|  | while (pos != m_L1_cache.end()) { | 
|  | AddrRange chunk_range(pos->first, pos->second->GetByteSize()); | 
|  | if (!chunk_range.DoesIntersect(flush_range)) | 
|  | break; | 
|  | pos = m_L1_cache.erase(pos); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!m_L2_cache.empty()) { | 
|  | const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size; | 
|  | const addr_t end_addr = (addr + size - 1); | 
|  | const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size); | 
|  | const addr_t last_cache_line_addr = | 
|  | end_addr - (end_addr % cache_line_byte_size); | 
|  | // Watch for overflow where size will cause us to go off the end of the | 
|  | // 64 bit address space | 
|  | uint32_t num_cache_lines; | 
|  | if (last_cache_line_addr >= first_cache_line_addr) | 
|  | num_cache_lines = ((last_cache_line_addr - first_cache_line_addr) / | 
|  | cache_line_byte_size) + | 
|  | 1; | 
|  | else | 
|  | num_cache_lines = | 
|  | (UINT64_MAX - first_cache_line_addr + 1) / cache_line_byte_size; | 
|  |  | 
|  | uint32_t cache_idx = 0; | 
|  | for (addr_t curr_addr = first_cache_line_addr; cache_idx < num_cache_lines; | 
|  | curr_addr += cache_line_byte_size, ++cache_idx) { | 
|  | BlockMap::iterator pos = m_L2_cache.find(curr_addr); | 
|  | if (pos != m_L2_cache.end()) | 
|  | m_L2_cache.erase(pos); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void MemoryCache::AddInvalidRange(lldb::addr_t base_addr, | 
|  | lldb::addr_t byte_size) { | 
|  | if (byte_size > 0) { | 
|  | std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
|  | InvalidRanges::Entry range(base_addr, byte_size); | 
|  | m_invalid_ranges.Append(range); | 
|  | m_invalid_ranges.Sort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MemoryCache::RemoveInvalidRange(lldb::addr_t base_addr, | 
|  | lldb::addr_t byte_size) { | 
|  | if (byte_size > 0) { | 
|  | std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
|  | const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr); | 
|  | if (idx != UINT32_MAX) { | 
|  | const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex(idx); | 
|  | if (entry->GetRangeBase() == base_addr && | 
|  | entry->GetByteSize() == byte_size) | 
|  | return m_invalid_ranges.RemoveEntrtAtIndex(idx); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | size_t MemoryCache::Read(addr_t addr, void *dst, size_t dst_len, Error &error) { | 
|  | size_t bytes_left = dst_len; | 
|  |  | 
|  | // Check the L1 cache for a range that contain the entire memory read. | 
|  | // If we find a range in the L1 cache that does, we use it. Else we fall | 
|  | // back to reading memory in m_L2_cache_line_byte_size byte sized chunks. | 
|  | // The L1 cache contains chunks of memory that are not required to be | 
|  | // m_L2_cache_line_byte_size bytes in size, so we don't try anything | 
|  | // tricky when reading from them (no partial reads from the L1 cache). | 
|  |  | 
|  | std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
|  | if (!m_L1_cache.empty()) { | 
|  | AddrRange read_range(addr, dst_len); | 
|  | BlockMap::iterator pos = m_L1_cache.upper_bound(addr); | 
|  | if (pos != m_L1_cache.begin()) { | 
|  | --pos; | 
|  | } | 
|  | AddrRange chunk_range(pos->first, pos->second->GetByteSize()); | 
|  | if (chunk_range.Contains(read_range)) { | 
|  | memcpy(dst, pos->second->GetBytes() + addr - chunk_range.GetRangeBase(), | 
|  | dst_len); | 
|  | return dst_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this memory read request is larger than the cache line size, then | 
|  | // we (1) try to read as much of it at once as possible, and (2) don't | 
|  | // add the data to the memory cache.  We don't want to split a big read | 
|  | // up into more separate reads than necessary, and with a large memory read | 
|  | // request, it is unlikely that the caller function will ask for the next | 
|  | // 4 bytes after the large memory read - so there's little benefit to saving | 
|  | // it in the cache. | 
|  | if (dst && dst_len > m_L2_cache_line_byte_size) { | 
|  | size_t bytes_read = | 
|  | m_process.ReadMemoryFromInferior(addr, dst, dst_len, error); | 
|  | // Add this non block sized range to the L1 cache if we actually read | 
|  | // anything | 
|  | if (bytes_read > 0) | 
|  | AddL1CacheData(addr, dst, bytes_read); | 
|  | return bytes_read; | 
|  | } | 
|  |  | 
|  | if (dst && bytes_left > 0) { | 
|  | const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size; | 
|  | uint8_t *dst_buf = (uint8_t *)dst; | 
|  | addr_t curr_addr = addr - (addr % cache_line_byte_size); | 
|  | addr_t cache_offset = addr - curr_addr; | 
|  |  | 
|  | while (bytes_left > 0) { | 
|  | if (m_invalid_ranges.FindEntryThatContains(curr_addr)) { | 
|  | error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, | 
|  | curr_addr); | 
|  | return dst_len - bytes_left; | 
|  | } | 
|  |  | 
|  | BlockMap::const_iterator pos = m_L2_cache.find(curr_addr); | 
|  | BlockMap::const_iterator end = m_L2_cache.end(); | 
|  |  | 
|  | if (pos != end) { | 
|  | size_t curr_read_size = cache_line_byte_size - cache_offset; | 
|  | if (curr_read_size > bytes_left) | 
|  | curr_read_size = bytes_left; | 
|  |  | 
|  | memcpy(dst_buf + dst_len - bytes_left, | 
|  | pos->second->GetBytes() + cache_offset, curr_read_size); | 
|  |  | 
|  | bytes_left -= curr_read_size; | 
|  | curr_addr += curr_read_size + cache_offset; | 
|  | cache_offset = 0; | 
|  |  | 
|  | if (bytes_left > 0) { | 
|  | // Get sequential cache page hits | 
|  | for (++pos; (pos != end) && (bytes_left > 0); ++pos) { | 
|  | assert((curr_addr % cache_line_byte_size) == 0); | 
|  |  | 
|  | if (pos->first != curr_addr) | 
|  | break; | 
|  |  | 
|  | curr_read_size = pos->second->GetByteSize(); | 
|  | if (curr_read_size > bytes_left) | 
|  | curr_read_size = bytes_left; | 
|  |  | 
|  | memcpy(dst_buf + dst_len - bytes_left, pos->second->GetBytes(), | 
|  | curr_read_size); | 
|  |  | 
|  | bytes_left -= curr_read_size; | 
|  | curr_addr += curr_read_size; | 
|  |  | 
|  | // We have a cache page that succeeded to read some bytes | 
|  | // but not an entire page. If this happens, we must cap | 
|  | // off how much data we are able to read... | 
|  | if (pos->second->GetByteSize() != cache_line_byte_size) | 
|  | return dst_len - bytes_left; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // We need to read from the process | 
|  |  | 
|  | if (bytes_left > 0) { | 
|  | assert((curr_addr % cache_line_byte_size) == 0); | 
|  | std::unique_ptr<DataBufferHeap> data_buffer_heap_ap( | 
|  | new DataBufferHeap(cache_line_byte_size, 0)); | 
|  | size_t process_bytes_read = m_process.ReadMemoryFromInferior( | 
|  | curr_addr, data_buffer_heap_ap->GetBytes(), | 
|  | data_buffer_heap_ap->GetByteSize(), error); | 
|  | if (process_bytes_read == 0) | 
|  | return dst_len - bytes_left; | 
|  |  | 
|  | if (process_bytes_read != cache_line_byte_size) | 
|  | data_buffer_heap_ap->SetByteSize(process_bytes_read); | 
|  | m_L2_cache[curr_addr] = DataBufferSP(data_buffer_heap_ap.release()); | 
|  | // We have read data and put it into the cache, continue through the | 
|  | // loop again to get the data out of the cache... | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return dst_len - bytes_left; | 
|  | } | 
|  |  | 
|  | AllocatedBlock::AllocatedBlock(lldb::addr_t addr, uint32_t byte_size, | 
|  | uint32_t permissions, uint32_t chunk_size) | 
|  | : m_addr(addr), m_byte_size(byte_size), m_permissions(permissions), | 
|  | m_chunk_size(chunk_size), m_offset_to_chunk_size() | 
|  | //    m_allocated (byte_size / chunk_size) | 
|  | { | 
|  | assert(byte_size > chunk_size); | 
|  | } | 
|  |  | 
|  | AllocatedBlock::~AllocatedBlock() {} | 
|  |  | 
|  | lldb::addr_t AllocatedBlock::ReserveBlock(uint32_t size) { | 
|  | addr_t addr = LLDB_INVALID_ADDRESS; | 
|  | Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_VERBOSE)); | 
|  | if (size <= m_byte_size) { | 
|  | const uint32_t needed_chunks = CalculateChunksNeededForSize(size); | 
|  |  | 
|  | if (m_offset_to_chunk_size.empty()) { | 
|  | m_offset_to_chunk_size[0] = needed_chunks; | 
|  | if (log) | 
|  | log->Printf("[1] AllocatedBlock::ReserveBlock(%p) (size = %u (0x%x)) " | 
|  | "=> offset = 0x%x, %u %u bit chunks", | 
|  | (void *)this, size, size, 0, needed_chunks, m_chunk_size); | 
|  | addr = m_addr; | 
|  | } else { | 
|  | uint32_t last_offset = 0; | 
|  | OffsetToChunkSize::const_iterator pos = m_offset_to_chunk_size.begin(); | 
|  | OffsetToChunkSize::const_iterator end = m_offset_to_chunk_size.end(); | 
|  | while (pos != end) { | 
|  | if (pos->first > last_offset) { | 
|  | const uint32_t bytes_available = pos->first - last_offset; | 
|  | const uint32_t num_chunks = | 
|  | CalculateChunksNeededForSize(bytes_available); | 
|  | if (num_chunks >= needed_chunks) { | 
|  | m_offset_to_chunk_size[last_offset] = needed_chunks; | 
|  | if (log) | 
|  | log->Printf("[2] AllocatedBlock::ReserveBlock(%p) (size = %u " | 
|  | "(0x%x)) => offset = 0x%x, %u %u bit chunks - " | 
|  | "num_chunks %lu", | 
|  | (void *)this, size, size, last_offset, needed_chunks, | 
|  | m_chunk_size, m_offset_to_chunk_size.size()); | 
|  | addr = m_addr + last_offset; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | last_offset = pos->first + pos->second * m_chunk_size; | 
|  |  | 
|  | if (++pos == end) { | 
|  | // Last entry... | 
|  | const uint32_t chunks_left = | 
|  | CalculateChunksNeededForSize(m_byte_size - last_offset); | 
|  | if (chunks_left >= needed_chunks) { | 
|  | m_offset_to_chunk_size[last_offset] = needed_chunks; | 
|  | if (log) | 
|  | log->Printf("[3] AllocatedBlock::ReserveBlock(%p) (size = %u " | 
|  | "(0x%x)) => offset = 0x%x, %u %u bit chunks - " | 
|  | "num_chunks %lu", | 
|  | (void *)this, size, size, last_offset, needed_chunks, | 
|  | m_chunk_size, m_offset_to_chunk_size.size()); | 
|  | addr = m_addr + last_offset; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | //        const uint32_t total_chunks = m_allocated.size (); | 
|  | //        uint32_t unallocated_idx = 0; | 
|  | //        uint32_t allocated_idx = m_allocated.find_first(); | 
|  | //        uint32_t first_chunk_idx = UINT32_MAX; | 
|  | //        uint32_t num_chunks; | 
|  | //        while (1) | 
|  | //        { | 
|  | //            if (allocated_idx == UINT32_MAX) | 
|  | //            { | 
|  | //                // No more bits are set starting from unallocated_idx, so | 
|  | //                we | 
|  | //                // either have enough chunks for the request, or we don't. | 
|  | //                // Either way we break out of the while loop... | 
|  | //                num_chunks = total_chunks - unallocated_idx; | 
|  | //                if (needed_chunks <= num_chunks) | 
|  | //                    first_chunk_idx = unallocated_idx; | 
|  | //                break; | 
|  | //            } | 
|  | //            else if (allocated_idx > unallocated_idx) | 
|  | //            { | 
|  | //                // We have some allocated chunks, check if there are | 
|  | //                enough | 
|  | //                // free chunks to satisfy the request? | 
|  | //                num_chunks = allocated_idx - unallocated_idx; | 
|  | //                if (needed_chunks <= num_chunks) | 
|  | //                { | 
|  | //                    // Yep, we have enough! | 
|  | //                    first_chunk_idx = unallocated_idx; | 
|  | //                    break; | 
|  | //                } | 
|  | //            } | 
|  | // | 
|  | //            while (unallocated_idx < total_chunks) | 
|  | //            { | 
|  | //                if (m_allocated[unallocated_idx]) | 
|  | //                    ++unallocated_idx; | 
|  | //                else | 
|  | //                    break; | 
|  | //            } | 
|  | // | 
|  | //            if (unallocated_idx >= total_chunks) | 
|  | //                break; | 
|  | // | 
|  | //            allocated_idx = m_allocated.find_next(unallocated_idx); | 
|  | //        } | 
|  | // | 
|  | //        if (first_chunk_idx != UINT32_MAX) | 
|  | //        { | 
|  | //            const uint32_t end_bit_idx = unallocated_idx + needed_chunks; | 
|  | //            for (uint32_t idx = first_chunk_idx; idx < end_bit_idx; ++idx) | 
|  | //                m_allocated.set(idx); | 
|  | //            return m_addr + m_chunk_size * first_chunk_idx; | 
|  | //        } | 
|  | } | 
|  |  | 
|  | if (log) | 
|  | log->Printf("AllocatedBlock::ReserveBlock(%p) (size = %u (0x%x)) => " | 
|  | "0x%16.16" PRIx64, | 
|  | (void *)this, size, size, (uint64_t)addr); | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | bool AllocatedBlock::FreeBlock(addr_t addr) { | 
|  | uint32_t offset = addr - m_addr; | 
|  | OffsetToChunkSize::iterator pos = m_offset_to_chunk_size.find(offset); | 
|  | bool success = false; | 
|  | if (pos != m_offset_to_chunk_size.end()) { | 
|  | m_offset_to_chunk_size.erase(pos); | 
|  | success = true; | 
|  | } | 
|  | Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_VERBOSE)); | 
|  | if (log) | 
|  | log->Printf("AllocatedBlock::FreeBlock(%p) (addr = 0x%16.16" PRIx64 | 
|  | ") => %i, num_chunks: %lu", | 
|  | (void *)this, (uint64_t)addr, success, | 
|  | m_offset_to_chunk_size.size()); | 
|  | return success; | 
|  | } | 
|  |  | 
|  | AllocatedMemoryCache::AllocatedMemoryCache(Process &process) | 
|  | : m_process(process), m_mutex(), m_memory_map() {} | 
|  |  | 
|  | AllocatedMemoryCache::~AllocatedMemoryCache() {} | 
|  |  | 
|  | void AllocatedMemoryCache::Clear() { | 
|  | std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
|  | if (m_process.IsAlive()) { | 
|  | PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); | 
|  | for (pos = m_memory_map.begin(); pos != end; ++pos) | 
|  | m_process.DoDeallocateMemory(pos->second->GetBaseAddress()); | 
|  | } | 
|  | m_memory_map.clear(); | 
|  | } | 
|  |  | 
|  | AllocatedMemoryCache::AllocatedBlockSP | 
|  | AllocatedMemoryCache::AllocatePage(uint32_t byte_size, uint32_t permissions, | 
|  | uint32_t chunk_size, Error &error) { | 
|  | AllocatedBlockSP block_sp; | 
|  | const size_t page_size = 4096; | 
|  | const size_t num_pages = (byte_size + page_size - 1) / page_size; | 
|  | const size_t page_byte_size = num_pages * page_size; | 
|  |  | 
|  | addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error); | 
|  |  | 
|  | Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); | 
|  | if (log) { | 
|  | log->Printf("Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32 | 
|  | ", permissions = %s) => 0x%16.16" PRIx64, | 
|  | (uint32_t)page_byte_size, GetPermissionsAsCString(permissions), | 
|  | (uint64_t)addr); | 
|  | } | 
|  |  | 
|  | if (addr != LLDB_INVALID_ADDRESS) { | 
|  | block_sp.reset( | 
|  | new AllocatedBlock(addr, page_byte_size, permissions, chunk_size)); | 
|  | m_memory_map.insert(std::make_pair(permissions, block_sp)); | 
|  | } | 
|  | return block_sp; | 
|  | } | 
|  |  | 
|  | lldb::addr_t AllocatedMemoryCache::AllocateMemory(size_t byte_size, | 
|  | uint32_t permissions, | 
|  | Error &error) { | 
|  | std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
|  |  | 
|  | addr_t addr = LLDB_INVALID_ADDRESS; | 
|  | std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator> | 
|  | range = m_memory_map.equal_range(permissions); | 
|  |  | 
|  | for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second; | 
|  | ++pos) { | 
|  | addr = (*pos).second->ReserveBlock(byte_size); | 
|  | if (addr != LLDB_INVALID_ADDRESS) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (addr == LLDB_INVALID_ADDRESS) { | 
|  | AllocatedBlockSP block_sp(AllocatePage(byte_size, permissions, 16, error)); | 
|  |  | 
|  | if (block_sp) | 
|  | addr = block_sp->ReserveBlock(byte_size); | 
|  | } | 
|  | Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); | 
|  | if (log) | 
|  | log->Printf( | 
|  | "AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32 | 
|  | ", permissions = %s) => 0x%16.16" PRIx64, | 
|  | (uint32_t)byte_size, GetPermissionsAsCString(permissions), | 
|  | (uint64_t)addr); | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | bool AllocatedMemoryCache::DeallocateMemory(lldb::addr_t addr) { | 
|  | std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
|  |  | 
|  | PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); | 
|  | bool success = false; | 
|  | for (pos = m_memory_map.begin(); pos != end; ++pos) { | 
|  | if (pos->second->Contains(addr)) { | 
|  | success = pos->second->FreeBlock(addr); | 
|  | break; | 
|  | } | 
|  | } | 
|  | Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); | 
|  | if (log) | 
|  | log->Printf("AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64 | 
|  | ") => %i", | 
|  | (uint64_t)addr, success); | 
|  | return success; | 
|  | } |