|  | //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass implements an idiom recognizer that transforms simple loops into a | 
|  | // non-loop form.  In cases that this kicks in, it can be a significant | 
|  | // performance win. | 
|  | // | 
|  | // If compiling for code size we avoid idiom recognition if the resulting | 
|  | // code could be larger than the code for the original loop. One way this could | 
|  | // happen is if the loop is not removable after idiom recognition due to the | 
|  | // presence of non-idiom instructions. The initial implementation of the | 
|  | // heuristics applies to idioms in multi-block loops. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // TODO List: | 
|  | // | 
|  | // Future loop memory idioms to recognize: | 
|  | //   memcmp, strlen, etc. | 
|  | // Future floating point idioms to recognize in -ffast-math mode: | 
|  | //   fpowi | 
|  | // Future integer operation idioms to recognize: | 
|  | //   ctpop | 
|  | // | 
|  | // Beware that isel's default lowering for ctpop is highly inefficient for | 
|  | // i64 and larger types when i64 is legal and the value has few bits set.  It | 
|  | // would be good to enhance isel to emit a loop for ctpop in this case. | 
|  | // | 
|  | // This could recognize common matrix multiplies and dot product idioms and | 
|  | // replace them with calls to BLAS (if linked in??). | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/MapVector.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/CmpInstAnalysis.h" | 
|  | #include "llvm/Analysis/LoopAccessAnalysis.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/MemoryLocation.h" | 
|  | #include "llvm/Analysis/MemorySSA.h" | 
|  | #include "llvm/Analysis/MemorySSAUpdater.h" | 
|  | #include "llvm/Analysis/MustExecute.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/InstructionCost.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils/BuildLibCalls.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "loop-idiom" | 
|  |  | 
|  | STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); | 
|  | STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); | 
|  | STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores"); | 
|  | STATISTIC( | 
|  | NumShiftUntilBitTest, | 
|  | "Number of uncountable loops recognized as 'shift until bitttest' idiom"); | 
|  | STATISTIC(NumShiftUntilZero, | 
|  | "Number of uncountable loops recognized as 'shift until zero' idiom"); | 
|  |  | 
|  | bool DisableLIRP::All; | 
|  | static cl::opt<bool, true> | 
|  | DisableLIRPAll("disable-" DEBUG_TYPE "-all", | 
|  | cl::desc("Options to disable Loop Idiom Recognize Pass."), | 
|  | cl::location(DisableLIRP::All), cl::init(false), | 
|  | cl::ReallyHidden); | 
|  |  | 
|  | bool DisableLIRP::Memset; | 
|  | static cl::opt<bool, true> | 
|  | DisableLIRPMemset("disable-" DEBUG_TYPE "-memset", | 
|  | cl::desc("Proceed with loop idiom recognize pass, but do " | 
|  | "not convert loop(s) to memset."), | 
|  | cl::location(DisableLIRP::Memset), cl::init(false), | 
|  | cl::ReallyHidden); | 
|  |  | 
|  | bool DisableLIRP::Memcpy; | 
|  | static cl::opt<bool, true> | 
|  | DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy", | 
|  | cl::desc("Proceed with loop idiom recognize pass, but do " | 
|  | "not convert loop(s) to memcpy."), | 
|  | cl::location(DisableLIRP::Memcpy), cl::init(false), | 
|  | cl::ReallyHidden); | 
|  |  | 
|  | static cl::opt<bool> UseLIRCodeSizeHeurs( | 
|  | "use-lir-code-size-heurs", | 
|  | cl::desc("Use loop idiom recognition code size heuristics when compiling" | 
|  | "with -Os/-Oz"), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class LoopIdiomRecognize { | 
|  | Loop *CurLoop = nullptr; | 
|  | AliasAnalysis *AA; | 
|  | DominatorTree *DT; | 
|  | LoopInfo *LI; | 
|  | ScalarEvolution *SE; | 
|  | TargetLibraryInfo *TLI; | 
|  | const TargetTransformInfo *TTI; | 
|  | const DataLayout *DL; | 
|  | OptimizationRemarkEmitter &ORE; | 
|  | bool ApplyCodeSizeHeuristics; | 
|  | std::unique_ptr<MemorySSAUpdater> MSSAU; | 
|  |  | 
|  | public: | 
|  | explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, | 
|  | LoopInfo *LI, ScalarEvolution *SE, | 
|  | TargetLibraryInfo *TLI, | 
|  | const TargetTransformInfo *TTI, MemorySSA *MSSA, | 
|  | const DataLayout *DL, | 
|  | OptimizationRemarkEmitter &ORE) | 
|  | : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { | 
|  | if (MSSA) | 
|  | MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); | 
|  | } | 
|  |  | 
|  | bool runOnLoop(Loop *L); | 
|  |  | 
|  | private: | 
|  | using StoreList = SmallVector<StoreInst *, 8>; | 
|  | using StoreListMap = MapVector<Value *, StoreList>; | 
|  |  | 
|  | StoreListMap StoreRefsForMemset; | 
|  | StoreListMap StoreRefsForMemsetPattern; | 
|  | StoreList StoreRefsForMemcpy; | 
|  | bool HasMemset; | 
|  | bool HasMemsetPattern; | 
|  | bool HasMemcpy; | 
|  |  | 
|  | /// Return code for isLegalStore() | 
|  | enum LegalStoreKind { | 
|  | None = 0, | 
|  | Memset, | 
|  | MemsetPattern, | 
|  | Memcpy, | 
|  | UnorderedAtomicMemcpy, | 
|  | DontUse // Dummy retval never to be used. Allows catching errors in retval | 
|  | // handling. | 
|  | }; | 
|  |  | 
|  | /// \name Countable Loop Idiom Handling | 
|  | /// @{ | 
|  |  | 
|  | bool runOnCountableLoop(); | 
|  | bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, | 
|  | SmallVectorImpl<BasicBlock *> &ExitBlocks); | 
|  |  | 
|  | void collectStores(BasicBlock *BB); | 
|  | LegalStoreKind isLegalStore(StoreInst *SI); | 
|  | enum class ForMemset { No, Yes }; | 
|  | bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, | 
|  | ForMemset For); | 
|  |  | 
|  | template <typename MemInst> | 
|  | bool processLoopMemIntrinsic( | 
|  | BasicBlock *BB, | 
|  | bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), | 
|  | const SCEV *BECount); | 
|  | bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount); | 
|  | bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); | 
|  |  | 
|  | bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV, | 
|  | MaybeAlign StoreAlignment, Value *StoredVal, | 
|  | Instruction *TheStore, | 
|  | SmallPtrSetImpl<Instruction *> &Stores, | 
|  | const SCEVAddRecExpr *Ev, const SCEV *BECount, | 
|  | bool IsNegStride, bool IsLoopMemset = false); | 
|  | bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); | 
|  | bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr, | 
|  | const SCEV *StoreSize, MaybeAlign StoreAlign, | 
|  | MaybeAlign LoadAlign, Instruction *TheStore, | 
|  | Instruction *TheLoad, | 
|  | const SCEVAddRecExpr *StoreEv, | 
|  | const SCEVAddRecExpr *LoadEv, | 
|  | const SCEV *BECount); | 
|  | bool avoidLIRForMultiBlockLoop(bool IsMemset = false, | 
|  | bool IsLoopMemset = false); | 
|  |  | 
|  | /// @} | 
|  | /// \name Noncountable Loop Idiom Handling | 
|  | /// @{ | 
|  |  | 
|  | bool runOnNoncountableLoop(); | 
|  |  | 
|  | bool recognizePopcount(); | 
|  | void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, | 
|  | PHINode *CntPhi, Value *Var); | 
|  | bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz | 
|  | void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, | 
|  | Instruction *CntInst, PHINode *CntPhi, | 
|  | Value *Var, Instruction *DefX, | 
|  | const DebugLoc &DL, bool ZeroCheck, | 
|  | bool IsCntPhiUsedOutsideLoop); | 
|  |  | 
|  | bool recognizeShiftUntilBitTest(); | 
|  | bool recognizeShiftUntilZero(); | 
|  |  | 
|  | /// @} | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, | 
|  | LoopStandardAnalysisResults &AR, | 
|  | LPMUpdater &) { | 
|  | if (DisableLIRP::All) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | const auto *DL = &L.getHeader()->getModule()->getDataLayout(); | 
|  |  | 
|  | // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis | 
|  | // pass.  Function analyses need to be preserved across loop transformations | 
|  | // but ORE cannot be preserved (see comment before the pass definition). | 
|  | OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); | 
|  |  | 
|  | LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, | 
|  | AR.MSSA, DL, ORE); | 
|  | if (!LIR.runOnLoop(&L)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | auto PA = getLoopPassPreservedAnalyses(); | 
|  | if (AR.MSSA) | 
|  | PA.preserve<MemorySSAAnalysis>(); | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | static void deleteDeadInstruction(Instruction *I) { | 
|  | I->replaceAllUsesWith(PoisonValue::get(I->getType())); | 
|  | I->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //          Implementation of LoopIdiomRecognize | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool LoopIdiomRecognize::runOnLoop(Loop *L) { | 
|  | CurLoop = L; | 
|  | // If the loop could not be converted to canonical form, it must have an | 
|  | // indirectbr in it, just give up. | 
|  | if (!L->getLoopPreheader()) | 
|  | return false; | 
|  |  | 
|  | // Disable loop idiom recognition if the function's name is a common idiom. | 
|  | StringRef Name = L->getHeader()->getParent()->getName(); | 
|  | if (Name == "memset" || Name == "memcpy") | 
|  | return false; | 
|  |  | 
|  | // Determine if code size heuristics need to be applied. | 
|  | ApplyCodeSizeHeuristics = | 
|  | L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; | 
|  |  | 
|  | HasMemset = TLI->has(LibFunc_memset); | 
|  | HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); | 
|  | HasMemcpy = TLI->has(LibFunc_memcpy); | 
|  |  | 
|  | if (HasMemset || HasMemsetPattern || HasMemcpy) | 
|  | if (SE->hasLoopInvariantBackedgeTakenCount(L)) | 
|  | return runOnCountableLoop(); | 
|  |  | 
|  | return runOnNoncountableLoop(); | 
|  | } | 
|  |  | 
|  | bool LoopIdiomRecognize::runOnCountableLoop() { | 
|  | const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); | 
|  | assert(!isa<SCEVCouldNotCompute>(BECount) && | 
|  | "runOnCountableLoop() called on a loop without a predictable" | 
|  | "backedge-taken count"); | 
|  |  | 
|  | // If this loop executes exactly one time, then it should be peeled, not | 
|  | // optimized by this pass. | 
|  | if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) | 
|  | if (BECst->getAPInt() == 0) | 
|  | return false; | 
|  |  | 
|  | SmallVector<BasicBlock *, 8> ExitBlocks; | 
|  | CurLoop->getUniqueExitBlocks(ExitBlocks); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" | 
|  | << CurLoop->getHeader()->getParent()->getName() | 
|  | << "] Countable Loop %" << CurLoop->getHeader()->getName() | 
|  | << "\n"); | 
|  |  | 
|  | // The following transforms hoist stores/memsets into the loop pre-header. | 
|  | // Give up if the loop has instructions that may throw. | 
|  | SimpleLoopSafetyInfo SafetyInfo; | 
|  | SafetyInfo.computeLoopSafetyInfo(CurLoop); | 
|  | if (SafetyInfo.anyBlockMayThrow()) | 
|  | return false; | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Scan all the blocks in the loop that are not in subloops. | 
|  | for (auto *BB : CurLoop->getBlocks()) { | 
|  | // Ignore blocks in subloops. | 
|  | if (LI->getLoopFor(BB) != CurLoop) | 
|  | continue; | 
|  |  | 
|  | MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { | 
|  | const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); | 
|  | return ConstStride->getAPInt(); | 
|  | } | 
|  |  | 
|  | /// getMemSetPatternValue - If a strided store of the specified value is safe to | 
|  | /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should | 
|  | /// be passed in.  Otherwise, return null. | 
|  | /// | 
|  | /// Note that we don't ever attempt to use memset_pattern8 or 4, because these | 
|  | /// just replicate their input array and then pass on to memset_pattern16. | 
|  | static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { | 
|  | // FIXME: This could check for UndefValue because it can be merged into any | 
|  | // other valid pattern. | 
|  |  | 
|  | // If the value isn't a constant, we can't promote it to being in a constant | 
|  | // array.  We could theoretically do a store to an alloca or something, but | 
|  | // that doesn't seem worthwhile. | 
|  | Constant *C = dyn_cast<Constant>(V); | 
|  | if (!C || isa<ConstantExpr>(C)) | 
|  | return nullptr; | 
|  |  | 
|  | // Only handle simple values that are a power of two bytes in size. | 
|  | uint64_t Size = DL->getTypeSizeInBits(V->getType()); | 
|  | if (Size == 0 || (Size & 7) || (Size & (Size - 1))) | 
|  | return nullptr; | 
|  |  | 
|  | // Don't care enough about darwin/ppc to implement this. | 
|  | if (DL->isBigEndian()) | 
|  | return nullptr; | 
|  |  | 
|  | // Convert to size in bytes. | 
|  | Size /= 8; | 
|  |  | 
|  | // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see | 
|  | // if the top and bottom are the same (e.g. for vectors and large integers). | 
|  | if (Size > 16) | 
|  | return nullptr; | 
|  |  | 
|  | // If the constant is exactly 16 bytes, just use it. | 
|  | if (Size == 16) | 
|  | return C; | 
|  |  | 
|  | // Otherwise, we'll use an array of the constants. | 
|  | unsigned ArraySize = 16 / Size; | 
|  | ArrayType *AT = ArrayType::get(V->getType(), ArraySize); | 
|  | return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); | 
|  | } | 
|  |  | 
|  | LoopIdiomRecognize::LegalStoreKind | 
|  | LoopIdiomRecognize::isLegalStore(StoreInst *SI) { | 
|  | // Don't touch volatile stores. | 
|  | if (SI->isVolatile()) | 
|  | return LegalStoreKind::None; | 
|  | // We only want simple or unordered-atomic stores. | 
|  | if (!SI->isUnordered()) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // Avoid merging nontemporal stores. | 
|  | if (SI->getMetadata(LLVMContext::MD_nontemporal)) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | Value *StoredVal = SI->getValueOperand(); | 
|  | Value *StorePtr = SI->getPointerOperand(); | 
|  |  | 
|  | // Don't convert stores of non-integral pointer types to memsets (which stores | 
|  | // integers). | 
|  | if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType())) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // Reject stores that are so large that they overflow an unsigned. | 
|  | // When storing out scalable vectors we bail out for now, since the code | 
|  | // below currently only works for constant strides. | 
|  | TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); | 
|  | if (SizeInBits.isScalable() || (SizeInBits.getFixedValue() & 7) || | 
|  | (SizeInBits.getFixedValue() >> 32) != 0) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // See if the pointer expression is an AddRec like {base,+,1} on the current | 
|  | // loop, which indicates a strided store.  If we have something else, it's a | 
|  | // random store we can't handle. | 
|  | const SCEVAddRecExpr *StoreEv = | 
|  | dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); | 
|  | if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // Check to see if we have a constant stride. | 
|  | if (!isa<SCEVConstant>(StoreEv->getOperand(1))) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // See if the store can be turned into a memset. | 
|  |  | 
|  | // If the stored value is a byte-wise value (like i32 -1), then it may be | 
|  | // turned into a memset of i8 -1, assuming that all the consecutive bytes | 
|  | // are stored.  A store of i32 0x01020304 can never be turned into a memset, | 
|  | // but it can be turned into memset_pattern if the target supports it. | 
|  | Value *SplatValue = isBytewiseValue(StoredVal, *DL); | 
|  |  | 
|  | // Note: memset and memset_pattern on unordered-atomic is yet not supported | 
|  | bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); | 
|  |  | 
|  | // If we're allowed to form a memset, and the stored value would be | 
|  | // acceptable for memset, use it. | 
|  | if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset && | 
|  | // Verify that the stored value is loop invariant.  If not, we can't | 
|  | // promote the memset. | 
|  | CurLoop->isLoopInvariant(SplatValue)) { | 
|  | // It looks like we can use SplatValue. | 
|  | return LegalStoreKind::Memset; | 
|  | } | 
|  | if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset && | 
|  | // Don't create memset_pattern16s with address spaces. | 
|  | StorePtr->getType()->getPointerAddressSpace() == 0 && | 
|  | getMemSetPatternValue(StoredVal, DL)) { | 
|  | // It looks like we can use PatternValue! | 
|  | return LegalStoreKind::MemsetPattern; | 
|  | } | 
|  |  | 
|  | // Otherwise, see if the store can be turned into a memcpy. | 
|  | if (HasMemcpy && !DisableLIRP::Memcpy) { | 
|  | // Check to see if the stride matches the size of the store.  If so, then we | 
|  | // know that every byte is touched in the loop. | 
|  | APInt Stride = getStoreStride(StoreEv); | 
|  | unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); | 
|  | if (StoreSize != Stride && StoreSize != -Stride) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // The store must be feeding a non-volatile load. | 
|  | LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); | 
|  |  | 
|  | // Only allow non-volatile loads | 
|  | if (!LI || LI->isVolatile()) | 
|  | return LegalStoreKind::None; | 
|  | // Only allow simple or unordered-atomic loads | 
|  | if (!LI->isUnordered()) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // See if the pointer expression is an AddRec like {base,+,1} on the current | 
|  | // loop, which indicates a strided load.  If we have something else, it's a | 
|  | // random load we can't handle. | 
|  | const SCEVAddRecExpr *LoadEv = | 
|  | dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); | 
|  | if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // The store and load must share the same stride. | 
|  | if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // Success.  This store can be converted into a memcpy. | 
|  | UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); | 
|  | return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy | 
|  | : LegalStoreKind::Memcpy; | 
|  | } | 
|  | // This store can't be transformed into a memset/memcpy. | 
|  | return LegalStoreKind::None; | 
|  | } | 
|  |  | 
|  | void LoopIdiomRecognize::collectStores(BasicBlock *BB) { | 
|  | StoreRefsForMemset.clear(); | 
|  | StoreRefsForMemsetPattern.clear(); | 
|  | StoreRefsForMemcpy.clear(); | 
|  | for (Instruction &I : *BB) { | 
|  | StoreInst *SI = dyn_cast<StoreInst>(&I); | 
|  | if (!SI) | 
|  | continue; | 
|  |  | 
|  | // Make sure this is a strided store with a constant stride. | 
|  | switch (isLegalStore(SI)) { | 
|  | case LegalStoreKind::None: | 
|  | // Nothing to do | 
|  | break; | 
|  | case LegalStoreKind::Memset: { | 
|  | // Find the base pointer. | 
|  | Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); | 
|  | StoreRefsForMemset[Ptr].push_back(SI); | 
|  | } break; | 
|  | case LegalStoreKind::MemsetPattern: { | 
|  | // Find the base pointer. | 
|  | Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); | 
|  | StoreRefsForMemsetPattern[Ptr].push_back(SI); | 
|  | } break; | 
|  | case LegalStoreKind::Memcpy: | 
|  | case LegalStoreKind::UnorderedAtomicMemcpy: | 
|  | StoreRefsForMemcpy.push_back(SI); | 
|  | break; | 
|  | default: | 
|  | assert(false && "unhandled return value"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// runOnLoopBlock - Process the specified block, which lives in a counted loop | 
|  | /// with the specified backedge count.  This block is known to be in the current | 
|  | /// loop and not in any subloops. | 
|  | bool LoopIdiomRecognize::runOnLoopBlock( | 
|  | BasicBlock *BB, const SCEV *BECount, | 
|  | SmallVectorImpl<BasicBlock *> &ExitBlocks) { | 
|  | // We can only promote stores in this block if they are unconditionally | 
|  | // executed in the loop.  For a block to be unconditionally executed, it has | 
|  | // to dominate all the exit blocks of the loop.  Verify this now. | 
|  | for (BasicBlock *ExitBlock : ExitBlocks) | 
|  | if (!DT->dominates(BB, ExitBlock)) | 
|  | return false; | 
|  |  | 
|  | bool MadeChange = false; | 
|  | // Look for store instructions, which may be optimized to memset/memcpy. | 
|  | collectStores(BB); | 
|  |  | 
|  | // Look for a single store or sets of stores with a common base, which can be | 
|  | // optimized into a memset (memset_pattern).  The latter most commonly happens | 
|  | // with structs and handunrolled loops. | 
|  | for (auto &SL : StoreRefsForMemset) | 
|  | MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); | 
|  |  | 
|  | for (auto &SL : StoreRefsForMemsetPattern) | 
|  | MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); | 
|  |  | 
|  | // Optimize the store into a memcpy, if it feeds an similarly strided load. | 
|  | for (auto &SI : StoreRefsForMemcpy) | 
|  | MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); | 
|  |  | 
|  | MadeChange |= processLoopMemIntrinsic<MemCpyInst>( | 
|  | BB, &LoopIdiomRecognize::processLoopMemCpy, BECount); | 
|  | MadeChange |= processLoopMemIntrinsic<MemSetInst>( | 
|  | BB, &LoopIdiomRecognize::processLoopMemSet, BECount); | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// See if this store(s) can be promoted to a memset. | 
|  | bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, | 
|  | const SCEV *BECount, ForMemset For) { | 
|  | // Try to find consecutive stores that can be transformed into memsets. | 
|  | SetVector<StoreInst *> Heads, Tails; | 
|  | SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; | 
|  |  | 
|  | // Do a quadratic search on all of the given stores and find | 
|  | // all of the pairs of stores that follow each other. | 
|  | SmallVector<unsigned, 16> IndexQueue; | 
|  | for (unsigned i = 0, e = SL.size(); i < e; ++i) { | 
|  | assert(SL[i]->isSimple() && "Expected only non-volatile stores."); | 
|  |  | 
|  | Value *FirstStoredVal = SL[i]->getValueOperand(); | 
|  | Value *FirstStorePtr = SL[i]->getPointerOperand(); | 
|  | const SCEVAddRecExpr *FirstStoreEv = | 
|  | cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); | 
|  | APInt FirstStride = getStoreStride(FirstStoreEv); | 
|  | unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); | 
|  |  | 
|  | // See if we can optimize just this store in isolation. | 
|  | if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { | 
|  | Heads.insert(SL[i]); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Value *FirstSplatValue = nullptr; | 
|  | Constant *FirstPatternValue = nullptr; | 
|  |  | 
|  | if (For == ForMemset::Yes) | 
|  | FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); | 
|  | else | 
|  | FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); | 
|  |  | 
|  | assert((FirstSplatValue || FirstPatternValue) && | 
|  | "Expected either splat value or pattern value."); | 
|  |  | 
|  | IndexQueue.clear(); | 
|  | // If a store has multiple consecutive store candidates, search Stores | 
|  | // array according to the sequence: from i+1 to e, then from i-1 to 0. | 
|  | // This is because usually pairing with immediate succeeding or preceding | 
|  | // candidate create the best chance to find memset opportunity. | 
|  | unsigned j = 0; | 
|  | for (j = i + 1; j < e; ++j) | 
|  | IndexQueue.push_back(j); | 
|  | for (j = i; j > 0; --j) | 
|  | IndexQueue.push_back(j - 1); | 
|  |  | 
|  | for (auto &k : IndexQueue) { | 
|  | assert(SL[k]->isSimple() && "Expected only non-volatile stores."); | 
|  | Value *SecondStorePtr = SL[k]->getPointerOperand(); | 
|  | const SCEVAddRecExpr *SecondStoreEv = | 
|  | cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); | 
|  | APInt SecondStride = getStoreStride(SecondStoreEv); | 
|  |  | 
|  | if (FirstStride != SecondStride) | 
|  | continue; | 
|  |  | 
|  | Value *SecondStoredVal = SL[k]->getValueOperand(); | 
|  | Value *SecondSplatValue = nullptr; | 
|  | Constant *SecondPatternValue = nullptr; | 
|  |  | 
|  | if (For == ForMemset::Yes) | 
|  | SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); | 
|  | else | 
|  | SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); | 
|  |  | 
|  | assert((SecondSplatValue || SecondPatternValue) && | 
|  | "Expected either splat value or pattern value."); | 
|  |  | 
|  | if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { | 
|  | if (For == ForMemset::Yes) { | 
|  | if (isa<UndefValue>(FirstSplatValue)) | 
|  | FirstSplatValue = SecondSplatValue; | 
|  | if (FirstSplatValue != SecondSplatValue) | 
|  | continue; | 
|  | } else { | 
|  | if (isa<UndefValue>(FirstPatternValue)) | 
|  | FirstPatternValue = SecondPatternValue; | 
|  | if (FirstPatternValue != SecondPatternValue) | 
|  | continue; | 
|  | } | 
|  | Tails.insert(SL[k]); | 
|  | Heads.insert(SL[i]); | 
|  | ConsecutiveChain[SL[i]] = SL[k]; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // We may run into multiple chains that merge into a single chain. We mark the | 
|  | // stores that we transformed so that we don't visit the same store twice. | 
|  | SmallPtrSet<Value *, 16> TransformedStores; | 
|  | bool Changed = false; | 
|  |  | 
|  | // For stores that start but don't end a link in the chain: | 
|  | for (StoreInst *I : Heads) { | 
|  | if (Tails.count(I)) | 
|  | continue; | 
|  |  | 
|  | // We found a store instr that starts a chain. Now follow the chain and try | 
|  | // to transform it. | 
|  | SmallPtrSet<Instruction *, 8> AdjacentStores; | 
|  | StoreInst *HeadStore = I; | 
|  | unsigned StoreSize = 0; | 
|  |  | 
|  | // Collect the chain into a list. | 
|  | while (Tails.count(I) || Heads.count(I)) { | 
|  | if (TransformedStores.count(I)) | 
|  | break; | 
|  | AdjacentStores.insert(I); | 
|  |  | 
|  | StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); | 
|  | // Move to the next value in the chain. | 
|  | I = ConsecutiveChain[I]; | 
|  | } | 
|  |  | 
|  | Value *StoredVal = HeadStore->getValueOperand(); | 
|  | Value *StorePtr = HeadStore->getPointerOperand(); | 
|  | const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); | 
|  | APInt Stride = getStoreStride(StoreEv); | 
|  |  | 
|  | // Check to see if the stride matches the size of the stores.  If so, then | 
|  | // we know that every byte is touched in the loop. | 
|  | if (StoreSize != Stride && StoreSize != -Stride) | 
|  | continue; | 
|  |  | 
|  | bool IsNegStride = StoreSize == -Stride; | 
|  |  | 
|  | Type *IntIdxTy = DL->getIndexType(StorePtr->getType()); | 
|  | const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize); | 
|  | if (processLoopStridedStore(StorePtr, StoreSizeSCEV, | 
|  | MaybeAlign(HeadStore->getAlign()), StoredVal, | 
|  | HeadStore, AdjacentStores, StoreEv, BECount, | 
|  | IsNegStride)) { | 
|  | TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// processLoopMemIntrinsic - Template function for calling different processor | 
|  | /// functions based on mem intrinsic type. | 
|  | template <typename MemInst> | 
|  | bool LoopIdiomRecognize::processLoopMemIntrinsic( | 
|  | BasicBlock *BB, | 
|  | bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), | 
|  | const SCEV *BECount) { | 
|  | bool MadeChange = false; | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { | 
|  | Instruction *Inst = &*I++; | 
|  | // Look for memory instructions, which may be optimized to a larger one. | 
|  | if (MemInst *MI = dyn_cast<MemInst>(Inst)) { | 
|  | WeakTrackingVH InstPtr(&*I); | 
|  | if (!(this->*Processor)(MI, BECount)) | 
|  | continue; | 
|  | MadeChange = true; | 
|  |  | 
|  | // If processing the instruction invalidated our iterator, start over from | 
|  | // the top of the block. | 
|  | if (!InstPtr) | 
|  | I = BB->begin(); | 
|  | } | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy | 
|  | bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI, | 
|  | const SCEV *BECount) { | 
|  | // We can only handle non-volatile memcpys with a constant size. | 
|  | if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength())) | 
|  | return false; | 
|  |  | 
|  | // If we're not allowed to hack on memcpy, we fail. | 
|  | if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy) | 
|  | return false; | 
|  |  | 
|  | Value *Dest = MCI->getDest(); | 
|  | Value *Source = MCI->getSource(); | 
|  | if (!Dest || !Source) | 
|  | return false; | 
|  |  | 
|  | // See if the load and store pointer expressions are AddRec like {base,+,1} on | 
|  | // the current loop, which indicates a strided load and store.  If we have | 
|  | // something else, it's a random load or store we can't handle. | 
|  | const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest)); | 
|  | if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) | 
|  | return false; | 
|  | const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source)); | 
|  | if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) | 
|  | return false; | 
|  |  | 
|  | // Reject memcpys that are so large that they overflow an unsigned. | 
|  | uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue(); | 
|  | if ((SizeInBytes >> 32) != 0) | 
|  | return false; | 
|  |  | 
|  | // Check if the stride matches the size of the memcpy. If so, then we know | 
|  | // that every byte is touched in the loop. | 
|  | const SCEVConstant *ConstStoreStride = | 
|  | dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); | 
|  | const SCEVConstant *ConstLoadStride = | 
|  | dyn_cast<SCEVConstant>(LoadEv->getOperand(1)); | 
|  | if (!ConstStoreStride || !ConstLoadStride) | 
|  | return false; | 
|  |  | 
|  | APInt StoreStrideValue = ConstStoreStride->getAPInt(); | 
|  | APInt LoadStrideValue = ConstLoadStride->getAPInt(); | 
|  | // Huge stride value - give up | 
|  | if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64) | 
|  | return false; | 
|  |  | 
|  | if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) { | 
|  | ORE.emit([&]() { | 
|  | return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI) | 
|  | << ore::NV("Inst", "memcpy") << " in " | 
|  | << ore::NV("Function", MCI->getFunction()) | 
|  | << " function will not be hoisted: " | 
|  | << ore::NV("Reason", "memcpy size is not equal to stride"); | 
|  | }); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int64_t StoreStrideInt = StoreStrideValue.getSExtValue(); | 
|  | int64_t LoadStrideInt = LoadStrideValue.getSExtValue(); | 
|  | // Check if the load stride matches the store stride. | 
|  | if (StoreStrideInt != LoadStrideInt) | 
|  | return false; | 
|  |  | 
|  | return processLoopStoreOfLoopLoad( | 
|  | Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes), | 
|  | MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv, | 
|  | BECount); | 
|  | } | 
|  |  | 
|  | /// processLoopMemSet - See if this memset can be promoted to a large memset. | 
|  | bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, | 
|  | const SCEV *BECount) { | 
|  | // We can only handle non-volatile memsets. | 
|  | if (MSI->isVolatile()) | 
|  | return false; | 
|  |  | 
|  | // If we're not allowed to hack on memset, we fail. | 
|  | if (!HasMemset || DisableLIRP::Memset) | 
|  | return false; | 
|  |  | 
|  | Value *Pointer = MSI->getDest(); | 
|  |  | 
|  | // See if the pointer expression is an AddRec like {base,+,1} on the current | 
|  | // loop, which indicates a strided store.  If we have something else, it's a | 
|  | // random store we can't handle. | 
|  | const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); | 
|  | if (!Ev || Ev->getLoop() != CurLoop) | 
|  | return false; | 
|  | if (!Ev->isAffine()) { | 
|  | LLVM_DEBUG(dbgs() << "  Pointer is not affine, abort\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const SCEV *PointerStrideSCEV = Ev->getOperand(1); | 
|  | const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength()); | 
|  | if (!PointerStrideSCEV || !MemsetSizeSCEV) | 
|  | return false; | 
|  |  | 
|  | bool IsNegStride = false; | 
|  | const bool IsConstantSize = isa<ConstantInt>(MSI->getLength()); | 
|  |  | 
|  | if (IsConstantSize) { | 
|  | // Memset size is constant. | 
|  | // Check if the pointer stride matches the memset size. If so, then | 
|  | // we know that every byte is touched in the loop. | 
|  | LLVM_DEBUG(dbgs() << "  memset size is constant\n"); | 
|  | uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); | 
|  | const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); | 
|  | if (!ConstStride) | 
|  | return false; | 
|  |  | 
|  | APInt Stride = ConstStride->getAPInt(); | 
|  | if (SizeInBytes != Stride && SizeInBytes != -Stride) | 
|  | return false; | 
|  |  | 
|  | IsNegStride = SizeInBytes == -Stride; | 
|  | } else { | 
|  | // Memset size is non-constant. | 
|  | // Check if the pointer stride matches the memset size. | 
|  | // To be conservative, the pass would not promote pointers that aren't in | 
|  | // address space zero. Also, the pass only handles memset length and stride | 
|  | // that are invariant for the top level loop. | 
|  | LLVM_DEBUG(dbgs() << "  memset size is non-constant\n"); | 
|  | if (Pointer->getType()->getPointerAddressSpace() != 0) { | 
|  | LLVM_DEBUG(dbgs() << "  pointer is not in address space zero, " | 
|  | << "abort\n"); | 
|  | return false; | 
|  | } | 
|  | if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) { | 
|  | LLVM_DEBUG(dbgs() << "  memset size is not a loop-invariant, " | 
|  | << "abort\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV | 
|  | IsNegStride = PointerStrideSCEV->isNonConstantNegative(); | 
|  | const SCEV *PositiveStrideSCEV = | 
|  | IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV) | 
|  | : PointerStrideSCEV; | 
|  | LLVM_DEBUG(dbgs() << "  MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n" | 
|  | << "  PositiveStrideSCEV: " << *PositiveStrideSCEV | 
|  | << "\n"); | 
|  |  | 
|  | if (PositiveStrideSCEV != MemsetSizeSCEV) { | 
|  | // If an expression is covered by the loop guard, compare again and | 
|  | // proceed with optimization if equal. | 
|  | const SCEV *FoldedPositiveStride = | 
|  | SE->applyLoopGuards(PositiveStrideSCEV, CurLoop); | 
|  | const SCEV *FoldedMemsetSize = | 
|  | SE->applyLoopGuards(MemsetSizeSCEV, CurLoop); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Try to fold SCEV based on loop guard\n" | 
|  | << "    FoldedMemsetSize: " << *FoldedMemsetSize << "\n" | 
|  | << "    FoldedPositiveStride: " << *FoldedPositiveStride | 
|  | << "\n"); | 
|  |  | 
|  | if (FoldedPositiveStride != FoldedMemsetSize) { | 
|  | LLVM_DEBUG(dbgs() << "  SCEV don't match, abort\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Verify that the memset value is loop invariant.  If not, we can't promote | 
|  | // the memset. | 
|  | Value *SplatValue = MSI->getValue(); | 
|  | if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) | 
|  | return false; | 
|  |  | 
|  | SmallPtrSet<Instruction *, 1> MSIs; | 
|  | MSIs.insert(MSI); | 
|  | return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()), | 
|  | MSI->getDestAlign(), SplatValue, MSI, MSIs, Ev, | 
|  | BECount, IsNegStride, /*IsLoopMemset=*/true); | 
|  | } | 
|  |  | 
|  | /// mayLoopAccessLocation - Return true if the specified loop might access the | 
|  | /// specified pointer location, which is a loop-strided access.  The 'Access' | 
|  | /// argument specifies what the verboten forms of access are (read or write). | 
|  | static bool | 
|  | mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, | 
|  | const SCEV *BECount, const SCEV *StoreSizeSCEV, | 
|  | AliasAnalysis &AA, | 
|  | SmallPtrSetImpl<Instruction *> &IgnoredInsts) { | 
|  | // Get the location that may be stored across the loop.  Since the access is | 
|  | // strided positively through memory, we say that the modified location starts | 
|  | // at the pointer and has infinite size. | 
|  | LocationSize AccessSize = LocationSize::afterPointer(); | 
|  |  | 
|  | // If the loop iterates a fixed number of times, we can refine the access size | 
|  | // to be exactly the size of the memset, which is (BECount+1)*StoreSize | 
|  | const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount); | 
|  | const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); | 
|  | if (BECst && ConstSize) | 
|  | AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * | 
|  | ConstSize->getValue()->getZExtValue()); | 
|  |  | 
|  | // TODO: For this to be really effective, we have to dive into the pointer | 
|  | // operand in the store.  Store to &A[i] of 100 will always return may alias | 
|  | // with store of &A[100], we need to StoreLoc to be "A" with size of 100, | 
|  | // which will then no-alias a store to &A[100]. | 
|  | MemoryLocation StoreLoc(Ptr, AccessSize); | 
|  |  | 
|  | for (BasicBlock *B : L->blocks()) | 
|  | for (Instruction &I : *B) | 
|  | if (!IgnoredInsts.contains(&I) && | 
|  | isModOrRefSet(AA.getModRefInfo(&I, StoreLoc) & Access)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we have a negative stride, Start refers to the end of the memory location | 
|  | // we're trying to memset.  Therefore, we need to recompute the base pointer, | 
|  | // which is just Start - BECount*Size. | 
|  | static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, | 
|  | Type *IntPtr, const SCEV *StoreSizeSCEV, | 
|  | ScalarEvolution *SE) { | 
|  | const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); | 
|  | if (!StoreSizeSCEV->isOne()) { | 
|  | // index = back edge count * store size | 
|  | Index = SE->getMulExpr(Index, | 
|  | SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), | 
|  | SCEV::FlagNUW); | 
|  | } | 
|  | // base pointer = start - index * store size | 
|  | return SE->getMinusSCEV(Start, Index); | 
|  | } | 
|  |  | 
|  | /// Compute the number of bytes as a SCEV from the backedge taken count. | 
|  | /// | 
|  | /// This also maps the SCEV into the provided type and tries to handle the | 
|  | /// computation in a way that will fold cleanly. | 
|  | static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, | 
|  | const SCEV *StoreSizeSCEV, Loop *CurLoop, | 
|  | const DataLayout *DL, ScalarEvolution *SE) { | 
|  | const SCEV *TripCountSCEV = | 
|  | SE->getTripCountFromExitCount(BECount, IntPtr, CurLoop); | 
|  | return SE->getMulExpr(TripCountSCEV, | 
|  | SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), | 
|  | SCEV::FlagNUW); | 
|  | } | 
|  |  | 
|  | /// processLoopStridedStore - We see a strided store of some value.  If we can | 
|  | /// transform this into a memset or memset_pattern in the loop preheader, do so. | 
|  | bool LoopIdiomRecognize::processLoopStridedStore( | 
|  | Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment, | 
|  | Value *StoredVal, Instruction *TheStore, | 
|  | SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, | 
|  | const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) { | 
|  | Module *M = TheStore->getModule(); | 
|  | Value *SplatValue = isBytewiseValue(StoredVal, *DL); | 
|  | Constant *PatternValue = nullptr; | 
|  |  | 
|  | if (!SplatValue) | 
|  | PatternValue = getMemSetPatternValue(StoredVal, DL); | 
|  |  | 
|  | assert((SplatValue || PatternValue) && | 
|  | "Expected either splat value or pattern value."); | 
|  |  | 
|  | // The trip count of the loop and the base pointer of the addrec SCEV is | 
|  | // guaranteed to be loop invariant, which means that it should dominate the | 
|  | // header.  This allows us to insert code for it in the preheader. | 
|  | unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); | 
|  | BasicBlock *Preheader = CurLoop->getLoopPreheader(); | 
|  | IRBuilder<> Builder(Preheader->getTerminator()); | 
|  | SCEVExpander Expander(*SE, *DL, "loop-idiom"); | 
|  | SCEVExpanderCleaner ExpCleaner(Expander); | 
|  |  | 
|  | Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); | 
|  | Type *IntIdxTy = DL->getIndexType(DestPtr->getType()); | 
|  |  | 
|  | bool Changed = false; | 
|  | const SCEV *Start = Ev->getStart(); | 
|  | // Handle negative strided loops. | 
|  | if (IsNegStride) | 
|  | Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE); | 
|  |  | 
|  | // TODO: ideally we should still be able to generate memset if SCEV expander | 
|  | // is taught to generate the dependencies at the latest point. | 
|  | if (!Expander.isSafeToExpand(Start)) | 
|  | return Changed; | 
|  |  | 
|  | // Okay, we have a strided store "p[i]" of a splattable value.  We can turn | 
|  | // this into a memset in the loop preheader now if we want.  However, this | 
|  | // would be unsafe to do if there is anything else in the loop that may read | 
|  | // or write to the aliased location.  Check for any overlap by generating the | 
|  | // base pointer and checking the region. | 
|  | Value *BasePtr = | 
|  | Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); | 
|  |  | 
|  | // From here on out, conservatively report to the pass manager that we've | 
|  | // changed the IR, even if we later clean up these added instructions. There | 
|  | // may be structural differences e.g. in the order of use lists not accounted | 
|  | // for in just a textual dump of the IR. This is written as a variable, even | 
|  | // though statically all the places this dominates could be replaced with | 
|  | // 'true', with the hope that anyone trying to be clever / "more precise" with | 
|  | // the return value will read this comment, and leave them alone. | 
|  | Changed = true; | 
|  |  | 
|  | if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, | 
|  | StoreSizeSCEV, *AA, Stores)) | 
|  | return Changed; | 
|  |  | 
|  | if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) | 
|  | return Changed; | 
|  |  | 
|  | // Okay, everything looks good, insert the memset. | 
|  |  | 
|  | const SCEV *NumBytesS = | 
|  | getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); | 
|  |  | 
|  | // TODO: ideally we should still be able to generate memset if SCEV expander | 
|  | // is taught to generate the dependencies at the latest point. | 
|  | if (!Expander.isSafeToExpand(NumBytesS)) | 
|  | return Changed; | 
|  |  | 
|  | Value *NumBytes = | 
|  | Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); | 
|  |  | 
|  | if (!SplatValue && !isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16)) | 
|  | return Changed; | 
|  |  | 
|  | AAMDNodes AATags = TheStore->getAAMetadata(); | 
|  | for (Instruction *Store : Stores) | 
|  | AATags = AATags.merge(Store->getAAMetadata()); | 
|  | if (auto CI = dyn_cast<ConstantInt>(NumBytes)) | 
|  | AATags = AATags.extendTo(CI->getZExtValue()); | 
|  | else | 
|  | AATags = AATags.extendTo(-1); | 
|  |  | 
|  | CallInst *NewCall; | 
|  | if (SplatValue) { | 
|  | NewCall = Builder.CreateMemSet( | 
|  | BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment), | 
|  | /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); | 
|  | } else { | 
|  | assert (isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16)); | 
|  | // Everything is emitted in default address space | 
|  | Type *Int8PtrTy = DestInt8PtrTy; | 
|  |  | 
|  | StringRef FuncName = "memset_pattern16"; | 
|  | FunctionCallee MSP = getOrInsertLibFunc(M, *TLI, LibFunc_memset_pattern16, | 
|  | Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntIdxTy); | 
|  | inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI); | 
|  |  | 
|  | // Otherwise we should form a memset_pattern16.  PatternValue is known to be | 
|  | // an constant array of 16-bytes.  Plop the value into a mergable global. | 
|  | GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, | 
|  | GlobalValue::PrivateLinkage, | 
|  | PatternValue, ".memset_pattern"); | 
|  | GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. | 
|  | GV->setAlignment(Align(16)); | 
|  | Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); | 
|  | NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); | 
|  |  | 
|  | // Set the TBAA info if present. | 
|  | if (AATags.TBAA) | 
|  | NewCall->setMetadata(LLVMContext::MD_tbaa, AATags.TBAA); | 
|  |  | 
|  | if (AATags.Scope) | 
|  | NewCall->setMetadata(LLVMContext::MD_alias_scope, AATags.Scope); | 
|  |  | 
|  | if (AATags.NoAlias) | 
|  | NewCall->setMetadata(LLVMContext::MD_noalias, AATags.NoAlias); | 
|  | } | 
|  |  | 
|  | NewCall->setDebugLoc(TheStore->getDebugLoc()); | 
|  |  | 
|  | if (MSSAU) { | 
|  | MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( | 
|  | NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); | 
|  | MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n" | 
|  | << "    from store to: " << *Ev << " at: " << *TheStore | 
|  | << "\n"); | 
|  |  | 
|  | ORE.emit([&]() { | 
|  | OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore", | 
|  | NewCall->getDebugLoc(), Preheader); | 
|  | R << "Transformed loop-strided store in " | 
|  | << ore::NV("Function", TheStore->getFunction()) | 
|  | << " function into a call to " | 
|  | << ore::NV("NewFunction", NewCall->getCalledFunction()) | 
|  | << "() intrinsic"; | 
|  | if (!Stores.empty()) | 
|  | R << ore::setExtraArgs(); | 
|  | for (auto *I : Stores) { | 
|  | R << ore::NV("FromBlock", I->getParent()->getName()) | 
|  | << ore::NV("ToBlock", Preheader->getName()); | 
|  | } | 
|  | return R; | 
|  | }); | 
|  |  | 
|  | // Okay, the memset has been formed.  Zap the original store and anything that | 
|  | // feeds into it. | 
|  | for (auto *I : Stores) { | 
|  | if (MSSAU) | 
|  | MSSAU->removeMemoryAccess(I, true); | 
|  | deleteDeadInstruction(I); | 
|  | } | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  | ++NumMemSet; | 
|  | ExpCleaner.markResultUsed(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// If the stored value is a strided load in the same loop with the same stride | 
|  | /// this may be transformable into a memcpy.  This kicks in for stuff like | 
|  | /// for (i) A[i] = B[i]; | 
|  | bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, | 
|  | const SCEV *BECount) { | 
|  | assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); | 
|  |  | 
|  | Value *StorePtr = SI->getPointerOperand(); | 
|  | const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); | 
|  | unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); | 
|  |  | 
|  | // The store must be feeding a non-volatile load. | 
|  | LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); | 
|  | assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); | 
|  |  | 
|  | // See if the pointer expression is an AddRec like {base,+,1} on the current | 
|  | // loop, which indicates a strided load.  If we have something else, it's a | 
|  | // random load we can't handle. | 
|  | Value *LoadPtr = LI->getPointerOperand(); | 
|  | const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr)); | 
|  |  | 
|  | const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize); | 
|  | return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV, | 
|  | SI->getAlign(), LI->getAlign(), SI, LI, | 
|  | StoreEv, LoadEv, BECount); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class MemmoveVerifier { | 
|  | public: | 
|  | explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr, | 
|  | const DataLayout &DL) | 
|  | : DL(DL), BP1(llvm::GetPointerBaseWithConstantOffset( | 
|  | LoadBasePtr.stripPointerCasts(), LoadOff, DL)), | 
|  | BP2(llvm::GetPointerBaseWithConstantOffset( | 
|  | StoreBasePtr.stripPointerCasts(), StoreOff, DL)), | 
|  | IsSameObject(BP1 == BP2) {} | 
|  |  | 
|  | bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride, | 
|  | const Instruction &TheLoad, | 
|  | bool IsMemCpy) const { | 
|  | if (IsMemCpy) { | 
|  | // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr | 
|  | // for negative stride. | 
|  | if ((!IsNegStride && LoadOff <= StoreOff) || | 
|  | (IsNegStride && LoadOff >= StoreOff)) | 
|  | return false; | 
|  | } else { | 
|  | // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr | 
|  | // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr. | 
|  | int64_t LoadSize = | 
|  | DL.getTypeSizeInBits(TheLoad.getType()).getFixedValue() / 8; | 
|  | if (BP1 != BP2 || LoadSize != int64_t(StoreSize)) | 
|  | return false; | 
|  | if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) || | 
|  | (IsNegStride && LoadOff + LoadSize > StoreOff)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | const DataLayout &DL; | 
|  | int64_t LoadOff = 0; | 
|  | int64_t StoreOff = 0; | 
|  | const Value *BP1; | 
|  | const Value *BP2; | 
|  |  | 
|  | public: | 
|  | const bool IsSameObject; | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | bool LoopIdiomRecognize::processLoopStoreOfLoopLoad( | 
|  | Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV, | 
|  | MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore, | 
|  | Instruction *TheLoad, const SCEVAddRecExpr *StoreEv, | 
|  | const SCEVAddRecExpr *LoadEv, const SCEV *BECount) { | 
|  |  | 
|  | // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to | 
|  | // conservatively bail here, since otherwise we may have to transform | 
|  | // llvm.memcpy.inline into llvm.memcpy which is illegal. | 
|  | if (isa<MemCpyInlineInst>(TheStore)) | 
|  | return false; | 
|  |  | 
|  | // The trip count of the loop and the base pointer of the addrec SCEV is | 
|  | // guaranteed to be loop invariant, which means that it should dominate the | 
|  | // header.  This allows us to insert code for it in the preheader. | 
|  | BasicBlock *Preheader = CurLoop->getLoopPreheader(); | 
|  | IRBuilder<> Builder(Preheader->getTerminator()); | 
|  | SCEVExpander Expander(*SE, *DL, "loop-idiom"); | 
|  |  | 
|  | SCEVExpanderCleaner ExpCleaner(Expander); | 
|  |  | 
|  | bool Changed = false; | 
|  | const SCEV *StrStart = StoreEv->getStart(); | 
|  | unsigned StrAS = DestPtr->getType()->getPointerAddressSpace(); | 
|  | Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS)); | 
|  |  | 
|  | APInt Stride = getStoreStride(StoreEv); | 
|  | const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); | 
|  |  | 
|  | // TODO: Deal with non-constant size; Currently expect constant store size | 
|  | assert(ConstStoreSize && "store size is expected to be a constant"); | 
|  |  | 
|  | int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue(); | 
|  | bool IsNegStride = StoreSize == -Stride; | 
|  |  | 
|  | // Handle negative strided loops. | 
|  | if (IsNegStride) | 
|  | StrStart = | 
|  | getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE); | 
|  |  | 
|  | // Okay, we have a strided store "p[i]" of a loaded value.  We can turn | 
|  | // this into a memcpy in the loop preheader now if we want.  However, this | 
|  | // would be unsafe to do if there is anything else in the loop that may read | 
|  | // or write the memory region we're storing to.  This includes the load that | 
|  | // feeds the stores.  Check for an alias by generating the base address and | 
|  | // checking everything. | 
|  | Value *StoreBasePtr = Expander.expandCodeFor( | 
|  | StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); | 
|  |  | 
|  | // From here on out, conservatively report to the pass manager that we've | 
|  | // changed the IR, even if we later clean up these added instructions. There | 
|  | // may be structural differences e.g. in the order of use lists not accounted | 
|  | // for in just a textual dump of the IR. This is written as a variable, even | 
|  | // though statically all the places this dominates could be replaced with | 
|  | // 'true', with the hope that anyone trying to be clever / "more precise" with | 
|  | // the return value will read this comment, and leave them alone. | 
|  | Changed = true; | 
|  |  | 
|  | SmallPtrSet<Instruction *, 2> IgnoredInsts; | 
|  | IgnoredInsts.insert(TheStore); | 
|  |  | 
|  | bool IsMemCpy = isa<MemCpyInst>(TheStore); | 
|  | const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store"; | 
|  |  | 
|  | bool LoopAccessStore = | 
|  | mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, | 
|  | StoreSizeSCEV, *AA, IgnoredInsts); | 
|  | if (LoopAccessStore) { | 
|  | // For memmove case it's not enough to guarantee that loop doesn't access | 
|  | // TheStore and TheLoad. Additionally we need to make sure that TheStore is | 
|  | // the only user of TheLoad. | 
|  | if (!TheLoad->hasOneUse()) | 
|  | return Changed; | 
|  | IgnoredInsts.insert(TheLoad); | 
|  | if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, | 
|  | BECount, StoreSizeSCEV, *AA, IgnoredInsts)) { | 
|  | ORE.emit([&]() { | 
|  | return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore", | 
|  | TheStore) | 
|  | << ore::NV("Inst", InstRemark) << " in " | 
|  | << ore::NV("Function", TheStore->getFunction()) | 
|  | << " function will not be hoisted: " | 
|  | << ore::NV("Reason", "The loop may access store location"); | 
|  | }); | 
|  | return Changed; | 
|  | } | 
|  | IgnoredInsts.erase(TheLoad); | 
|  | } | 
|  |  | 
|  | const SCEV *LdStart = LoadEv->getStart(); | 
|  | unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace(); | 
|  |  | 
|  | // Handle negative strided loops. | 
|  | if (IsNegStride) | 
|  | LdStart = | 
|  | getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE); | 
|  |  | 
|  | // For a memcpy, we have to make sure that the input array is not being | 
|  | // mutated by the loop. | 
|  | Value *LoadBasePtr = Expander.expandCodeFor( | 
|  | LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); | 
|  |  | 
|  | // If the store is a memcpy instruction, we must check if it will write to | 
|  | // the load memory locations. So remove it from the ignored stores. | 
|  | MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL); | 
|  | if (IsMemCpy && !Verifier.IsSameObject) | 
|  | IgnoredInsts.erase(TheStore); | 
|  | if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, | 
|  | StoreSizeSCEV, *AA, IgnoredInsts)) { | 
|  | ORE.emit([&]() { | 
|  | return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad) | 
|  | << ore::NV("Inst", InstRemark) << " in " | 
|  | << ore::NV("Function", TheStore->getFunction()) | 
|  | << " function will not be hoisted: " | 
|  | << ore::NV("Reason", "The loop may access load location"); | 
|  | }); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore; | 
|  | if (UseMemMove) | 
|  | if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad, | 
|  | IsMemCpy)) | 
|  | return Changed; | 
|  |  | 
|  | if (avoidLIRForMultiBlockLoop()) | 
|  | return Changed; | 
|  |  | 
|  | // Okay, everything is safe, we can transform this! | 
|  |  | 
|  | const SCEV *NumBytesS = | 
|  | getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); | 
|  |  | 
|  | Value *NumBytes = | 
|  | Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); | 
|  |  | 
|  | AAMDNodes AATags = TheLoad->getAAMetadata(); | 
|  | AAMDNodes StoreAATags = TheStore->getAAMetadata(); | 
|  | AATags = AATags.merge(StoreAATags); | 
|  | if (auto CI = dyn_cast<ConstantInt>(NumBytes)) | 
|  | AATags = AATags.extendTo(CI->getZExtValue()); | 
|  | else | 
|  | AATags = AATags.extendTo(-1); | 
|  |  | 
|  | CallInst *NewCall = nullptr; | 
|  | // Check whether to generate an unordered atomic memcpy: | 
|  | //  If the load or store are atomic, then they must necessarily be unordered | 
|  | //  by previous checks. | 
|  | if (!TheStore->isAtomic() && !TheLoad->isAtomic()) { | 
|  | if (UseMemMove) | 
|  | NewCall = Builder.CreateMemMove( | 
|  | StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes, | 
|  | /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); | 
|  | else | 
|  | NewCall = | 
|  | Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, | 
|  | NumBytes, /*isVolatile=*/false, AATags.TBAA, | 
|  | AATags.TBAAStruct, AATags.Scope, AATags.NoAlias); | 
|  | } else { | 
|  | // For now don't support unordered atomic memmove. | 
|  | if (UseMemMove) | 
|  | return Changed; | 
|  | // We cannot allow unaligned ops for unordered load/store, so reject | 
|  | // anything where the alignment isn't at least the element size. | 
|  | assert((StoreAlign && LoadAlign) && | 
|  | "Expect unordered load/store to have align."); | 
|  | if (*StoreAlign < StoreSize || *LoadAlign < StoreSize) | 
|  | return Changed; | 
|  |  | 
|  | // If the element.atomic memcpy is not lowered into explicit | 
|  | // loads/stores later, then it will be lowered into an element-size | 
|  | // specific lib call. If the lib call doesn't exist for our store size, then | 
|  | // we shouldn't generate the memcpy. | 
|  | if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) | 
|  | return Changed; | 
|  |  | 
|  | // Create the call. | 
|  | // Note that unordered atomic loads/stores are *required* by the spec to | 
|  | // have an alignment but non-atomic loads/stores may not. | 
|  | NewCall = Builder.CreateElementUnorderedAtomicMemCpy( | 
|  | StoreBasePtr, *StoreAlign, LoadBasePtr, *LoadAlign, NumBytes, StoreSize, | 
|  | AATags.TBAA, AATags.TBAAStruct, AATags.Scope, AATags.NoAlias); | 
|  | } | 
|  | NewCall->setDebugLoc(TheStore->getDebugLoc()); | 
|  |  | 
|  | if (MSSAU) { | 
|  | MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( | 
|  | NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); | 
|  | MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Formed new call: " << *NewCall << "\n" | 
|  | << "    from load ptr=" << *LoadEv << " at: " << *TheLoad | 
|  | << "\n" | 
|  | << "    from store ptr=" << *StoreEv << " at: " << *TheStore | 
|  | << "\n"); | 
|  |  | 
|  | ORE.emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", | 
|  | NewCall->getDebugLoc(), Preheader) | 
|  | << "Formed a call to " | 
|  | << ore::NV("NewFunction", NewCall->getCalledFunction()) | 
|  | << "() intrinsic from " << ore::NV("Inst", InstRemark) | 
|  | << " instruction in " << ore::NV("Function", TheStore->getFunction()) | 
|  | << " function" | 
|  | << ore::setExtraArgs() | 
|  | << ore::NV("FromBlock", TheStore->getParent()->getName()) | 
|  | << ore::NV("ToBlock", Preheader->getName()); | 
|  | }); | 
|  |  | 
|  | // Okay, a new call to memcpy/memmove has been formed.  Zap the original store | 
|  | // and anything that feeds into it. | 
|  | if (MSSAU) | 
|  | MSSAU->removeMemoryAccess(TheStore, true); | 
|  | deleteDeadInstruction(TheStore); | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  | if (UseMemMove) | 
|  | ++NumMemMove; | 
|  | else | 
|  | ++NumMemCpy; | 
|  | ExpCleaner.markResultUsed(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // When compiling for codesize we avoid idiom recognition for a multi-block loop | 
|  | // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. | 
|  | // | 
|  | bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, | 
|  | bool IsLoopMemset) { | 
|  | if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { | 
|  | if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) { | 
|  | LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName() | 
|  | << " : LIR " << (IsMemset ? "Memset" : "Memcpy") | 
|  | << " avoided: multi-block top-level loop\n"); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool LoopIdiomRecognize::runOnNoncountableLoop() { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" | 
|  | << CurLoop->getHeader()->getParent()->getName() | 
|  | << "] Noncountable Loop %" | 
|  | << CurLoop->getHeader()->getName() << "\n"); | 
|  |  | 
|  | return recognizePopcount() || recognizeAndInsertFFS() || | 
|  | recognizeShiftUntilBitTest() || recognizeShiftUntilZero(); | 
|  | } | 
|  |  | 
|  | /// Check if the given conditional branch is based on the comparison between | 
|  | /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is | 
|  | /// true), the control yields to the loop entry. If the branch matches the | 
|  | /// behavior, the variable involved in the comparison is returned. This function | 
|  | /// will be called to see if the precondition and postcondition of the loop are | 
|  | /// in desirable form. | 
|  | static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, | 
|  | bool JmpOnZero = false) { | 
|  | if (!BI || !BI->isConditional()) | 
|  | return nullptr; | 
|  |  | 
|  | ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); | 
|  | if (!Cond) | 
|  | return nullptr; | 
|  |  | 
|  | ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); | 
|  | if (!CmpZero || !CmpZero->isZero()) | 
|  | return nullptr; | 
|  |  | 
|  | BasicBlock *TrueSucc = BI->getSuccessor(0); | 
|  | BasicBlock *FalseSucc = BI->getSuccessor(1); | 
|  | if (JmpOnZero) | 
|  | std::swap(TrueSucc, FalseSucc); | 
|  |  | 
|  | ICmpInst::Predicate Pred = Cond->getPredicate(); | 
|  | if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || | 
|  | (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) | 
|  | return Cond->getOperand(0); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Check if the recurrence variable `VarX` is in the right form to create | 
|  | // the idiom. Returns the value coerced to a PHINode if so. | 
|  | static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, | 
|  | BasicBlock *LoopEntry) { | 
|  | auto *PhiX = dyn_cast<PHINode>(VarX); | 
|  | if (PhiX && PhiX->getParent() == LoopEntry && | 
|  | (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) | 
|  | return PhiX; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Return true iff the idiom is detected in the loop. | 
|  | /// | 
|  | /// Additionally: | 
|  | /// 1) \p CntInst is set to the instruction counting the population bit. | 
|  | /// 2) \p CntPhi is set to the corresponding phi node. | 
|  | /// 3) \p Var is set to the value whose population bits are being counted. | 
|  | /// | 
|  | /// The core idiom we are trying to detect is: | 
|  | /// \code | 
|  | ///    if (x0 != 0) | 
|  | ///      goto loop-exit // the precondition of the loop | 
|  | ///    cnt0 = init-val; | 
|  | ///    do { | 
|  | ///       x1 = phi (x0, x2); | 
|  | ///       cnt1 = phi(cnt0, cnt2); | 
|  | /// | 
|  | ///       cnt2 = cnt1 + 1; | 
|  | ///        ... | 
|  | ///       x2 = x1 & (x1 - 1); | 
|  | ///        ... | 
|  | ///    } while(x != 0); | 
|  | /// | 
|  | /// loop-exit: | 
|  | /// \endcode | 
|  | static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, | 
|  | Instruction *&CntInst, PHINode *&CntPhi, | 
|  | Value *&Var) { | 
|  | // step 1: Check to see if the look-back branch match this pattern: | 
|  | //    "if (a!=0) goto loop-entry". | 
|  | BasicBlock *LoopEntry; | 
|  | Instruction *DefX2, *CountInst; | 
|  | Value *VarX1, *VarX0; | 
|  | PHINode *PhiX, *CountPhi; | 
|  |  | 
|  | DefX2 = CountInst = nullptr; | 
|  | VarX1 = VarX0 = nullptr; | 
|  | PhiX = CountPhi = nullptr; | 
|  | LoopEntry = *(CurLoop->block_begin()); | 
|  |  | 
|  | // step 1: Check if the loop-back branch is in desirable form. | 
|  | { | 
|  | if (Value *T = matchCondition( | 
|  | dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) | 
|  | DefX2 = dyn_cast<Instruction>(T); | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" | 
|  | { | 
|  | if (!DefX2 || DefX2->getOpcode() != Instruction::And) | 
|  | return false; | 
|  |  | 
|  | BinaryOperator *SubOneOp; | 
|  |  | 
|  | if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) | 
|  | VarX1 = DefX2->getOperand(1); | 
|  | else { | 
|  | VarX1 = DefX2->getOperand(0); | 
|  | SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); | 
|  | } | 
|  | if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) | 
|  | return false; | 
|  |  | 
|  | ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); | 
|  | if (!Dec || | 
|  | !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || | 
|  | (SubOneOp->getOpcode() == Instruction::Add && | 
|  | Dec->isMinusOne()))) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // step 3: Check the recurrence of variable X | 
|  | PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); | 
|  | if (!PhiX) | 
|  | return false; | 
|  |  | 
|  | // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 | 
|  | { | 
|  | CountInst = nullptr; | 
|  | for (Instruction &Inst : llvm::make_range( | 
|  | LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { | 
|  | if (Inst.getOpcode() != Instruction::Add) | 
|  | continue; | 
|  |  | 
|  | ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); | 
|  | if (!Inc || !Inc->isOne()) | 
|  | continue; | 
|  |  | 
|  | PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); | 
|  | if (!Phi) | 
|  | continue; | 
|  |  | 
|  | // Check if the result of the instruction is live of the loop. | 
|  | bool LiveOutLoop = false; | 
|  | for (User *U : Inst.users()) { | 
|  | if ((cast<Instruction>(U))->getParent() != LoopEntry) { | 
|  | LiveOutLoop = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LiveOutLoop) { | 
|  | CountInst = &Inst; | 
|  | CountPhi = Phi; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!CountInst) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // step 5: check if the precondition is in this form: | 
|  | //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" | 
|  | { | 
|  | auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); | 
|  | Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); | 
|  | if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) | 
|  | return false; | 
|  |  | 
|  | CntInst = CountInst; | 
|  | CntPhi = CountPhi; | 
|  | Var = T; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if the idiom is detected in the loop. | 
|  | /// | 
|  | /// Additionally: | 
|  | /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) | 
|  | ///       or nullptr if there is no such. | 
|  | /// 2) \p CntPhi is set to the corresponding phi node | 
|  | ///       or nullptr if there is no such. | 
|  | /// 3) \p Var is set to the value whose CTLZ could be used. | 
|  | /// 4) \p DefX is set to the instruction calculating Loop exit condition. | 
|  | /// | 
|  | /// The core idiom we are trying to detect is: | 
|  | /// \code | 
|  | ///    if (x0 == 0) | 
|  | ///      goto loop-exit // the precondition of the loop | 
|  | ///    cnt0 = init-val; | 
|  | ///    do { | 
|  | ///       x = phi (x0, x.next);   //PhiX | 
|  | ///       cnt = phi(cnt0, cnt.next); | 
|  | /// | 
|  | ///       cnt.next = cnt + 1; | 
|  | ///        ... | 
|  | ///       x.next = x >> 1;   // DefX | 
|  | ///        ... | 
|  | ///    } while(x.next != 0); | 
|  | /// | 
|  | /// loop-exit: | 
|  | /// \endcode | 
|  | static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, | 
|  | Intrinsic::ID &IntrinID, Value *&InitX, | 
|  | Instruction *&CntInst, PHINode *&CntPhi, | 
|  | Instruction *&DefX) { | 
|  | BasicBlock *LoopEntry; | 
|  | Value *VarX = nullptr; | 
|  |  | 
|  | DefX = nullptr; | 
|  | CntInst = nullptr; | 
|  | CntPhi = nullptr; | 
|  | LoopEntry = *(CurLoop->block_begin()); | 
|  |  | 
|  | // step 1: Check if the loop-back branch is in desirable form. | 
|  | if (Value *T = matchCondition( | 
|  | dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) | 
|  | DefX = dyn_cast<Instruction>(T); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" | 
|  | if (!DefX || !DefX->isShift()) | 
|  | return false; | 
|  | IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : | 
|  | Intrinsic::ctlz; | 
|  | ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); | 
|  | if (!Shft || !Shft->isOne()) | 
|  | return false; | 
|  | VarX = DefX->getOperand(0); | 
|  |  | 
|  | // step 3: Check the recurrence of variable X | 
|  | PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); | 
|  | if (!PhiX) | 
|  | return false; | 
|  |  | 
|  | InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); | 
|  |  | 
|  | // Make sure the initial value can't be negative otherwise the ashr in the | 
|  | // loop might never reach zero which would make the loop infinite. | 
|  | if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) | 
|  | return false; | 
|  |  | 
|  | // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 | 
|  | //         or cnt.next = cnt + -1. | 
|  | // TODO: We can skip the step. If loop trip count is known (CTLZ), | 
|  | //       then all uses of "cnt.next" could be optimized to the trip count | 
|  | //       plus "cnt0". Currently it is not optimized. | 
|  | //       This step could be used to detect POPCNT instruction: | 
|  | //       cnt.next = cnt + (x.next & 1) | 
|  | for (Instruction &Inst : llvm::make_range( | 
|  | LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { | 
|  | if (Inst.getOpcode() != Instruction::Add) | 
|  | continue; | 
|  |  | 
|  | ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); | 
|  | if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) | 
|  | continue; | 
|  |  | 
|  | PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); | 
|  | if (!Phi) | 
|  | continue; | 
|  |  | 
|  | CntInst = &Inst; | 
|  | CntPhi = Phi; | 
|  | break; | 
|  | } | 
|  | if (!CntInst) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop | 
|  | /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new | 
|  | /// trip count returns true; otherwise, returns false. | 
|  | bool LoopIdiomRecognize::recognizeAndInsertFFS() { | 
|  | // Give up if the loop has multiple blocks or multiple backedges. | 
|  | if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) | 
|  | return false; | 
|  |  | 
|  | Intrinsic::ID IntrinID; | 
|  | Value *InitX; | 
|  | Instruction *DefX = nullptr; | 
|  | PHINode *CntPhi = nullptr; | 
|  | Instruction *CntInst = nullptr; | 
|  | // Help decide if transformation is profitable. For ShiftUntilZero idiom, | 
|  | // this is always 6. | 
|  | size_t IdiomCanonicalSize = 6; | 
|  |  | 
|  | if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, | 
|  | CntInst, CntPhi, DefX)) | 
|  | return false; | 
|  |  | 
|  | bool IsCntPhiUsedOutsideLoop = false; | 
|  | for (User *U : CntPhi->users()) | 
|  | if (!CurLoop->contains(cast<Instruction>(U))) { | 
|  | IsCntPhiUsedOutsideLoop = true; | 
|  | break; | 
|  | } | 
|  | bool IsCntInstUsedOutsideLoop = false; | 
|  | for (User *U : CntInst->users()) | 
|  | if (!CurLoop->contains(cast<Instruction>(U))) { | 
|  | IsCntInstUsedOutsideLoop = true; | 
|  | break; | 
|  | } | 
|  | // If both CntInst and CntPhi are used outside the loop the profitability | 
|  | // is questionable. | 
|  | if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) | 
|  | return false; | 
|  |  | 
|  | // For some CPUs result of CTLZ(X) intrinsic is undefined | 
|  | // when X is 0. If we can not guarantee X != 0, we need to check this | 
|  | // when expand. | 
|  | bool ZeroCheck = false; | 
|  | // It is safe to assume Preheader exist as it was checked in | 
|  | // parent function RunOnLoop. | 
|  | BasicBlock *PH = CurLoop->getLoopPreheader(); | 
|  |  | 
|  | // If we are using the count instruction outside the loop, make sure we | 
|  | // have a zero check as a precondition. Without the check the loop would run | 
|  | // one iteration for before any check of the input value. This means 0 and 1 | 
|  | // would have identical behavior in the original loop and thus | 
|  | if (!IsCntPhiUsedOutsideLoop) { | 
|  | auto *PreCondBB = PH->getSinglePredecessor(); | 
|  | if (!PreCondBB) | 
|  | return false; | 
|  | auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); | 
|  | if (!PreCondBI) | 
|  | return false; | 
|  | if (matchCondition(PreCondBI, PH) != InitX) | 
|  | return false; | 
|  | ZeroCheck = true; | 
|  | } | 
|  |  | 
|  | // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always | 
|  | // profitable if we delete the loop. | 
|  |  | 
|  | // the loop has only 6 instructions: | 
|  | //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] | 
|  | //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] | 
|  | //  %shr = ashr %n.addr.0, 1 | 
|  | //  %tobool = icmp eq %shr, 0 | 
|  | //  %inc = add nsw %i.0, 1 | 
|  | //  br i1 %tobool | 
|  |  | 
|  | const Value *Args[] = {InitX, | 
|  | ConstantInt::getBool(InitX->getContext(), ZeroCheck)}; | 
|  |  | 
|  | // @llvm.dbg doesn't count as they have no semantic effect. | 
|  | auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); | 
|  | uint32_t HeaderSize = | 
|  | std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); | 
|  |  | 
|  | IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args); | 
|  | InstructionCost Cost = | 
|  | TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency); | 
|  | if (HeaderSize != IdiomCanonicalSize && | 
|  | Cost > TargetTransformInfo::TCC_Basic) | 
|  | return false; | 
|  |  | 
|  | transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, | 
|  | DefX->getDebugLoc(), ZeroCheck, | 
|  | IsCntPhiUsedOutsideLoop); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Recognizes a population count idiom in a non-countable loop. | 
|  | /// | 
|  | /// If detected, transforms the relevant code to issue the popcount intrinsic | 
|  | /// function call, and returns true; otherwise, returns false. | 
|  | bool LoopIdiomRecognize::recognizePopcount() { | 
|  | if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) | 
|  | return false; | 
|  |  | 
|  | // Counting population are usually conducted by few arithmetic instructions. | 
|  | // Such instructions can be easily "absorbed" by vacant slots in a | 
|  | // non-compact loop. Therefore, recognizing popcount idiom only makes sense | 
|  | // in a compact loop. | 
|  |  | 
|  | // Give up if the loop has multiple blocks or multiple backedges. | 
|  | if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) | 
|  | return false; | 
|  |  | 
|  | BasicBlock *LoopBody = *(CurLoop->block_begin()); | 
|  | if (LoopBody->size() >= 20) { | 
|  | // The loop is too big, bail out. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // It should have a preheader containing nothing but an unconditional branch. | 
|  | BasicBlock *PH = CurLoop->getLoopPreheader(); | 
|  | if (!PH || &PH->front() != PH->getTerminator()) | 
|  | return false; | 
|  | auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); | 
|  | if (!EntryBI || EntryBI->isConditional()) | 
|  | return false; | 
|  |  | 
|  | // It should have a precondition block where the generated popcount intrinsic | 
|  | // function can be inserted. | 
|  | auto *PreCondBB = PH->getSinglePredecessor(); | 
|  | if (!PreCondBB) | 
|  | return false; | 
|  | auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); | 
|  | if (!PreCondBI || PreCondBI->isUnconditional()) | 
|  | return false; | 
|  |  | 
|  | Instruction *CntInst; | 
|  | PHINode *CntPhi; | 
|  | Value *Val; | 
|  | if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) | 
|  | return false; | 
|  |  | 
|  | transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, | 
|  | const DebugLoc &DL) { | 
|  | Value *Ops[] = {Val}; | 
|  | Type *Tys[] = {Val->getType()}; | 
|  |  | 
|  | Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); | 
|  | Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); | 
|  | CallInst *CI = IRBuilder.CreateCall(Func, Ops); | 
|  | CI->setDebugLoc(DL); | 
|  |  | 
|  | return CI; | 
|  | } | 
|  |  | 
|  | static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, | 
|  | const DebugLoc &DL, bool ZeroCheck, | 
|  | Intrinsic::ID IID) { | 
|  | Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)}; | 
|  | Type *Tys[] = {Val->getType()}; | 
|  |  | 
|  | Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); | 
|  | Function *Func = Intrinsic::getDeclaration(M, IID, Tys); | 
|  | CallInst *CI = IRBuilder.CreateCall(Func, Ops); | 
|  | CI->setDebugLoc(DL); | 
|  |  | 
|  | return CI; | 
|  | } | 
|  |  | 
|  | /// Transform the following loop (Using CTLZ, CTTZ is similar): | 
|  | /// loop: | 
|  | ///   CntPhi = PHI [Cnt0, CntInst] | 
|  | ///   PhiX = PHI [InitX, DefX] | 
|  | ///   CntInst = CntPhi + 1 | 
|  | ///   DefX = PhiX >> 1 | 
|  | ///   LOOP_BODY | 
|  | ///   Br: loop if (DefX != 0) | 
|  | /// Use(CntPhi) or Use(CntInst) | 
|  | /// | 
|  | /// Into: | 
|  | /// If CntPhi used outside the loop: | 
|  | ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) | 
|  | ///   Count = CountPrev + 1 | 
|  | /// else | 
|  | ///   Count = BitWidth(InitX) - CTLZ(InitX) | 
|  | /// loop: | 
|  | ///   CntPhi = PHI [Cnt0, CntInst] | 
|  | ///   PhiX = PHI [InitX, DefX] | 
|  | ///   PhiCount = PHI [Count, Dec] | 
|  | ///   CntInst = CntPhi + 1 | 
|  | ///   DefX = PhiX >> 1 | 
|  | ///   Dec = PhiCount - 1 | 
|  | ///   LOOP_BODY | 
|  | ///   Br: loop if (Dec != 0) | 
|  | /// Use(CountPrev + Cnt0) // Use(CntPhi) | 
|  | /// or | 
|  | /// Use(Count + Cnt0) // Use(CntInst) | 
|  | /// | 
|  | /// If LOOP_BODY is empty the loop will be deleted. | 
|  | /// If CntInst and DefX are not used in LOOP_BODY they will be removed. | 
|  | void LoopIdiomRecognize::transformLoopToCountable( | 
|  | Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, | 
|  | PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, | 
|  | bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { | 
|  | BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); | 
|  |  | 
|  | // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block | 
|  | IRBuilder<> Builder(PreheaderBr); | 
|  | Builder.SetCurrentDebugLocation(DL); | 
|  |  | 
|  | // If there are no uses of CntPhi crate: | 
|  | //   Count = BitWidth - CTLZ(InitX); | 
|  | //   NewCount = Count; | 
|  | // If there are uses of CntPhi create: | 
|  | //   NewCount = BitWidth - CTLZ(InitX >> 1); | 
|  | //   Count = NewCount + 1; | 
|  | Value *InitXNext; | 
|  | if (IsCntPhiUsedOutsideLoop) { | 
|  | if (DefX->getOpcode() == Instruction::AShr) | 
|  | InitXNext = Builder.CreateAShr(InitX, 1); | 
|  | else if (DefX->getOpcode() == Instruction::LShr) | 
|  | InitXNext = Builder.CreateLShr(InitX, 1); | 
|  | else if (DefX->getOpcode() == Instruction::Shl) // cttz | 
|  | InitXNext = Builder.CreateShl(InitX, 1); | 
|  | else | 
|  | llvm_unreachable("Unexpected opcode!"); | 
|  | } else | 
|  | InitXNext = InitX; | 
|  | Value *Count = | 
|  | createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); | 
|  | Type *CountTy = Count->getType(); | 
|  | Count = Builder.CreateSub( | 
|  | ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count); | 
|  | Value *NewCount = Count; | 
|  | if (IsCntPhiUsedOutsideLoop) | 
|  | Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1)); | 
|  |  | 
|  | NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType()); | 
|  |  | 
|  | Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); | 
|  | if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) { | 
|  | // If the counter was being incremented in the loop, add NewCount to the | 
|  | // counter's initial value, but only if the initial value is not zero. | 
|  | ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); | 
|  | if (!InitConst || !InitConst->isZero()) | 
|  | NewCount = Builder.CreateAdd(NewCount, CntInitVal); | 
|  | } else { | 
|  | // If the count was being decremented in the loop, subtract NewCount from | 
|  | // the counter's initial value. | 
|  | NewCount = Builder.CreateSub(CntInitVal, NewCount); | 
|  | } | 
|  |  | 
|  | // Step 2: Insert new IV and loop condition: | 
|  | // loop: | 
|  | //   ... | 
|  | //   PhiCount = PHI [Count, Dec] | 
|  | //   ... | 
|  | //   Dec = PhiCount - 1 | 
|  | //   ... | 
|  | //   Br: loop if (Dec != 0) | 
|  | BasicBlock *Body = *(CurLoop->block_begin()); | 
|  | auto *LbBr = cast<BranchInst>(Body->getTerminator()); | 
|  | ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); | 
|  |  | 
|  | PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front()); | 
|  |  | 
|  | Builder.SetInsertPoint(LbCond); | 
|  | Instruction *TcDec = cast<Instruction>(Builder.CreateSub( | 
|  | TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true)); | 
|  |  | 
|  | TcPhi->addIncoming(Count, Preheader); | 
|  | TcPhi->addIncoming(TcDec, Body); | 
|  |  | 
|  | CmpInst::Predicate Pred = | 
|  | (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; | 
|  | LbCond->setPredicate(Pred); | 
|  | LbCond->setOperand(0, TcDec); | 
|  | LbCond->setOperand(1, ConstantInt::get(CountTy, 0)); | 
|  |  | 
|  | // Step 3: All the references to the original counter outside | 
|  | //  the loop are replaced with the NewCount | 
|  | if (IsCntPhiUsedOutsideLoop) | 
|  | CntPhi->replaceUsesOutsideBlock(NewCount, Body); | 
|  | else | 
|  | CntInst->replaceUsesOutsideBlock(NewCount, Body); | 
|  |  | 
|  | // step 4: Forget the "non-computable" trip-count SCEV associated with the | 
|  | //   loop. The loop would otherwise not be deleted even if it becomes empty. | 
|  | SE->forgetLoop(CurLoop); | 
|  | } | 
|  |  | 
|  | void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, | 
|  | Instruction *CntInst, | 
|  | PHINode *CntPhi, Value *Var) { | 
|  | BasicBlock *PreHead = CurLoop->getLoopPreheader(); | 
|  | auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); | 
|  | const DebugLoc &DL = CntInst->getDebugLoc(); | 
|  |  | 
|  | // Assuming before transformation, the loop is following: | 
|  | //  if (x) // the precondition | 
|  | //     do { cnt++; x &= x - 1; } while(x); | 
|  |  | 
|  | // Step 1: Insert the ctpop instruction at the end of the precondition block | 
|  | IRBuilder<> Builder(PreCondBr); | 
|  | Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; | 
|  | { | 
|  | PopCnt = createPopcntIntrinsic(Builder, Var, DL); | 
|  | NewCount = PopCntZext = | 
|  | Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); | 
|  |  | 
|  | if (NewCount != PopCnt) | 
|  | (cast<Instruction>(NewCount))->setDebugLoc(DL); | 
|  |  | 
|  | // TripCnt is exactly the number of iterations the loop has | 
|  | TripCnt = NewCount; | 
|  |  | 
|  | // If the population counter's initial value is not zero, insert Add Inst. | 
|  | Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); | 
|  | ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); | 
|  | if (!InitConst || !InitConst->isZero()) { | 
|  | NewCount = Builder.CreateAdd(NewCount, CntInitVal); | 
|  | (cast<Instruction>(NewCount))->setDebugLoc(DL); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to | 
|  | //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic | 
|  | //   function would be partial dead code, and downstream passes will drag | 
|  | //   it back from the precondition block to the preheader. | 
|  | { | 
|  | ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); | 
|  |  | 
|  | Value *Opnd0 = PopCntZext; | 
|  | Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); | 
|  | if (PreCond->getOperand(0) != Var) | 
|  | std::swap(Opnd0, Opnd1); | 
|  |  | 
|  | ICmpInst *NewPreCond = cast<ICmpInst>( | 
|  | Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); | 
|  | PreCondBr->setCondition(NewPreCond); | 
|  |  | 
|  | RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); | 
|  | } | 
|  |  | 
|  | // Step 3: Note that the population count is exactly the trip count of the | 
|  | // loop in question, which enable us to convert the loop from noncountable | 
|  | // loop into a countable one. The benefit is twofold: | 
|  | // | 
|  | //  - If the loop only counts population, the entire loop becomes dead after | 
|  | //    the transformation. It is a lot easier to prove a countable loop dead | 
|  | //    than to prove a noncountable one. (In some C dialects, an infinite loop | 
|  | //    isn't dead even if it computes nothing useful. In general, DCE needs | 
|  | //    to prove a noncountable loop finite before safely delete it.) | 
|  | // | 
|  | //  - If the loop also performs something else, it remains alive. | 
|  | //    Since it is transformed to countable form, it can be aggressively | 
|  | //    optimized by some optimizations which are in general not applicable | 
|  | //    to a noncountable loop. | 
|  | // | 
|  | // After this step, this loop (conceptually) would look like following: | 
|  | //   newcnt = __builtin_ctpop(x); | 
|  | //   t = newcnt; | 
|  | //   if (x) | 
|  | //     do { cnt++; x &= x-1; t--) } while (t > 0); | 
|  | BasicBlock *Body = *(CurLoop->block_begin()); | 
|  | { | 
|  | auto *LbBr = cast<BranchInst>(Body->getTerminator()); | 
|  | ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); | 
|  | Type *Ty = TripCnt->getType(); | 
|  |  | 
|  | PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); | 
|  |  | 
|  | Builder.SetInsertPoint(LbCond); | 
|  | Instruction *TcDec = cast<Instruction>( | 
|  | Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), | 
|  | "tcdec", false, true)); | 
|  |  | 
|  | TcPhi->addIncoming(TripCnt, PreHead); | 
|  | TcPhi->addIncoming(TcDec, Body); | 
|  |  | 
|  | CmpInst::Predicate Pred = | 
|  | (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; | 
|  | LbCond->setPredicate(Pred); | 
|  | LbCond->setOperand(0, TcDec); | 
|  | LbCond->setOperand(1, ConstantInt::get(Ty, 0)); | 
|  | } | 
|  |  | 
|  | // Step 4: All the references to the original population counter outside | 
|  | //  the loop are replaced with the NewCount -- the value returned from | 
|  | //  __builtin_ctpop(). | 
|  | CntInst->replaceUsesOutsideBlock(NewCount, Body); | 
|  |  | 
|  | // step 5: Forget the "non-computable" trip-count SCEV associated with the | 
|  | //   loop. The loop would otherwise not be deleted even if it becomes empty. | 
|  | SE->forgetLoop(CurLoop); | 
|  | } | 
|  |  | 
|  | /// Match loop-invariant value. | 
|  | template <typename SubPattern_t> struct match_LoopInvariant { | 
|  | SubPattern_t SubPattern; | 
|  | const Loop *L; | 
|  |  | 
|  | match_LoopInvariant(const SubPattern_t &SP, const Loop *L) | 
|  | : SubPattern(SP), L(L) {} | 
|  |  | 
|  | template <typename ITy> bool match(ITy *V) { | 
|  | return L->isLoopInvariant(V) && SubPattern.match(V); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Matches if the value is loop-invariant. | 
|  | template <typename Ty> | 
|  | inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) { | 
|  | return match_LoopInvariant<Ty>(M, L); | 
|  | } | 
|  |  | 
|  | /// Return true if the idiom is detected in the loop. | 
|  | /// | 
|  | /// The core idiom we are trying to detect is: | 
|  | /// \code | 
|  | ///   entry: | 
|  | ///     <...> | 
|  | ///     %bitmask = shl i32 1, %bitpos | 
|  | ///     br label %loop | 
|  | /// | 
|  | ///   loop: | 
|  | ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] | 
|  | ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask | 
|  | ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 | 
|  | ///     %x.next = shl i32 %x.curr, 1 | 
|  | ///     <...> | 
|  | ///     br i1 %x.curr.isbitunset, label %loop, label %end | 
|  | /// | 
|  | ///   end: | 
|  | ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...> | 
|  | ///     %x.next.res = phi i32 [ %x.next, %loop ] <...> | 
|  | ///     <...> | 
|  | /// \endcode | 
|  | static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX, | 
|  | Value *&BitMask, Value *&BitPos, | 
|  | Value *&CurrX, Instruction *&NextX) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE | 
|  | " Performing shift-until-bittest idiom detection.\n"); | 
|  |  | 
|  | // Give up if the loop has multiple blocks or multiple backedges. | 
|  | if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | BasicBlock *LoopHeaderBB = CurLoop->getHeader(); | 
|  | BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); | 
|  | assert(LoopPreheaderBB && "There is always a loop preheader."); | 
|  |  | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | // Step 1: Check if the loop backedge is in desirable form. | 
|  |  | 
|  | ICmpInst::Predicate Pred; | 
|  | Value *CmpLHS, *CmpRHS; | 
|  | BasicBlock *TrueBB, *FalseBB; | 
|  | if (!match(LoopHeaderBB->getTerminator(), | 
|  | m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)), | 
|  | m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Step 2: Check if the backedge's condition is in desirable form. | 
|  |  | 
|  | auto MatchVariableBitMask = [&]() { | 
|  | return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && | 
|  | match(CmpLHS, | 
|  | m_c_And(m_Value(CurrX), | 
|  | m_CombineAnd( | 
|  | m_Value(BitMask), | 
|  | m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)), | 
|  | CurLoop)))); | 
|  | }; | 
|  | auto MatchConstantBitMask = [&]() { | 
|  | return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && | 
|  | match(CmpLHS, m_And(m_Value(CurrX), | 
|  | m_CombineAnd(m_Value(BitMask), m_Power2()))) && | 
|  | (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask))); | 
|  | }; | 
|  | auto MatchDecomposableConstantBitMask = [&]() { | 
|  | APInt Mask; | 
|  | return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) && | 
|  | ICmpInst::isEquality(Pred) && Mask.isPowerOf2() && | 
|  | (BitMask = ConstantInt::get(CurrX->getType(), Mask)) && | 
|  | (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2())); | 
|  | }; | 
|  |  | 
|  | if (!MatchVariableBitMask() && !MatchConstantBitMask() && | 
|  | !MatchDecomposableConstantBitMask()) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Step 3: Check if the recurrence is in desirable form. | 
|  | auto *CurrXPN = dyn_cast<PHINode>(CurrX); | 
|  | if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB); | 
|  | NextX = | 
|  | dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB)); | 
|  |  | 
|  | assert(CurLoop->isLoopInvariant(BaseX) && | 
|  | "Expected BaseX to be avaliable in the preheader!"); | 
|  |  | 
|  | if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) { | 
|  | // FIXME: support right-shift? | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Step 4: Check if the backedge's destinations are in desirable form. | 
|  |  | 
|  | assert(ICmpInst::isEquality(Pred) && | 
|  | "Should only get equality predicates here."); | 
|  |  | 
|  | // cmp-br is commutative, so canonicalize to a single variant. | 
|  | if (Pred != ICmpInst::Predicate::ICMP_EQ) { | 
|  | Pred = ICmpInst::getInversePredicate(Pred); | 
|  | std::swap(TrueBB, FalseBB); | 
|  | } | 
|  |  | 
|  | // We expect to exit loop when comparison yields false, | 
|  | // so when it yields true we should branch back to loop header. | 
|  | if (TrueBB != LoopHeaderBB) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Okay, idiom checks out. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Look for the following loop: | 
|  | /// \code | 
|  | ///   entry: | 
|  | ///     <...> | 
|  | ///     %bitmask = shl i32 1, %bitpos | 
|  | ///     br label %loop | 
|  | /// | 
|  | ///   loop: | 
|  | ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] | 
|  | ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask | 
|  | ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 | 
|  | ///     %x.next = shl i32 %x.curr, 1 | 
|  | ///     <...> | 
|  | ///     br i1 %x.curr.isbitunset, label %loop, label %end | 
|  | /// | 
|  | ///   end: | 
|  | ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...> | 
|  | ///     %x.next.res = phi i32 [ %x.next, %loop ] <...> | 
|  | ///     <...> | 
|  | /// \endcode | 
|  | /// | 
|  | /// And transform it into: | 
|  | /// \code | 
|  | ///   entry: | 
|  | ///     %bitmask = shl i32 1, %bitpos | 
|  | ///     %lowbitmask = add i32 %bitmask, -1 | 
|  | ///     %mask = or i32 %lowbitmask, %bitmask | 
|  | ///     %x.masked = and i32 %x, %mask | 
|  | ///     %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked, | 
|  | ///                                                         i1 true) | 
|  | ///     %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros | 
|  | ///     %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1 | 
|  | ///     %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos | 
|  | ///     %tripcount = add i32 %backedgetakencount, 1 | 
|  | ///     %x.curr = shl i32 %x, %backedgetakencount | 
|  | ///     %x.next = shl i32 %x, %tripcount | 
|  | ///     br label %loop | 
|  | /// | 
|  | ///   loop: | 
|  | ///     %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ] | 
|  | ///     %loop.iv.next = add nuw i32 %loop.iv, 1 | 
|  | ///     %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount | 
|  | ///     <...> | 
|  | ///     br i1 %loop.ivcheck, label %end, label %loop | 
|  | /// | 
|  | ///   end: | 
|  | ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...> | 
|  | ///     %x.next.res = phi i32 [ %x.next, %loop ] <...> | 
|  | ///     <...> | 
|  | /// \endcode | 
|  | bool LoopIdiomRecognize::recognizeShiftUntilBitTest() { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | Value *X, *BitMask, *BitPos, *XCurr; | 
|  | Instruction *XNext; | 
|  | if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr, | 
|  | XNext)) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE | 
|  | " shift-until-bittest idiom detection failed.\n"); | 
|  | return MadeChange; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n"); | 
|  |  | 
|  | // Ok, it is the idiom we were looking for, we *could* transform this loop, | 
|  | // but is it profitable to transform? | 
|  |  | 
|  | BasicBlock *LoopHeaderBB = CurLoop->getHeader(); | 
|  | BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); | 
|  | assert(LoopPreheaderBB && "There is always a loop preheader."); | 
|  |  | 
|  | BasicBlock *SuccessorBB = CurLoop->getExitBlock(); | 
|  | assert(SuccessorBB && "There is only a single successor."); | 
|  |  | 
|  | IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); | 
|  | Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc()); | 
|  |  | 
|  | Intrinsic::ID IntrID = Intrinsic::ctlz; | 
|  | Type *Ty = X->getType(); | 
|  | unsigned Bitwidth = Ty->getScalarSizeInBits(); | 
|  |  | 
|  | TargetTransformInfo::TargetCostKind CostKind = | 
|  | TargetTransformInfo::TCK_SizeAndLatency; | 
|  |  | 
|  | // The rewrite is considered to be unprofitable iff and only iff the | 
|  | // intrinsic/shift we'll use are not cheap. Note that we are okay with *just* | 
|  | // making the loop countable, even if nothing else changes. | 
|  | IntrinsicCostAttributes Attrs( | 
|  | IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()}); | 
|  | InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); | 
|  | if (Cost > TargetTransformInfo::TCC_Basic) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE | 
|  | " Intrinsic is too costly, not beneficial\n"); | 
|  | return MadeChange; | 
|  | } | 
|  | if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) > | 
|  | TargetTransformInfo::TCC_Basic) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n"); | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | // Ok, transform appears worthwhile. | 
|  | MadeChange = true; | 
|  |  | 
|  | if (!isGuaranteedNotToBeUndefOrPoison(BitPos)) { | 
|  | // BitMask may be computed from BitPos, Freeze BitPos so we can increase | 
|  | // it's use count. | 
|  | Instruction *InsertPt = nullptr; | 
|  | if (auto *BitPosI = dyn_cast<Instruction>(BitPos)) | 
|  | InsertPt = BitPosI->getInsertionPointAfterDef(); | 
|  | else | 
|  | InsertPt = &*DT->getRoot()->getFirstNonPHIOrDbgOrAlloca(); | 
|  | if (!InsertPt) | 
|  | return false; | 
|  | FreezeInst *BitPosFrozen = | 
|  | new FreezeInst(BitPos, BitPos->getName() + ".fr", InsertPt); | 
|  | BitPos->replaceUsesWithIf(BitPosFrozen, [BitPosFrozen](Use &U) { | 
|  | return U.getUser() != BitPosFrozen; | 
|  | }); | 
|  | BitPos = BitPosFrozen; | 
|  | } | 
|  |  | 
|  | // Step 1: Compute the loop trip count. | 
|  |  | 
|  | Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty), | 
|  | BitPos->getName() + ".lowbitmask"); | 
|  | Value *Mask = | 
|  | Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask"); | 
|  | Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked"); | 
|  | CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic( | 
|  | IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()}, | 
|  | /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros"); | 
|  | Value *XMaskedNumActiveBits = Builder.CreateSub( | 
|  | ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros, | 
|  | XMasked->getName() + ".numactivebits", /*HasNUW=*/true, | 
|  | /*HasNSW=*/Bitwidth != 2); | 
|  | Value *XMaskedLeadingOnePos = | 
|  | Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty), | 
|  | XMasked->getName() + ".leadingonepos", /*HasNUW=*/false, | 
|  | /*HasNSW=*/Bitwidth > 2); | 
|  |  | 
|  | Value *LoopBackedgeTakenCount = Builder.CreateSub( | 
|  | BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount", | 
|  | /*HasNUW=*/true, /*HasNSW=*/true); | 
|  | // We know loop's backedge-taken count, but what's loop's trip count? | 
|  | // Note that while NUW is always safe, while NSW is only for bitwidths != 2. | 
|  | Value *LoopTripCount = | 
|  | Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), | 
|  | CurLoop->getName() + ".tripcount", /*HasNUW=*/true, | 
|  | /*HasNSW=*/Bitwidth != 2); | 
|  |  | 
|  | // Step 2: Compute the recurrence's final value without a loop. | 
|  |  | 
|  | // NewX is always safe to compute, because `LoopBackedgeTakenCount` | 
|  | // will always be smaller than `bitwidth(X)`, i.e. we never get poison. | 
|  | Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount); | 
|  | NewX->takeName(XCurr); | 
|  | if (auto *I = dyn_cast<Instruction>(NewX)) | 
|  | I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); | 
|  |  | 
|  | Value *NewXNext; | 
|  | // Rewriting XNext is more complicated, however, because `X << LoopTripCount` | 
|  | // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen | 
|  | // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know | 
|  | // that isn't the case, we'll need to emit an alternative, safe IR. | 
|  | if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() || | 
|  | PatternMatch::match( | 
|  | BitPos, PatternMatch::m_SpecificInt_ICMP( | 
|  | ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(), | 
|  | Ty->getScalarSizeInBits() - 1)))) | 
|  | NewXNext = Builder.CreateShl(X, LoopTripCount); | 
|  | else { | 
|  | // Otherwise, just additionally shift by one. It's the smallest solution, | 
|  | // alternatively, we could check that NewX is INT_MIN (or BitPos is ) | 
|  | // and select 0 instead. | 
|  | NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1)); | 
|  | } | 
|  |  | 
|  | NewXNext->takeName(XNext); | 
|  | if (auto *I = dyn_cast<Instruction>(NewXNext)) | 
|  | I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); | 
|  |  | 
|  | // Step 3: Adjust the successor basic block to recieve the computed | 
|  | //         recurrence's final value instead of the recurrence itself. | 
|  |  | 
|  | XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB); | 
|  | XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB); | 
|  |  | 
|  | // Step 4: Rewrite the loop into a countable form, with canonical IV. | 
|  |  | 
|  | // The new canonical induction variable. | 
|  | Builder.SetInsertPoint(&LoopHeaderBB->front()); | 
|  | auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); | 
|  |  | 
|  | // The induction itself. | 
|  | // Note that while NUW is always safe, while NSW is only for bitwidths != 2. | 
|  | Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); | 
|  | auto *IVNext = | 
|  | Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", | 
|  | /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); | 
|  |  | 
|  | // The loop trip count check. | 
|  | auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount, | 
|  | CurLoop->getName() + ".ivcheck"); | 
|  | Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB); | 
|  | LoopHeaderBB->getTerminator()->eraseFromParent(); | 
|  |  | 
|  | // Populate the IV PHI. | 
|  | IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); | 
|  | IV->addIncoming(IVNext, LoopHeaderBB); | 
|  |  | 
|  | // Step 5: Forget the "non-computable" trip-count SCEV associated with the | 
|  | //   loop. The loop would otherwise not be deleted even if it becomes empty. | 
|  |  | 
|  | SE->forgetLoop(CurLoop); | 
|  |  | 
|  | // Other passes will take care of actually deleting the loop if possible. | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n"); | 
|  |  | 
|  | ++NumShiftUntilBitTest; | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// Return true if the idiom is detected in the loop. | 
|  | /// | 
|  | /// The core idiom we are trying to detect is: | 
|  | /// \code | 
|  | ///   entry: | 
|  | ///     <...> | 
|  | ///     %start = <...> | 
|  | ///     %extraoffset = <...> | 
|  | ///     <...> | 
|  | ///     br label %for.cond | 
|  | /// | 
|  | ///   loop: | 
|  | ///     %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] | 
|  | ///     %nbits = add nsw i8 %iv, %extraoffset | 
|  | ///     %val.shifted = {{l,a}shr,shl} i8 %val, %nbits | 
|  | ///     %val.shifted.iszero = icmp eq i8 %val.shifted, 0 | 
|  | ///     %iv.next = add i8 %iv, 1 | 
|  | ///     <...> | 
|  | ///     br i1 %val.shifted.iszero, label %end, label %loop | 
|  | /// | 
|  | ///   end: | 
|  | ///     %iv.res = phi i8 [ %iv, %loop ] <...> | 
|  | ///     %nbits.res = phi i8 [ %nbits, %loop ] <...> | 
|  | ///     %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> | 
|  | ///     %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> | 
|  | ///     %iv.next.res = phi i8 [ %iv.next, %loop ] <...> | 
|  | ///     <...> | 
|  | /// \endcode | 
|  | static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE, | 
|  | Instruction *&ValShiftedIsZero, | 
|  | Intrinsic::ID &IntrinID, Instruction *&IV, | 
|  | Value *&Start, Value *&Val, | 
|  | const SCEV *&ExtraOffsetExpr, | 
|  | bool &InvertedCond) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE | 
|  | " Performing shift-until-zero idiom detection.\n"); | 
|  |  | 
|  | // Give up if the loop has multiple blocks or multiple backedges. | 
|  | if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Instruction *ValShifted, *NBits, *IVNext; | 
|  | Value *ExtraOffset; | 
|  |  | 
|  | BasicBlock *LoopHeaderBB = CurLoop->getHeader(); | 
|  | BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); | 
|  | assert(LoopPreheaderBB && "There is always a loop preheader."); | 
|  |  | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | // Step 1: Check if the loop backedge, condition is in desirable form. | 
|  |  | 
|  | ICmpInst::Predicate Pred; | 
|  | BasicBlock *TrueBB, *FalseBB; | 
|  | if (!match(LoopHeaderBB->getTerminator(), | 
|  | m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB), | 
|  | m_BasicBlock(FalseBB))) || | 
|  | !match(ValShiftedIsZero, | 
|  | m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) || | 
|  | !ICmpInst::isEquality(Pred)) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Step 2: Check if the comparison's operand is in desirable form. | 
|  | // FIXME: Val could be a one-input PHI node, which we should look past. | 
|  | if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop), | 
|  | m_Instruction(NBits)))) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n"); | 
|  | return false; | 
|  | } | 
|  | IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz | 
|  | : Intrinsic::ctlz; | 
|  |  | 
|  | // Step 3: Check if the shift amount is in desirable form. | 
|  |  | 
|  | if (match(NBits, m_c_Add(m_Instruction(IV), | 
|  | m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && | 
|  | (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap())) | 
|  | ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset)); | 
|  | else if (match(NBits, | 
|  | m_Sub(m_Instruction(IV), | 
|  | m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && | 
|  | NBits->hasNoSignedWrap()) | 
|  | ExtraOffsetExpr = SE->getSCEV(ExtraOffset); | 
|  | else { | 
|  | IV = NBits; | 
|  | ExtraOffsetExpr = SE->getZero(NBits->getType()); | 
|  | } | 
|  |  | 
|  | // Step 4: Check if the recurrence is in desirable form. | 
|  | auto *IVPN = dyn_cast<PHINode>(IV); | 
|  | if (!IVPN || IVPN->getParent() != LoopHeaderBB) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB); | 
|  | IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB)); | 
|  |  | 
|  | if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Step 4: Check if the backedge's destinations are in desirable form. | 
|  |  | 
|  | assert(ICmpInst::isEquality(Pred) && | 
|  | "Should only get equality predicates here."); | 
|  |  | 
|  | // cmp-br is commutative, so canonicalize to a single variant. | 
|  | InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ; | 
|  | if (InvertedCond) { | 
|  | Pred = ICmpInst::getInversePredicate(Pred); | 
|  | std::swap(TrueBB, FalseBB); | 
|  | } | 
|  |  | 
|  | // We expect to exit loop when comparison yields true, | 
|  | // so when it yields false we should branch back to loop header. | 
|  | if (FalseBB != LoopHeaderBB) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The new, countable, loop will certainly only run a known number of | 
|  | // iterations, It won't be infinite. But the old loop might be infinite | 
|  | // under certain conditions. For logical shifts, the value will become zero | 
|  | // after at most bitwidth(%Val) loop iterations. However, for arithmetic | 
|  | // right-shift, iff the sign bit was set, the value will never become zero, | 
|  | // and the loop may never finish. | 
|  | if (ValShifted->getOpcode() == Instruction::AShr && | 
|  | !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Okay, idiom checks out. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Look for the following loop: | 
|  | /// \code | 
|  | ///   entry: | 
|  | ///     <...> | 
|  | ///     %start = <...> | 
|  | ///     %extraoffset = <...> | 
|  | ///     <...> | 
|  | ///     br label %for.cond | 
|  | /// | 
|  | ///   loop: | 
|  | ///     %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] | 
|  | ///     %nbits = add nsw i8 %iv, %extraoffset | 
|  | ///     %val.shifted = {{l,a}shr,shl} i8 %val, %nbits | 
|  | ///     %val.shifted.iszero = icmp eq i8 %val.shifted, 0 | 
|  | ///     %iv.next = add i8 %iv, 1 | 
|  | ///     <...> | 
|  | ///     br i1 %val.shifted.iszero, label %end, label %loop | 
|  | /// | 
|  | ///   end: | 
|  | ///     %iv.res = phi i8 [ %iv, %loop ] <...> | 
|  | ///     %nbits.res = phi i8 [ %nbits, %loop ] <...> | 
|  | ///     %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> | 
|  | ///     %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> | 
|  | ///     %iv.next.res = phi i8 [ %iv.next, %loop ] <...> | 
|  | ///     <...> | 
|  | /// \endcode | 
|  | /// | 
|  | /// And transform it into: | 
|  | /// \code | 
|  | ///   entry: | 
|  | ///     <...> | 
|  | ///     %start = <...> | 
|  | ///     %extraoffset = <...> | 
|  | ///     <...> | 
|  | ///     %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0) | 
|  | ///     %val.numactivebits = sub i8 8, %val.numleadingzeros | 
|  | ///     %extraoffset.neg = sub i8 0, %extraoffset | 
|  | ///     %tmp = add i8 %val.numactivebits, %extraoffset.neg | 
|  | ///     %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start) | 
|  | ///     %loop.tripcount = sub i8 %iv.final, %start | 
|  | ///     br label %loop | 
|  | /// | 
|  | ///   loop: | 
|  | ///     %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ] | 
|  | ///     %loop.iv.next = add i8 %loop.iv, 1 | 
|  | ///     %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount | 
|  | ///     %iv = add i8 %loop.iv, %start | 
|  | ///     <...> | 
|  | ///     br i1 %loop.ivcheck, label %end, label %loop | 
|  | /// | 
|  | ///   end: | 
|  | ///     %iv.res = phi i8 [ %iv.final, %loop ] <...> | 
|  | ///     <...> | 
|  | /// \endcode | 
|  | bool LoopIdiomRecognize::recognizeShiftUntilZero() { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | Instruction *ValShiftedIsZero; | 
|  | Intrinsic::ID IntrID; | 
|  | Instruction *IV; | 
|  | Value *Start, *Val; | 
|  | const SCEV *ExtraOffsetExpr; | 
|  | bool InvertedCond; | 
|  | if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV, | 
|  | Start, Val, ExtraOffsetExpr, InvertedCond)) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE | 
|  | " shift-until-zero idiom detection failed.\n"); | 
|  | return MadeChange; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n"); | 
|  |  | 
|  | // Ok, it is the idiom we were looking for, we *could* transform this loop, | 
|  | // but is it profitable to transform? | 
|  |  | 
|  | BasicBlock *LoopHeaderBB = CurLoop->getHeader(); | 
|  | BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); | 
|  | assert(LoopPreheaderBB && "There is always a loop preheader."); | 
|  |  | 
|  | BasicBlock *SuccessorBB = CurLoop->getExitBlock(); | 
|  | assert(SuccessorBB && "There is only a single successor."); | 
|  |  | 
|  | IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); | 
|  | Builder.SetCurrentDebugLocation(IV->getDebugLoc()); | 
|  |  | 
|  | Type *Ty = Val->getType(); | 
|  | unsigned Bitwidth = Ty->getScalarSizeInBits(); | 
|  |  | 
|  | TargetTransformInfo::TargetCostKind CostKind = | 
|  | TargetTransformInfo::TCK_SizeAndLatency; | 
|  |  | 
|  | // The rewrite is considered to be unprofitable iff and only iff the | 
|  | // intrinsic we'll use are not cheap. Note that we are okay with *just* | 
|  | // making the loop countable, even if nothing else changes. | 
|  | IntrinsicCostAttributes Attrs( | 
|  | IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getFalse()}); | 
|  | InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); | 
|  | if (Cost > TargetTransformInfo::TCC_Basic) { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE | 
|  | " Intrinsic is too costly, not beneficial\n"); | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | // Ok, transform appears worthwhile. | 
|  | MadeChange = true; | 
|  |  | 
|  | bool OffsetIsZero = false; | 
|  | if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr)) | 
|  | OffsetIsZero = ExtraOffsetExprC->isZero(); | 
|  |  | 
|  | // Step 1: Compute the loop's final IV value / trip count. | 
|  |  | 
|  | CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic( | 
|  | IntrID, Ty, {Val, /*is_zero_undef=*/Builder.getFalse()}, | 
|  | /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros"); | 
|  | Value *ValNumActiveBits = Builder.CreateSub( | 
|  | ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros, | 
|  | Val->getName() + ".numactivebits", /*HasNUW=*/true, | 
|  | /*HasNSW=*/Bitwidth != 2); | 
|  |  | 
|  | SCEVExpander Expander(*SE, *DL, "loop-idiom"); | 
|  | Expander.setInsertPoint(&*Builder.GetInsertPoint()); | 
|  | Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr); | 
|  |  | 
|  | Value *ValNumActiveBitsOffset = Builder.CreateAdd( | 
|  | ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset", | 
|  | /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true); | 
|  | Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, | 
|  | {ValNumActiveBitsOffset, Start}, | 
|  | /*FMFSource=*/nullptr, "iv.final"); | 
|  |  | 
|  | auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub( | 
|  | IVFinal, Start, CurLoop->getName() + ".backedgetakencount", | 
|  | /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true)); | 
|  | // FIXME: or when the offset was `add nuw` | 
|  |  | 
|  | // We know loop's backedge-taken count, but what's loop's trip count? | 
|  | Value *LoopTripCount = | 
|  | Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), | 
|  | CurLoop->getName() + ".tripcount", /*HasNUW=*/true, | 
|  | /*HasNSW=*/Bitwidth != 2); | 
|  |  | 
|  | // Step 2: Adjust the successor basic block to recieve the original | 
|  | //         induction variable's final value instead of the orig. IV itself. | 
|  |  | 
|  | IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB); | 
|  |  | 
|  | // Step 3: Rewrite the loop into a countable form, with canonical IV. | 
|  |  | 
|  | // The new canonical induction variable. | 
|  | Builder.SetInsertPoint(&LoopHeaderBB->front()); | 
|  | auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); | 
|  |  | 
|  | // The induction itself. | 
|  | Builder.SetInsertPoint(LoopHeaderBB->getFirstNonPHI()); | 
|  | auto *CIVNext = | 
|  | Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next", | 
|  | /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); | 
|  |  | 
|  | // The loop trip count check. | 
|  | auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount, | 
|  | CurLoop->getName() + ".ivcheck"); | 
|  | auto *NewIVCheck = CIVCheck; | 
|  | if (InvertedCond) { | 
|  | NewIVCheck = Builder.CreateNot(CIVCheck); | 
|  | NewIVCheck->takeName(ValShiftedIsZero); | 
|  | } | 
|  |  | 
|  | // The original IV, but rebased to be an offset to the CIV. | 
|  | auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false, | 
|  | /*HasNSW=*/true); // FIXME: what about NUW? | 
|  | IVDePHId->takeName(IV); | 
|  |  | 
|  | // The loop terminator. | 
|  | Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); | 
|  | Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB); | 
|  | LoopHeaderBB->getTerminator()->eraseFromParent(); | 
|  |  | 
|  | // Populate the IV PHI. | 
|  | CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); | 
|  | CIV->addIncoming(CIVNext, LoopHeaderBB); | 
|  |  | 
|  | // Step 4: Forget the "non-computable" trip-count SCEV associated with the | 
|  | //   loop. The loop would otherwise not be deleted even if it becomes empty. | 
|  |  | 
|  | SE->forgetLoop(CurLoop); | 
|  |  | 
|  | // Step 5: Try to cleanup the loop's body somewhat. | 
|  | IV->replaceAllUsesWith(IVDePHId); | 
|  | IV->eraseFromParent(); | 
|  |  | 
|  | ValShiftedIsZero->replaceAllUsesWith(NewIVCheck); | 
|  | ValShiftedIsZero->eraseFromParent(); | 
|  |  | 
|  | // Other passes will take care of actually deleting the loop if possible. | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n"); | 
|  |  | 
|  | ++NumShiftUntilZero; | 
|  | return MadeChange; | 
|  | } |