|  | //===- TruncInstCombine.cpp -----------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // TruncInstCombine - looks for expression graphs post-dominated by TruncInst | 
|  | // and for each eligible graph, it will create a reduced bit-width expression, | 
|  | // replace the old expression with this new one and remove the old expression. | 
|  | // Eligible expression graph is such that: | 
|  | //   1. Contains only supported instructions. | 
|  | //   2. Supported leaves: ZExtInst, SExtInst, TruncInst and Constant value. | 
|  | //   3. Can be evaluated into type with reduced legal bit-width. | 
|  | //   4. All instructions in the graph must not have users outside the graph. | 
|  | //      The only exception is for {ZExt, SExt}Inst with operand type equal to | 
|  | //      the new reduced type evaluated in (3). | 
|  | // | 
|  | // The motivation for this optimization is that evaluating and expression using | 
|  | // smaller bit-width is preferable, especially for vectorization where we can | 
|  | // fit more values in one vectorized instruction. In addition, this optimization | 
|  | // may decrease the number of cast instructions, but will not increase it. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AggressiveInstCombineInternal.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "aggressive-instcombine" | 
|  |  | 
|  | STATISTIC(NumExprsReduced, "Number of truncations eliminated by reducing bit " | 
|  | "width of expression graph"); | 
|  | STATISTIC(NumInstrsReduced, | 
|  | "Number of instructions whose bit width was reduced"); | 
|  |  | 
|  | /// Given an instruction and a container, it fills all the relevant operands of | 
|  | /// that instruction, with respect to the Trunc expression graph optimizaton. | 
|  | static void getRelevantOperands(Instruction *I, SmallVectorImpl<Value *> &Ops) { | 
|  | unsigned Opc = I->getOpcode(); | 
|  | switch (Opc) { | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | // These CastInst are considered leaves of the evaluated expression, thus, | 
|  | // their operands are not relevent. | 
|  | break; | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::InsertElement: | 
|  | Ops.push_back(I->getOperand(0)); | 
|  | Ops.push_back(I->getOperand(1)); | 
|  | break; | 
|  | case Instruction::ExtractElement: | 
|  | Ops.push_back(I->getOperand(0)); | 
|  | break; | 
|  | case Instruction::Select: | 
|  | Ops.push_back(I->getOperand(1)); | 
|  | Ops.push_back(I->getOperand(2)); | 
|  | break; | 
|  | case Instruction::PHI: | 
|  | for (Value *V : cast<PHINode>(I)->incoming_values()) | 
|  | Ops.push_back(V); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unreachable!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool TruncInstCombine::buildTruncExpressionGraph() { | 
|  | SmallVector<Value *, 8> Worklist; | 
|  | SmallVector<Instruction *, 8> Stack; | 
|  | // Clear old instructions info. | 
|  | InstInfoMap.clear(); | 
|  |  | 
|  | Worklist.push_back(CurrentTruncInst->getOperand(0)); | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | Value *Curr = Worklist.back(); | 
|  |  | 
|  | if (isa<Constant>(Curr)) { | 
|  | Worklist.pop_back(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | auto *I = dyn_cast<Instruction>(Curr); | 
|  | if (!I) | 
|  | return false; | 
|  |  | 
|  | if (!Stack.empty() && Stack.back() == I) { | 
|  | // Already handled all instruction operands, can remove it from both the | 
|  | // Worklist and the Stack, and add it to the instruction info map. | 
|  | Worklist.pop_back(); | 
|  | Stack.pop_back(); | 
|  | // Insert I to the Info map. | 
|  | InstInfoMap.insert(std::make_pair(I, Info())); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (InstInfoMap.count(I)) { | 
|  | Worklist.pop_back(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Add the instruction to the stack before start handling its operands. | 
|  | Stack.push_back(I); | 
|  |  | 
|  | unsigned Opc = I->getOpcode(); | 
|  | switch (Opc) { | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | // trunc(trunc(x)) -> trunc(x) | 
|  | // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest | 
|  | // trunc(ext(x)) -> trunc(x) if the source type is larger than the new | 
|  | // dest | 
|  | break; | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::InsertElement: | 
|  | case Instruction::ExtractElement: | 
|  | case Instruction::Select: { | 
|  | SmallVector<Value *, 2> Operands; | 
|  | getRelevantOperands(I, Operands); | 
|  | append_range(Worklist, Operands); | 
|  | break; | 
|  | } | 
|  | case Instruction::PHI: { | 
|  | SmallVector<Value *, 2> Operands; | 
|  | getRelevantOperands(I, Operands); | 
|  | // Add only operands not in Stack to prevent cycle | 
|  | for (auto *Op : Operands) | 
|  | if (!llvm::is_contained(Stack, Op)) | 
|  | Worklist.push_back(Op); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | // TODO: Can handle more cases here: | 
|  | // 1. shufflevector | 
|  | // 2. sdiv, srem | 
|  | // ... | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned TruncInstCombine::getMinBitWidth() { | 
|  | SmallVector<Value *, 8> Worklist; | 
|  | SmallVector<Instruction *, 8> Stack; | 
|  |  | 
|  | Value *Src = CurrentTruncInst->getOperand(0); | 
|  | Type *DstTy = CurrentTruncInst->getType(); | 
|  | unsigned TruncBitWidth = DstTy->getScalarSizeInBits(); | 
|  | unsigned OrigBitWidth = | 
|  | CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits(); | 
|  |  | 
|  | if (isa<Constant>(Src)) | 
|  | return TruncBitWidth; | 
|  |  | 
|  | Worklist.push_back(Src); | 
|  | InstInfoMap[cast<Instruction>(Src)].ValidBitWidth = TruncBitWidth; | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | Value *Curr = Worklist.back(); | 
|  |  | 
|  | if (isa<Constant>(Curr)) { | 
|  | Worklist.pop_back(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, it must be an instruction. | 
|  | auto *I = cast<Instruction>(Curr); | 
|  |  | 
|  | auto &Info = InstInfoMap[I]; | 
|  |  | 
|  | SmallVector<Value *, 2> Operands; | 
|  | getRelevantOperands(I, Operands); | 
|  |  | 
|  | if (!Stack.empty() && Stack.back() == I) { | 
|  | // Already handled all instruction operands, can remove it from both, the | 
|  | // Worklist and the Stack, and update MinBitWidth. | 
|  | Worklist.pop_back(); | 
|  | Stack.pop_back(); | 
|  | for (auto *Operand : Operands) | 
|  | if (auto *IOp = dyn_cast<Instruction>(Operand)) | 
|  | Info.MinBitWidth = | 
|  | std::max(Info.MinBitWidth, InstInfoMap[IOp].MinBitWidth); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Add the instruction to the stack before start handling its operands. | 
|  | Stack.push_back(I); | 
|  | unsigned ValidBitWidth = Info.ValidBitWidth; | 
|  |  | 
|  | // Update minimum bit-width before handling its operands. This is required | 
|  | // when the instruction is part of a loop. | 
|  | Info.MinBitWidth = std::max(Info.MinBitWidth, Info.ValidBitWidth); | 
|  |  | 
|  | for (auto *Operand : Operands) | 
|  | if (auto *IOp = dyn_cast<Instruction>(Operand)) { | 
|  | // If we already calculated the minimum bit-width for this valid | 
|  | // bit-width, or for a smaller valid bit-width, then just keep the | 
|  | // answer we already calculated. | 
|  | unsigned IOpBitwidth = InstInfoMap.lookup(IOp).ValidBitWidth; | 
|  | if (IOpBitwidth >= ValidBitWidth) | 
|  | continue; | 
|  | InstInfoMap[IOp].ValidBitWidth = ValidBitWidth; | 
|  | Worklist.push_back(IOp); | 
|  | } | 
|  | } | 
|  | unsigned MinBitWidth = InstInfoMap.lookup(cast<Instruction>(Src)).MinBitWidth; | 
|  | assert(MinBitWidth >= TruncBitWidth); | 
|  |  | 
|  | if (MinBitWidth > TruncBitWidth) { | 
|  | // In this case reducing expression with vector type might generate a new | 
|  | // vector type, which is not preferable as it might result in generating | 
|  | // sub-optimal code. | 
|  | if (DstTy->isVectorTy()) | 
|  | return OrigBitWidth; | 
|  | // Use the smallest integer type in the range [MinBitWidth, OrigBitWidth). | 
|  | Type *Ty = DL.getSmallestLegalIntType(DstTy->getContext(), MinBitWidth); | 
|  | // Update minimum bit-width with the new destination type bit-width if | 
|  | // succeeded to find such, otherwise, with original bit-width. | 
|  | MinBitWidth = Ty ? Ty->getScalarSizeInBits() : OrigBitWidth; | 
|  | } else { // MinBitWidth == TruncBitWidth | 
|  | // In this case the expression can be evaluated with the trunc instruction | 
|  | // destination type, and trunc instruction can be omitted. However, we | 
|  | // should not perform the evaluation if the original type is a legal scalar | 
|  | // type and the target type is illegal. | 
|  | bool FromLegal = MinBitWidth == 1 || DL.isLegalInteger(OrigBitWidth); | 
|  | bool ToLegal = MinBitWidth == 1 || DL.isLegalInteger(MinBitWidth); | 
|  | if (!DstTy->isVectorTy() && FromLegal && !ToLegal) | 
|  | return OrigBitWidth; | 
|  | } | 
|  | return MinBitWidth; | 
|  | } | 
|  |  | 
|  | Type *TruncInstCombine::getBestTruncatedType() { | 
|  | if (!buildTruncExpressionGraph()) | 
|  | return nullptr; | 
|  |  | 
|  | // We don't want to duplicate instructions, which isn't profitable. Thus, we | 
|  | // can't shrink something that has multiple users, unless all users are | 
|  | // post-dominated by the trunc instruction, i.e., were visited during the | 
|  | // expression evaluation. | 
|  | unsigned DesiredBitWidth = 0; | 
|  | for (auto Itr : InstInfoMap) { | 
|  | Instruction *I = Itr.first; | 
|  | if (I->hasOneUse()) | 
|  | continue; | 
|  | bool IsExtInst = (isa<ZExtInst>(I) || isa<SExtInst>(I)); | 
|  | for (auto *U : I->users()) | 
|  | if (auto *UI = dyn_cast<Instruction>(U)) | 
|  | if (UI != CurrentTruncInst && !InstInfoMap.count(UI)) { | 
|  | if (!IsExtInst) | 
|  | return nullptr; | 
|  | // If this is an extension from the dest type, we can eliminate it, | 
|  | // even if it has multiple users. Thus, update the DesiredBitWidth and | 
|  | // validate all extension instructions agrees on same DesiredBitWidth. | 
|  | unsigned ExtInstBitWidth = | 
|  | I->getOperand(0)->getType()->getScalarSizeInBits(); | 
|  | if (DesiredBitWidth && DesiredBitWidth != ExtInstBitWidth) | 
|  | return nullptr; | 
|  | DesiredBitWidth = ExtInstBitWidth; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned OrigBitWidth = | 
|  | CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits(); | 
|  |  | 
|  | // Initialize MinBitWidth for shift instructions with the minimum number | 
|  | // that is greater than shift amount (i.e. shift amount + 1). | 
|  | // For `lshr` adjust MinBitWidth so that all potentially truncated | 
|  | // bits of the value-to-be-shifted are zeros. | 
|  | // For `ashr` adjust MinBitWidth so that all potentially truncated | 
|  | // bits of the value-to-be-shifted are sign bits (all zeros or ones) | 
|  | // and even one (first) untruncated bit is sign bit. | 
|  | // Exit early if MinBitWidth is not less than original bitwidth. | 
|  | for (auto &Itr : InstInfoMap) { | 
|  | Instruction *I = Itr.first; | 
|  | if (I->isShift()) { | 
|  | KnownBits KnownRHS = computeKnownBits(I->getOperand(1)); | 
|  | unsigned MinBitWidth = KnownRHS.getMaxValue() | 
|  | .uadd_sat(APInt(OrigBitWidth, 1)) | 
|  | .getLimitedValue(OrigBitWidth); | 
|  | if (MinBitWidth == OrigBitWidth) | 
|  | return nullptr; | 
|  | if (I->getOpcode() == Instruction::LShr) { | 
|  | KnownBits KnownLHS = computeKnownBits(I->getOperand(0)); | 
|  | MinBitWidth = | 
|  | std::max(MinBitWidth, KnownLHS.getMaxValue().getActiveBits()); | 
|  | } | 
|  | if (I->getOpcode() == Instruction::AShr) { | 
|  | unsigned NumSignBits = ComputeNumSignBits(I->getOperand(0)); | 
|  | MinBitWidth = std::max(MinBitWidth, OrigBitWidth - NumSignBits + 1); | 
|  | } | 
|  | if (MinBitWidth >= OrigBitWidth) | 
|  | return nullptr; | 
|  | Itr.second.MinBitWidth = MinBitWidth; | 
|  | } | 
|  | if (I->getOpcode() == Instruction::UDiv || | 
|  | I->getOpcode() == Instruction::URem) { | 
|  | unsigned MinBitWidth = 0; | 
|  | for (const auto &Op : I->operands()) { | 
|  | KnownBits Known = computeKnownBits(Op); | 
|  | MinBitWidth = | 
|  | std::max(Known.getMaxValue().getActiveBits(), MinBitWidth); | 
|  | if (MinBitWidth >= OrigBitWidth) | 
|  | return nullptr; | 
|  | } | 
|  | Itr.second.MinBitWidth = MinBitWidth; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate minimum allowed bit-width allowed for shrinking the currently | 
|  | // visited truncate's operand. | 
|  | unsigned MinBitWidth = getMinBitWidth(); | 
|  |  | 
|  | // Check that we can shrink to smaller bit-width than original one and that | 
|  | // it is similar to the DesiredBitWidth is such exists. | 
|  | if (MinBitWidth >= OrigBitWidth || | 
|  | (DesiredBitWidth && DesiredBitWidth != MinBitWidth)) | 
|  | return nullptr; | 
|  |  | 
|  | return IntegerType::get(CurrentTruncInst->getContext(), MinBitWidth); | 
|  | } | 
|  |  | 
|  | /// Given a reduced scalar type \p Ty and a \p V value, return a reduced type | 
|  | /// for \p V, according to its type, if it vector type, return the vector | 
|  | /// version of \p Ty, otherwise return \p Ty. | 
|  | static Type *getReducedType(Value *V, Type *Ty) { | 
|  | assert(Ty && !Ty->isVectorTy() && "Expect Scalar Type"); | 
|  | if (auto *VTy = dyn_cast<VectorType>(V->getType())) | 
|  | return VectorType::get(Ty, VTy->getElementCount()); | 
|  | return Ty; | 
|  | } | 
|  |  | 
|  | Value *TruncInstCombine::getReducedOperand(Value *V, Type *SclTy) { | 
|  | Type *Ty = getReducedType(V, SclTy); | 
|  | if (auto *C = dyn_cast<Constant>(V)) { | 
|  | C = ConstantExpr::getIntegerCast(C, Ty, false); | 
|  | // If we got a constantexpr back, try to simplify it with DL info. | 
|  | return ConstantFoldConstant(C, DL, &TLI); | 
|  | } | 
|  |  | 
|  | auto *I = cast<Instruction>(V); | 
|  | Info Entry = InstInfoMap.lookup(I); | 
|  | assert(Entry.NewValue); | 
|  | return Entry.NewValue; | 
|  | } | 
|  |  | 
|  | void TruncInstCombine::ReduceExpressionGraph(Type *SclTy) { | 
|  | NumInstrsReduced += InstInfoMap.size(); | 
|  | // Pairs of old and new phi-nodes | 
|  | SmallVector<std::pair<PHINode *, PHINode *>, 2> OldNewPHINodes; | 
|  | for (auto &Itr : InstInfoMap) { // Forward | 
|  | Instruction *I = Itr.first; | 
|  | TruncInstCombine::Info &NodeInfo = Itr.second; | 
|  |  | 
|  | assert(!NodeInfo.NewValue && "Instruction has been evaluated"); | 
|  |  | 
|  | IRBuilder<> Builder(I); | 
|  | Value *Res = nullptr; | 
|  | unsigned Opc = I->getOpcode(); | 
|  | switch (Opc) { | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: { | 
|  | Type *Ty = getReducedType(I, SclTy); | 
|  | // If the source type of the cast is the type we're trying for then we can | 
|  | // just return the source.  There's no need to insert it because it is not | 
|  | // new. | 
|  | if (I->getOperand(0)->getType() == Ty) { | 
|  | assert(!isa<TruncInst>(I) && "Cannot reach here with TruncInst"); | 
|  | NodeInfo.NewValue = I->getOperand(0); | 
|  | continue; | 
|  | } | 
|  | // Otherwise, must be the same type of cast, so just reinsert a new one. | 
|  | // This also handles the case of zext(trunc(x)) -> zext(x). | 
|  | Res = Builder.CreateIntCast(I->getOperand(0), Ty, | 
|  | Opc == Instruction::SExt); | 
|  |  | 
|  | // Update Worklist entries with new value if needed. | 
|  | // There are three possible changes to the Worklist: | 
|  | // 1. Update Old-TruncInst -> New-TruncInst. | 
|  | // 2. Remove Old-TruncInst (if New node is not TruncInst). | 
|  | // 3. Add New-TruncInst (if Old node was not TruncInst). | 
|  | auto *Entry = find(Worklist, I); | 
|  | if (Entry != Worklist.end()) { | 
|  | if (auto *NewCI = dyn_cast<TruncInst>(Res)) | 
|  | *Entry = NewCI; | 
|  | else | 
|  | Worklist.erase(Entry); | 
|  | } else if (auto *NewCI = dyn_cast<TruncInst>(Res)) | 
|  | Worklist.push_back(NewCI); | 
|  | break; | 
|  | } | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::URem: { | 
|  | Value *LHS = getReducedOperand(I->getOperand(0), SclTy); | 
|  | Value *RHS = getReducedOperand(I->getOperand(1), SclTy); | 
|  | Res = Builder.CreateBinOp((Instruction::BinaryOps)Opc, LHS, RHS); | 
|  | // Preserve `exact` flag since truncation doesn't change exactness | 
|  | if (auto *PEO = dyn_cast<PossiblyExactOperator>(I)) | 
|  | if (auto *ResI = dyn_cast<Instruction>(Res)) | 
|  | ResI->setIsExact(PEO->isExact()); | 
|  | break; | 
|  | } | 
|  | case Instruction::ExtractElement: { | 
|  | Value *Vec = getReducedOperand(I->getOperand(0), SclTy); | 
|  | Value *Idx = I->getOperand(1); | 
|  | Res = Builder.CreateExtractElement(Vec, Idx); | 
|  | break; | 
|  | } | 
|  | case Instruction::InsertElement: { | 
|  | Value *Vec = getReducedOperand(I->getOperand(0), SclTy); | 
|  | Value *NewElt = getReducedOperand(I->getOperand(1), SclTy); | 
|  | Value *Idx = I->getOperand(2); | 
|  | Res = Builder.CreateInsertElement(Vec, NewElt, Idx); | 
|  | break; | 
|  | } | 
|  | case Instruction::Select: { | 
|  | Value *Op0 = I->getOperand(0); | 
|  | Value *LHS = getReducedOperand(I->getOperand(1), SclTy); | 
|  | Value *RHS = getReducedOperand(I->getOperand(2), SclTy); | 
|  | Res = Builder.CreateSelect(Op0, LHS, RHS); | 
|  | break; | 
|  | } | 
|  | case Instruction::PHI: { | 
|  | Res = Builder.CreatePHI(getReducedType(I, SclTy), I->getNumOperands()); | 
|  | OldNewPHINodes.push_back( | 
|  | std::make_pair(cast<PHINode>(I), cast<PHINode>(Res))); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("Unhandled instruction"); | 
|  | } | 
|  |  | 
|  | NodeInfo.NewValue = Res; | 
|  | if (auto *ResI = dyn_cast<Instruction>(Res)) | 
|  | ResI->takeName(I); | 
|  | } | 
|  |  | 
|  | for (auto &Node : OldNewPHINodes) { | 
|  | PHINode *OldPN = Node.first; | 
|  | PHINode *NewPN = Node.second; | 
|  | for (auto Incoming : zip(OldPN->incoming_values(), OldPN->blocks())) | 
|  | NewPN->addIncoming(getReducedOperand(std::get<0>(Incoming), SclTy), | 
|  | std::get<1>(Incoming)); | 
|  | } | 
|  |  | 
|  | Value *Res = getReducedOperand(CurrentTruncInst->getOperand(0), SclTy); | 
|  | Type *DstTy = CurrentTruncInst->getType(); | 
|  | if (Res->getType() != DstTy) { | 
|  | IRBuilder<> Builder(CurrentTruncInst); | 
|  | Res = Builder.CreateIntCast(Res, DstTy, false); | 
|  | if (auto *ResI = dyn_cast<Instruction>(Res)) | 
|  | ResI->takeName(CurrentTruncInst); | 
|  | } | 
|  | CurrentTruncInst->replaceAllUsesWith(Res); | 
|  |  | 
|  | // Erase old expression graph, which was replaced by the reduced expression | 
|  | // graph. | 
|  | CurrentTruncInst->eraseFromParent(); | 
|  | // First, erase old phi-nodes and its uses | 
|  | for (auto &Node : OldNewPHINodes) { | 
|  | PHINode *OldPN = Node.first; | 
|  | OldPN->replaceAllUsesWith(PoisonValue::get(OldPN->getType())); | 
|  | InstInfoMap.erase(OldPN); | 
|  | OldPN->eraseFromParent(); | 
|  | } | 
|  | // Now we have expression graph turned into dag. | 
|  | // We iterate backward, which means we visit the instruction before we | 
|  | // visit any of its operands, this way, when we get to the operand, we already | 
|  | // removed the instructions (from the expression dag) that uses it. | 
|  | for (auto &I : llvm::reverse(InstInfoMap)) { | 
|  | // We still need to check that the instruction has no users before we erase | 
|  | // it, because {SExt, ZExt}Inst Instruction might have other users that was | 
|  | // not reduced, in such case, we need to keep that instruction. | 
|  | if (I.first->use_empty()) | 
|  | I.first->eraseFromParent(); | 
|  | else | 
|  | assert((isa<SExtInst>(I.first) || isa<ZExtInst>(I.first)) && | 
|  | "Only {SExt, ZExt}Inst might have unreduced users"); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool TruncInstCombine::run(Function &F) { | 
|  | bool MadeIRChange = false; | 
|  |  | 
|  | // Collect all TruncInst in the function into the Worklist for evaluating. | 
|  | for (auto &BB : F) { | 
|  | // Ignore unreachable basic block. | 
|  | if (!DT.isReachableFromEntry(&BB)) | 
|  | continue; | 
|  | for (auto &I : BB) | 
|  | if (auto *CI = dyn_cast<TruncInst>(&I)) | 
|  | Worklist.push_back(CI); | 
|  | } | 
|  |  | 
|  | // Process all TruncInst in the Worklist, for each instruction: | 
|  | //   1. Check if it dominates an eligible expression graph to be reduced. | 
|  | //   2. Create a reduced expression graph and replace the old one with it. | 
|  | while (!Worklist.empty()) { | 
|  | CurrentTruncInst = Worklist.pop_back_val(); | 
|  |  | 
|  | if (Type *NewDstSclTy = getBestTruncatedType()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "ICE: TruncInstCombine reducing type of expression graph " | 
|  | "dominated by: " | 
|  | << CurrentTruncInst << '\n'); | 
|  | ReduceExpressionGraph(NewDstSclTy); | 
|  | ++NumExprsReduced; | 
|  | MadeIRChange = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return MadeIRChange; | 
|  | } |