|  | //===- GsymCreator.cpp ----------------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/DebugInfo/GSYM/GsymCreator.h" | 
|  | #include "llvm/DebugInfo/GSYM/FileWriter.h" | 
|  | #include "llvm/DebugInfo/GSYM/Header.h" | 
|  | #include "llvm/DebugInfo/GSYM/LineTable.h" | 
|  | #include "llvm/MC/StringTableBuilder.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <functional> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace gsym; | 
|  |  | 
|  | GsymCreator::GsymCreator(bool Quiet) | 
|  | : StrTab(StringTableBuilder::ELF), Quiet(Quiet) { | 
|  | insertFile(StringRef()); | 
|  | } | 
|  |  | 
|  | uint32_t GsymCreator::insertFile(StringRef Path, llvm::sys::path::Style Style) { | 
|  | llvm::StringRef directory = llvm::sys::path::parent_path(Path, Style); | 
|  | llvm::StringRef filename = llvm::sys::path::filename(Path, Style); | 
|  | // We must insert the strings first, then call the FileEntry constructor. | 
|  | // If we inline the insertString() function call into the constructor, the | 
|  | // call order is undefined due to parameter lists not having any ordering | 
|  | // requirements. | 
|  | const uint32_t Dir = insertString(directory); | 
|  | const uint32_t Base = insertString(filename); | 
|  | return insertFileEntry(FileEntry(Dir, Base)); | 
|  | } | 
|  |  | 
|  | uint32_t GsymCreator::insertFileEntry(FileEntry FE) { | 
|  | std::lock_guard<std::mutex> Guard(Mutex); | 
|  | const auto NextIndex = Files.size(); | 
|  | // Find FE in hash map and insert if not present. | 
|  | auto R = FileEntryToIndex.insert(std::make_pair(FE, NextIndex)); | 
|  | if (R.second) | 
|  | Files.emplace_back(FE); | 
|  | return R.first->second; | 
|  | } | 
|  |  | 
|  | uint32_t GsymCreator::copyFile(const GsymCreator &SrcGC, uint32_t FileIdx) { | 
|  | // File index zero is reserved for a FileEntry with no directory and no | 
|  | // filename. Any other file and we need to copy the strings for the directory | 
|  | // and filename. | 
|  | if (FileIdx == 0) | 
|  | return 0; | 
|  | const FileEntry SrcFE = SrcGC.Files[FileIdx]; | 
|  | // Copy the strings for the file and then add the newly converted file entry. | 
|  | uint32_t Dir = StrTab.add(SrcGC.StringOffsetMap.find(SrcFE.Dir)->second); | 
|  | uint32_t Base = StrTab.add(SrcGC.StringOffsetMap.find(SrcFE.Base)->second); | 
|  | FileEntry DstFE(Dir, Base); | 
|  | return insertFileEntry(DstFE); | 
|  | } | 
|  |  | 
|  |  | 
|  | llvm::Error GsymCreator::save(StringRef Path, | 
|  | llvm::support::endianness ByteOrder, | 
|  | std::optional<uint64_t> SegmentSize) const { | 
|  | if (SegmentSize) | 
|  | return saveSegments(Path, ByteOrder, *SegmentSize); | 
|  | std::error_code EC; | 
|  | raw_fd_ostream OutStrm(Path, EC); | 
|  | if (EC) | 
|  | return llvm::errorCodeToError(EC); | 
|  | FileWriter O(OutStrm, ByteOrder); | 
|  | return encode(O); | 
|  | } | 
|  |  | 
|  | llvm::Error GsymCreator::encode(FileWriter &O) const { | 
|  | std::lock_guard<std::mutex> Guard(Mutex); | 
|  | if (Funcs.empty()) | 
|  | return createStringError(std::errc::invalid_argument, | 
|  | "no functions to encode"); | 
|  | if (!Finalized) | 
|  | return createStringError(std::errc::invalid_argument, | 
|  | "GsymCreator wasn't finalized prior to encoding"); | 
|  |  | 
|  | if (Funcs.size() > UINT32_MAX) | 
|  | return createStringError(std::errc::invalid_argument, | 
|  | "too many FunctionInfos"); | 
|  |  | 
|  | std::optional<uint64_t> BaseAddress = getBaseAddress(); | 
|  | // Base address should be valid if we have any functions. | 
|  | if (!BaseAddress) | 
|  | return createStringError(std::errc::invalid_argument, | 
|  | "invalid base address"); | 
|  | Header Hdr; | 
|  | Hdr.Magic = GSYM_MAGIC; | 
|  | Hdr.Version = GSYM_VERSION; | 
|  | Hdr.AddrOffSize = getAddressOffsetSize(); | 
|  | Hdr.UUIDSize = static_cast<uint8_t>(UUID.size()); | 
|  | Hdr.BaseAddress = *BaseAddress; | 
|  | Hdr.NumAddresses = static_cast<uint32_t>(Funcs.size()); | 
|  | Hdr.StrtabOffset = 0; // We will fix this up later. | 
|  | Hdr.StrtabSize = 0;   // We will fix this up later. | 
|  | memset(Hdr.UUID, 0, sizeof(Hdr.UUID)); | 
|  | if (UUID.size() > sizeof(Hdr.UUID)) | 
|  | return createStringError(std::errc::invalid_argument, | 
|  | "invalid UUID size %u", (uint32_t)UUID.size()); | 
|  | // Copy the UUID value if we have one. | 
|  | if (UUID.size() > 0) | 
|  | memcpy(Hdr.UUID, UUID.data(), UUID.size()); | 
|  | // Write out the header. | 
|  | llvm::Error Err = Hdr.encode(O); | 
|  | if (Err) | 
|  | return Err; | 
|  |  | 
|  | const uint64_t MaxAddressOffset = getMaxAddressOffset(); | 
|  | // Write out the address offsets. | 
|  | O.alignTo(Hdr.AddrOffSize); | 
|  | for (const auto &FuncInfo : Funcs) { | 
|  | uint64_t AddrOffset = FuncInfo.startAddress() - Hdr.BaseAddress; | 
|  | // Make sure we calculated the address offsets byte size correctly by | 
|  | // verifying the current address offset is within ranges. We have seen bugs | 
|  | // introduced when the code changes that can cause problems here so it is | 
|  | // good to catch this during testing. | 
|  | assert(AddrOffset <= MaxAddressOffset); | 
|  | (void)MaxAddressOffset; | 
|  | switch (Hdr.AddrOffSize) { | 
|  | case 1: | 
|  | O.writeU8(static_cast<uint8_t>(AddrOffset)); | 
|  | break; | 
|  | case 2: | 
|  | O.writeU16(static_cast<uint16_t>(AddrOffset)); | 
|  | break; | 
|  | case 4: | 
|  | O.writeU32(static_cast<uint32_t>(AddrOffset)); | 
|  | break; | 
|  | case 8: | 
|  | O.writeU64(AddrOffset); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Write out all zeros for the AddrInfoOffsets. | 
|  | O.alignTo(4); | 
|  | const off_t AddrInfoOffsetsOffset = O.tell(); | 
|  | for (size_t i = 0, n = Funcs.size(); i < n; ++i) | 
|  | O.writeU32(0); | 
|  |  | 
|  | // Write out the file table | 
|  | O.alignTo(4); | 
|  | assert(!Files.empty()); | 
|  | assert(Files[0].Dir == 0); | 
|  | assert(Files[0].Base == 0); | 
|  | size_t NumFiles = Files.size(); | 
|  | if (NumFiles > UINT32_MAX) | 
|  | return createStringError(std::errc::invalid_argument, "too many files"); | 
|  | O.writeU32(static_cast<uint32_t>(NumFiles)); | 
|  | for (auto File : Files) { | 
|  | O.writeU32(File.Dir); | 
|  | O.writeU32(File.Base); | 
|  | } | 
|  |  | 
|  | // Write out the string table. | 
|  | const off_t StrtabOffset = O.tell(); | 
|  | StrTab.write(O.get_stream()); | 
|  | const off_t StrtabSize = O.tell() - StrtabOffset; | 
|  | std::vector<uint32_t> AddrInfoOffsets; | 
|  |  | 
|  | // Write out the address infos for each function info. | 
|  | for (const auto &FuncInfo : Funcs) { | 
|  | if (Expected<uint64_t> OffsetOrErr = FuncInfo.encode(O)) | 
|  | AddrInfoOffsets.push_back(OffsetOrErr.get()); | 
|  | else | 
|  | return OffsetOrErr.takeError(); | 
|  | } | 
|  | // Fixup the string table offset and size in the header | 
|  | O.fixup32((uint32_t)StrtabOffset, offsetof(Header, StrtabOffset)); | 
|  | O.fixup32((uint32_t)StrtabSize, offsetof(Header, StrtabSize)); | 
|  |  | 
|  | // Fixup all address info offsets | 
|  | uint64_t Offset = 0; | 
|  | for (auto AddrInfoOffset : AddrInfoOffsets) { | 
|  | O.fixup32(AddrInfoOffset, AddrInfoOffsetsOffset + Offset); | 
|  | Offset += 4; | 
|  | } | 
|  | return ErrorSuccess(); | 
|  | } | 
|  |  | 
|  | // Similar to std::remove_if, but the predicate is binary and it is passed both | 
|  | // the previous and the current element. | 
|  | template <class ForwardIt, class BinaryPredicate> | 
|  | static ForwardIt removeIfBinary(ForwardIt FirstIt, ForwardIt LastIt, | 
|  | BinaryPredicate Pred) { | 
|  | if (FirstIt != LastIt) { | 
|  | auto PrevIt = FirstIt++; | 
|  | FirstIt = std::find_if(FirstIt, LastIt, [&](const auto &Curr) { | 
|  | return Pred(*PrevIt++, Curr); | 
|  | }); | 
|  | if (FirstIt != LastIt) | 
|  | for (ForwardIt CurrIt = FirstIt; ++CurrIt != LastIt;) | 
|  | if (!Pred(*PrevIt, *CurrIt)) { | 
|  | PrevIt = FirstIt; | 
|  | *FirstIt++ = std::move(*CurrIt); | 
|  | } | 
|  | } | 
|  | return FirstIt; | 
|  | } | 
|  |  | 
|  | llvm::Error GsymCreator::finalize(llvm::raw_ostream &OS) { | 
|  | std::lock_guard<std::mutex> Guard(Mutex); | 
|  | if (Finalized) | 
|  | return createStringError(std::errc::invalid_argument, "already finalized"); | 
|  | Finalized = true; | 
|  |  | 
|  | // Sort function infos so we can emit sorted functions. | 
|  | llvm::sort(Funcs); | 
|  |  | 
|  | // Don't let the string table indexes change by finalizing in order. | 
|  | StrTab.finalizeInOrder(); | 
|  |  | 
|  | // Remove duplicates function infos that have both entries from debug info | 
|  | // (DWARF or Breakpad) and entries from the SymbolTable. | 
|  | // | 
|  | // Also handle overlapping function. Usually there shouldn't be any, but they | 
|  | // can and do happen in some rare cases. | 
|  | // | 
|  | // (a)          (b)         (c) | 
|  | //     ^  ^       ^            ^ | 
|  | //     |X |Y      |X ^         |X | 
|  | //     |  |       |  |Y        |  ^ | 
|  | //     |  |       |  v         v  |Y | 
|  | //     v  v       v               v | 
|  | // | 
|  | // In (a) and (b), Y is ignored and X will be reported for the full range. | 
|  | // In (c), both functions will be included in the result and lookups for an | 
|  | // address in the intersection will return Y because of binary search. | 
|  | // | 
|  | // Note that in case of (b), we cannot include Y in the result because then | 
|  | // we wouldn't find any function for range (end of Y, end of X) | 
|  | // with binary search | 
|  | auto NumBefore = Funcs.size(); | 
|  | Funcs.erase( | 
|  | removeIfBinary(Funcs.begin(), Funcs.end(), | 
|  | [&](const auto &Prev, const auto &Curr) { | 
|  | // Empty ranges won't intersect, but we still need to | 
|  | // catch the case where we have multiple symbols at the | 
|  | // same address and coalesce them. | 
|  | const bool ranges_equal = Prev.Range == Curr.Range; | 
|  | if (ranges_equal || Prev.Range.intersects(Curr.Range)) { | 
|  | // Overlapping ranges or empty identical ranges. | 
|  | if (ranges_equal) { | 
|  | // Same address range. Check if one is from debug | 
|  | // info and the other is from a symbol table. If | 
|  | // so, then keep the one with debug info. Our | 
|  | // sorting guarantees that entries with matching | 
|  | // address ranges that have debug info are last in | 
|  | // the sort. | 
|  | if (Prev == Curr) { | 
|  | // FunctionInfo entries match exactly (range, | 
|  | // lines, inlines) | 
|  |  | 
|  | // We used to output a warning here, but this was | 
|  | // so frequent on some binaries, in particular | 
|  | // when those were built with GCC, that it slowed | 
|  | // down processing extremely. | 
|  | return true; | 
|  | } else { | 
|  | if (!Prev.hasRichInfo() && Curr.hasRichInfo()) { | 
|  | // Same address range, one with no debug info | 
|  | // (symbol) and the next with debug info. Keep | 
|  | // the latter. | 
|  | return true; | 
|  | } else { | 
|  | if (!Quiet) { | 
|  | OS << "warning: same address range contains " | 
|  | "different debug " | 
|  | << "info. Removing:\n" | 
|  | << Prev << "\nIn favor of this one:\n" | 
|  | << Curr << "\n"; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (!Quiet) { // print warnings about overlaps | 
|  | OS << "warning: function ranges overlap:\n" | 
|  | << Prev << "\n" | 
|  | << Curr << "\n"; | 
|  | } | 
|  | } | 
|  | } else if (Prev.Range.size() == 0 && | 
|  | Curr.Range.contains(Prev.Range.start())) { | 
|  | if (!Quiet) { | 
|  | OS << "warning: removing symbol:\n" | 
|  | << Prev << "\nKeeping:\n" | 
|  | << Curr << "\n"; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | }), | 
|  | Funcs.end()); | 
|  |  | 
|  | // If our last function info entry doesn't have a size and if we have valid | 
|  | // text ranges, we should set the size of the last entry since any search for | 
|  | // a high address might match our last entry. By fixing up this size, we can | 
|  | // help ensure we don't cause lookups to always return the last symbol that | 
|  | // has no size when doing lookups. | 
|  | if (!Funcs.empty() && Funcs.back().Range.size() == 0 && ValidTextRanges) { | 
|  | if (auto Range = | 
|  | ValidTextRanges->getRangeThatContains(Funcs.back().Range.start())) { | 
|  | Funcs.back().Range = {Funcs.back().Range.start(), Range->end()}; | 
|  | } | 
|  | } | 
|  | OS << "Pruned " << NumBefore - Funcs.size() << " functions, ended with " | 
|  | << Funcs.size() << " total\n"; | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | uint32_t GsymCreator::copyString(const GsymCreator &SrcGC, uint32_t StrOff) { | 
|  | // String offset at zero is always the empty string, no copying needed. | 
|  | if (StrOff == 0) | 
|  | return 0; | 
|  | return StrTab.add(SrcGC.StringOffsetMap.find(StrOff)->second); | 
|  | } | 
|  |  | 
|  | uint32_t GsymCreator::insertString(StringRef S, bool Copy) { | 
|  | if (S.empty()) | 
|  | return 0; | 
|  |  | 
|  | // The hash can be calculated outside the lock. | 
|  | CachedHashStringRef CHStr(S); | 
|  | std::lock_guard<std::mutex> Guard(Mutex); | 
|  | if (Copy) { | 
|  | // We need to provide backing storage for the string if requested | 
|  | // since StringTableBuilder stores references to strings. Any string | 
|  | // that comes from a section in an object file doesn't need to be | 
|  | // copied, but any string created by code will need to be copied. | 
|  | // This allows GsymCreator to be really fast when parsing DWARF and | 
|  | // other object files as most strings don't need to be copied. | 
|  | if (!StrTab.contains(CHStr)) | 
|  | CHStr = CachedHashStringRef{StringStorage.insert(S).first->getKey(), | 
|  | CHStr.hash()}; | 
|  | } | 
|  | const uint32_t StrOff = StrTab.add(CHStr); | 
|  | // Save a mapping of string offsets to the cached string reference in case | 
|  | // we need to segment the GSYM file and copy string from one string table to | 
|  | // another. | 
|  | if (StringOffsetMap.count(StrOff) == 0) | 
|  | StringOffsetMap.insert(std::make_pair(StrOff, CHStr)); | 
|  | return StrOff; | 
|  | } | 
|  |  | 
|  | void GsymCreator::addFunctionInfo(FunctionInfo &&FI) { | 
|  | std::lock_guard<std::mutex> Guard(Mutex); | 
|  | Ranges.insert(FI.Range); | 
|  | Funcs.emplace_back(std::move(FI)); | 
|  | } | 
|  |  | 
|  | void GsymCreator::forEachFunctionInfo( | 
|  | std::function<bool(FunctionInfo &)> const &Callback) { | 
|  | std::lock_guard<std::mutex> Guard(Mutex); | 
|  | for (auto &FI : Funcs) { | 
|  | if (!Callback(FI)) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void GsymCreator::forEachFunctionInfo( | 
|  | std::function<bool(const FunctionInfo &)> const &Callback) const { | 
|  | std::lock_guard<std::mutex> Guard(Mutex); | 
|  | for (const auto &FI : Funcs) { | 
|  | if (!Callback(FI)) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t GsymCreator::getNumFunctionInfos() const { | 
|  | std::lock_guard<std::mutex> Guard(Mutex); | 
|  | return Funcs.size(); | 
|  | } | 
|  |  | 
|  | bool GsymCreator::IsValidTextAddress(uint64_t Addr) const { | 
|  | if (ValidTextRanges) | 
|  | return ValidTextRanges->contains(Addr); | 
|  | return true; // No valid text ranges has been set, so accept all ranges. | 
|  | } | 
|  |  | 
|  | bool GsymCreator::hasFunctionInfoForAddress(uint64_t Addr) const { | 
|  | std::lock_guard<std::mutex> Guard(Mutex); | 
|  | return Ranges.contains(Addr); | 
|  | } | 
|  |  | 
|  | std::optional<uint64_t> GsymCreator::getFirstFunctionAddress() const { | 
|  | if (Finalized && !Funcs.empty()) | 
|  | return std::optional<uint64_t>(Funcs.front().startAddress()); | 
|  | // This code gets used by the segmentation of GSYM files to help determine the | 
|  | // size of the GSYM header while continually adding new FunctionInfo objects | 
|  | // to this object, so we haven't finalized this object yet. | 
|  | if (Ranges.empty()) | 
|  | return std::nullopt; | 
|  | return std::optional<uint64_t>(Ranges.begin()->start()); | 
|  | } | 
|  |  | 
|  | std::optional<uint64_t> GsymCreator::getLastFunctionAddress() const { | 
|  | if (Finalized && !Funcs.empty()) | 
|  | return std::optional<uint64_t>(Funcs.back().startAddress()); | 
|  | // This code gets used by the segmentation of GSYM files to help determine the | 
|  | // size of the GSYM header while continually adding new FunctionInfo objects | 
|  | // to this object, so we haven't finalized this object yet. | 
|  | if (Ranges.empty()) | 
|  | return std::nullopt; | 
|  | return std::optional<uint64_t>((Ranges.end() - 1)->end()); | 
|  | } | 
|  |  | 
|  | std::optional<uint64_t> GsymCreator::getBaseAddress() const { | 
|  | if (BaseAddress) | 
|  | return BaseAddress; | 
|  | return getFirstFunctionAddress(); | 
|  | } | 
|  |  | 
|  | uint64_t GsymCreator::getMaxAddressOffset() const { | 
|  | switch (getAddressOffsetSize()) { | 
|  | case 1: return UINT8_MAX; | 
|  | case 2: return UINT16_MAX; | 
|  | case 4: return UINT32_MAX; | 
|  | case 8: return UINT64_MAX; | 
|  | } | 
|  | llvm_unreachable("invalid address offset"); | 
|  | } | 
|  |  | 
|  | uint8_t GsymCreator::getAddressOffsetSize() const { | 
|  | const std::optional<uint64_t> BaseAddress = getBaseAddress(); | 
|  | const std::optional<uint64_t> LastFuncAddr = getLastFunctionAddress(); | 
|  | if (BaseAddress && LastFuncAddr) { | 
|  | const uint64_t AddrDelta = *LastFuncAddr - *BaseAddress; | 
|  | if (AddrDelta <= UINT8_MAX) | 
|  | return 1; | 
|  | else if (AddrDelta <= UINT16_MAX) | 
|  | return 2; | 
|  | else if (AddrDelta <= UINT32_MAX) | 
|  | return 4; | 
|  | return 8; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | uint64_t GsymCreator::calculateHeaderAndTableSize() const { | 
|  | uint64_t Size = sizeof(Header); | 
|  | const size_t NumFuncs = Funcs.size(); | 
|  | // Add size of address offset table | 
|  | Size += NumFuncs * getAddressOffsetSize(); | 
|  | // Add size of address info offsets which are 32 bit integers in version 1. | 
|  | Size += NumFuncs * sizeof(uint32_t); | 
|  | // Add file table size | 
|  | Size += Files.size() * sizeof(FileEntry); | 
|  | // Add string table size | 
|  | Size += StrTab.getSize(); | 
|  |  | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | // This function takes a InlineInfo class that was copy constructed from an | 
|  | // InlineInfo from the \a SrcGC and updates all members that point to strings | 
|  | // and files to point to strings and files from this GsymCreator. | 
|  | void GsymCreator::fixupInlineInfo(const GsymCreator &SrcGC, InlineInfo &II) { | 
|  | II.Name = copyString(SrcGC, II.Name); | 
|  | II.CallFile = copyFile(SrcGC, II.CallFile); | 
|  | for (auto &ChildII: II.Children) | 
|  | fixupInlineInfo(SrcGC, ChildII); | 
|  | } | 
|  |  | 
|  | uint64_t GsymCreator::copyFunctionInfo(const GsymCreator &SrcGC, size_t FuncIdx) { | 
|  | // To copy a function info we need to copy any files and strings over into | 
|  | // this GsymCreator and then copy the function info and update the string | 
|  | // table offsets to match the new offsets. | 
|  | const FunctionInfo &SrcFI = SrcGC.Funcs[FuncIdx]; | 
|  | Ranges.insert(SrcFI.Range); | 
|  |  | 
|  | FunctionInfo DstFI; | 
|  | DstFI.Range = SrcFI.Range; | 
|  | DstFI.Name = copyString(SrcGC, SrcFI.Name); | 
|  | // Copy the line table if there is one. | 
|  | if (SrcFI.OptLineTable) { | 
|  | // Copy the entire line table. | 
|  | DstFI.OptLineTable = LineTable(SrcFI.OptLineTable.value()); | 
|  | // Fixup all LineEntry::File entries which are indexes in the the file table | 
|  | // from SrcGC and must be converted to file indexes from this GsymCreator. | 
|  | LineTable &DstLT = DstFI.OptLineTable.value(); | 
|  | const size_t NumLines = DstLT.size(); | 
|  | for (size_t I=0; I<NumLines; ++I) { | 
|  | LineEntry &LE = DstLT.get(I); | 
|  | LE.File = copyFile(SrcGC, LE.File); | 
|  | } | 
|  | } | 
|  | // Copy the inline information if needed. | 
|  | if (SrcFI.Inline) { | 
|  | // Make a copy of the source inline information. | 
|  | DstFI.Inline = SrcFI.Inline.value(); | 
|  | // Fixup all strings and files in the copied inline information. | 
|  | fixupInlineInfo(SrcGC, *DstFI.Inline); | 
|  | } | 
|  | std::lock_guard<std::mutex> Guard(Mutex); | 
|  | Funcs.push_back(DstFI); | 
|  | return Funcs.back().cacheEncoding(); | 
|  | } | 
|  |  | 
|  | llvm::Error GsymCreator::saveSegments(StringRef Path, | 
|  | llvm::support::endianness ByteOrder, | 
|  | uint64_t SegmentSize) const { | 
|  | if (SegmentSize == 0) | 
|  | return createStringError(std::errc::invalid_argument, | 
|  | "invalid segment size zero"); | 
|  |  | 
|  | size_t FuncIdx = 0; | 
|  | const size_t NumFuncs = Funcs.size(); | 
|  | while (FuncIdx < NumFuncs) { | 
|  | llvm::Expected<std::unique_ptr<GsymCreator>> ExpectedGC = | 
|  | createSegment(SegmentSize, FuncIdx); | 
|  | if (ExpectedGC) { | 
|  | GsymCreator *GC = ExpectedGC->get(); | 
|  | if (GC == NULL) | 
|  | break; // We had not more functions to encode. | 
|  | raw_null_ostream ErrorStrm; | 
|  | llvm::Error Err = GC->finalize(ErrorStrm); | 
|  | if (Err) | 
|  | return Err; | 
|  | std::string SegmentedGsymPath; | 
|  | raw_string_ostream SGP(SegmentedGsymPath); | 
|  | std::optional<uint64_t> FirstFuncAddr = GC->getFirstFunctionAddress(); | 
|  | if (FirstFuncAddr) { | 
|  | SGP << Path << "-" << llvm::format_hex(*FirstFuncAddr, 1); | 
|  | SGP.flush(); | 
|  | Err = GC->save(SegmentedGsymPath, ByteOrder, std::nullopt); | 
|  | if (Err) | 
|  | return Err; | 
|  | } | 
|  | } else { | 
|  | return ExpectedGC.takeError(); | 
|  | } | 
|  | } | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | llvm::Expected<std::unique_ptr<GsymCreator>> | 
|  | GsymCreator::createSegment(uint64_t SegmentSize, size_t &FuncIdx) const { | 
|  | // No function entries, return empty unique pointer | 
|  | if (FuncIdx >= Funcs.size()) | 
|  | return std::unique_ptr<GsymCreator>(); | 
|  |  | 
|  | std::unique_ptr<GsymCreator> GC(new GsymCreator(/*Quiet=*/true)); | 
|  | // Set the base address if there is one. | 
|  | if (BaseAddress) | 
|  | GC->setBaseAddress(*BaseAddress); | 
|  | // Copy the UUID value from this object into the new creator. | 
|  | GC->setUUID(UUID); | 
|  | const size_t NumFuncs = Funcs.size(); | 
|  | // Track how big the function infos are for the current segment so we can | 
|  | // emit segments that are close to the requested size. It is quick math to | 
|  | // determine the current header and tables sizes, so we can do that each loop. | 
|  | uint64_t SegmentFuncInfosSize = 0; | 
|  | for (; FuncIdx < NumFuncs; ++FuncIdx) { | 
|  | const uint64_t HeaderAndTableSize = GC->calculateHeaderAndTableSize(); | 
|  | if (HeaderAndTableSize + SegmentFuncInfosSize >= SegmentSize) { | 
|  | if (SegmentFuncInfosSize == 0) | 
|  | return createStringError(std::errc::invalid_argument, | 
|  | "a segment size of %" PRIu64 " is to small to " | 
|  | "fit any function infos, specify a larger value", | 
|  | SegmentSize); | 
|  |  | 
|  | break; | 
|  | } | 
|  | SegmentFuncInfosSize += alignTo(GC->copyFunctionInfo(*this, FuncIdx), 4); | 
|  | } | 
|  | return std::move(GC); | 
|  | } |