| //===-- SchedClassResolution.cpp --------------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SchedClassResolution.h" |
| #include "BenchmarkResult.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/Support/FormatVariadic.h" |
| #include <limits> |
| #include <unordered_set> |
| #include <vector> |
| |
| namespace llvm { |
| namespace exegesis { |
| |
| // Return the non-redundant list of WriteProcRes used by the given sched class. |
| // The scheduling model for LLVM is such that each instruction has a certain |
| // number of uops which consume resources which are described by WriteProcRes |
| // entries. Each entry describe how many cycles are spent on a specific ProcRes |
| // kind. |
| // For example, an instruction might have 3 uOps, one dispatching on P0 |
| // (ProcResIdx=1) and two on P06 (ProcResIdx = 7). |
| // Note that LLVM additionally denormalizes resource consumption to include |
| // usage of super resources by subresources. So in practice if there exists a |
| // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by |
| // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed |
| // by P06 are also consumed by P016. In the figure below, parenthesized cycles |
| // denote implied usage of superresources by subresources: |
| // P0 P06 P016 |
| // uOp1 1 (1) (1) |
| // uOp2 1 (1) |
| // uOp3 1 (1) |
| // ============================= |
| // 1 3 3 |
| // Eventually we end up with three entries for the WriteProcRes of the |
| // instruction: |
| // {ProcResIdx=1, Cycles=1} // P0 |
| // {ProcResIdx=7, Cycles=3} // P06 |
| // {ProcResIdx=10, Cycles=3} // P016 |
| // |
| // Note that in this case, P016 does not contribute any cycles, so it would |
| // be removed by this function. |
| // FIXME: Move this to MCSubtargetInfo and use it in llvm-mca. |
| static SmallVector<MCWriteProcResEntry, 8> |
| getNonRedundantWriteProcRes(const MCSchedClassDesc &SCDesc, |
| const MCSubtargetInfo &STI) { |
| SmallVector<MCWriteProcResEntry, 8> Result; |
| const auto &SM = STI.getSchedModel(); |
| const unsigned NumProcRes = SM.getNumProcResourceKinds(); |
| |
| // This assumes that the ProcResDescs are sorted in topological order, which |
| // is guaranteed by the tablegen backend. |
| SmallVector<float, 32> ProcResUnitUsage(NumProcRes); |
| for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc), |
| *const WPREnd = STI.getWriteProcResEnd(&SCDesc); |
| WPR != WPREnd; ++WPR) { |
| const MCProcResourceDesc *const ProcResDesc = |
| SM.getProcResource(WPR->ProcResourceIdx); |
| if (ProcResDesc->SubUnitsIdxBegin == nullptr) { |
| // This is a ProcResUnit. |
| Result.push_back({WPR->ProcResourceIdx, WPR->Cycles}); |
| ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles; |
| } else { |
| // This is a ProcResGroup. First see if it contributes any cycles or if |
| // it has cycles just from subunits. |
| float RemainingCycles = WPR->Cycles; |
| for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin; |
| SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits; |
| ++SubResIdx) { |
| RemainingCycles -= ProcResUnitUsage[*SubResIdx]; |
| } |
| if (RemainingCycles < 0.01f) { |
| // The ProcResGroup contributes no cycles of its own. |
| continue; |
| } |
| // The ProcResGroup contributes `RemainingCycles` cycles of its own. |
| Result.push_back({WPR->ProcResourceIdx, |
| static_cast<uint16_t>(std::round(RemainingCycles))}); |
| // Spread the remaining cycles over all subunits. |
| for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin; |
| SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits; |
| ++SubResIdx) { |
| ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits; |
| } |
| } |
| } |
| return Result; |
| } |
| |
| // Distributes a pressure budget as evenly as possible on the provided subunits |
| // given the already existing port pressure distribution. |
| // |
| // The algorithm is as follows: while there is remaining pressure to |
| // distribute, find the subunits with minimal pressure, and distribute |
| // remaining pressure equally up to the pressure of the unit with |
| // second-to-minimal pressure. |
| // For example, let's assume we want to distribute 2*P1256 |
| // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is: |
| // DensePressure = P0 P1 P2 P3 P4 P5 P6 P7 |
| // 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5 |
| // RemainingPressure = 2.0 |
| // We sort the subunits by pressure: |
| // Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)] |
| // We'll first start by the subunits with minimal pressure, which are at |
| // the beginning of the sorted array. In this example there is one (P2). |
| // The subunit with second-to-minimal pressure is the next one in the |
| // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles |
| // from the budget. |
| // Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)] |
| // RemainingPressure = 1.9 |
| // We repeat this process: distribute 0.2 pressure on each of the minimal |
| // P2 and P1, decrease budget by 2*0.2: |
| // Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)] |
| // RemainingPressure = 1.5 |
| // There are no second-to-minimal subunits so we just share the remaining |
| // budget (1.5 cycles) equally: |
| // Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)] |
| // RemainingPressure = 0.0 |
| // We stop as there is no remaining budget to distribute. |
| static void distributePressure(float RemainingPressure, |
| SmallVector<uint16_t, 32> Subunits, |
| SmallVector<float, 32> &DensePressure) { |
| // Find the number of subunits with minimal pressure (they are at the |
| // front). |
| sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) { |
| return DensePressure[A] < DensePressure[B]; |
| }); |
| const auto getPressureForSubunit = [&DensePressure, |
| &Subunits](size_t I) -> float & { |
| return DensePressure[Subunits[I]]; |
| }; |
| size_t NumMinimalSU = 1; |
| while (NumMinimalSU < Subunits.size() && |
| getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) { |
| ++NumMinimalSU; |
| } |
| while (RemainingPressure > 0.0f) { |
| if (NumMinimalSU == Subunits.size()) { |
| // All units are minimal, just distribute evenly and be done. |
| for (size_t I = 0; I < NumMinimalSU; ++I) { |
| getPressureForSubunit(I) += RemainingPressure / NumMinimalSU; |
| } |
| return; |
| } |
| // Distribute the remaining pressure equally. |
| const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1); |
| const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU); |
| assert(MinimalPressure < SecondToMinimalPressure); |
| const float Increment = SecondToMinimalPressure - MinimalPressure; |
| if (RemainingPressure <= NumMinimalSU * Increment) { |
| // There is not enough remaining pressure. |
| for (size_t I = 0; I < NumMinimalSU; ++I) { |
| getPressureForSubunit(I) += RemainingPressure / NumMinimalSU; |
| } |
| return; |
| } |
| // Bump all minimal pressure subunits to `SecondToMinimalPressure`. |
| for (size_t I = 0; I < NumMinimalSU; ++I) { |
| getPressureForSubunit(I) = SecondToMinimalPressure; |
| RemainingPressure -= SecondToMinimalPressure; |
| } |
| while (NumMinimalSU < Subunits.size() && |
| getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) { |
| ++NumMinimalSU; |
| } |
| } |
| } |
| |
| std::vector<std::pair<uint16_t, float>> |
| computeIdealizedProcResPressure(const MCSchedModel &SM, |
| SmallVector<MCWriteProcResEntry, 8> WPRS) { |
| // DensePressure[I] is the port pressure for Proc Resource I. |
| SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds()); |
| sort(WPRS, [](const MCWriteProcResEntry &A, const MCWriteProcResEntry &B) { |
| return A.ProcResourceIdx < B.ProcResourceIdx; |
| }); |
| for (const MCWriteProcResEntry &WPR : WPRS) { |
| // Get units for the entry. |
| const MCProcResourceDesc *const ProcResDesc = |
| SM.getProcResource(WPR.ProcResourceIdx); |
| if (ProcResDesc->SubUnitsIdxBegin == nullptr) { |
| // This is a ProcResUnit. |
| DensePressure[WPR.ProcResourceIdx] += WPR.Cycles; |
| } else { |
| // This is a ProcResGroup. |
| SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin, |
| ProcResDesc->SubUnitsIdxBegin + |
| ProcResDesc->NumUnits); |
| distributePressure(WPR.Cycles, Subunits, DensePressure); |
| } |
| } |
| // Turn dense pressure into sparse pressure by removing zero entries. |
| std::vector<std::pair<uint16_t, float>> Pressure; |
| for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) { |
| if (DensePressure[I] > 0.0f) |
| Pressure.emplace_back(I, DensePressure[I]); |
| } |
| return Pressure; |
| } |
| |
| ResolvedSchedClass::ResolvedSchedClass(const MCSubtargetInfo &STI, |
| unsigned ResolvedSchedClassId, |
| bool WasVariant) |
| : SchedClassId(ResolvedSchedClassId), |
| SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)), |
| WasVariant(WasVariant), |
| NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)), |
| IdealizedProcResPressure(computeIdealizedProcResPressure( |
| STI.getSchedModel(), NonRedundantWriteProcRes)) { |
| assert((SCDesc == nullptr || !SCDesc->isVariant()) && |
| "ResolvedSchedClass should never be variant"); |
| } |
| |
| static unsigned ResolveVariantSchedClassId(const MCSubtargetInfo &STI, |
| const MCInstrInfo &InstrInfo, |
| unsigned SchedClassId, |
| const MCInst &MCI) { |
| const auto &SM = STI.getSchedModel(); |
| while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant()) { |
| SchedClassId = STI.resolveVariantSchedClass(SchedClassId, &MCI, &InstrInfo, |
| SM.getProcessorID()); |
| } |
| return SchedClassId; |
| } |
| |
| std::pair<unsigned /*SchedClassId*/, bool /*WasVariant*/> |
| ResolvedSchedClass::resolveSchedClassId(const MCSubtargetInfo &SubtargetInfo, |
| const MCInstrInfo &InstrInfo, |
| const MCInst &MCI) { |
| unsigned SchedClassId = InstrInfo.get(MCI.getOpcode()).getSchedClass(); |
| const bool WasVariant = SchedClassId && SubtargetInfo.getSchedModel() |
| .getSchedClassDesc(SchedClassId) |
| ->isVariant(); |
| SchedClassId = |
| ResolveVariantSchedClassId(SubtargetInfo, InstrInfo, SchedClassId, MCI); |
| return std::make_pair(SchedClassId, WasVariant); |
| } |
| |
| // Returns a ProxResIdx by id or name. |
| static unsigned findProcResIdx(const MCSubtargetInfo &STI, |
| const StringRef NameOrId) { |
| // Interpret the key as an ProcResIdx. |
| unsigned ProcResIdx = 0; |
| if (to_integer(NameOrId, ProcResIdx, 10)) |
| return ProcResIdx; |
| // Interpret the key as a ProcRes name. |
| const auto &SchedModel = STI.getSchedModel(); |
| for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) { |
| if (NameOrId == SchedModel.getProcResource(I)->Name) |
| return I; |
| } |
| return 0; |
| } |
| |
| std::vector<BenchmarkMeasure> ResolvedSchedClass::getAsPoint( |
| InstructionBenchmark::ModeE Mode, const MCSubtargetInfo &STI, |
| ArrayRef<PerInstructionStats> Representative) const { |
| const size_t NumMeasurements = Representative.size(); |
| |
| std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements); |
| |
| if (Mode == InstructionBenchmark::Latency) { |
| assert(NumMeasurements == 1 && "Latency is a single measure."); |
| BenchmarkMeasure &LatencyMeasure = SchedClassPoint[0]; |
| |
| // Find the latency. |
| LatencyMeasure.PerInstructionValue = 0.0; |
| |
| for (unsigned I = 0; I < SCDesc->NumWriteLatencyEntries; ++I) { |
| const MCWriteLatencyEntry *const WLE = |
| STI.getWriteLatencyEntry(SCDesc, I); |
| LatencyMeasure.PerInstructionValue = |
| std::max<double>(LatencyMeasure.PerInstructionValue, WLE->Cycles); |
| } |
| } else if (Mode == InstructionBenchmark::Uops) { |
| for (auto I : zip(SchedClassPoint, Representative)) { |
| BenchmarkMeasure &Measure = std::get<0>(I); |
| const PerInstructionStats &Stats = std::get<1>(I); |
| |
| StringRef Key = Stats.key(); |
| uint16_t ProcResIdx = findProcResIdx(STI, Key); |
| if (ProcResIdx > 0) { |
| // Find the pressure on ProcResIdx `Key`. |
| const auto ProcResPressureIt = |
| llvm::find_if(IdealizedProcResPressure, |
| [ProcResIdx](const std::pair<uint16_t, float> &WPR) { |
| return WPR.first == ProcResIdx; |
| }); |
| Measure.PerInstructionValue = |
| ProcResPressureIt == IdealizedProcResPressure.end() |
| ? 0.0 |
| : ProcResPressureIt->second; |
| } else if (Key == "NumMicroOps") { |
| Measure.PerInstructionValue = SCDesc->NumMicroOps; |
| } else { |
| errs() << "expected `key` to be either a ProcResIdx or a ProcRes " |
| "name, got " |
| << Key << "\n"; |
| return {}; |
| } |
| } |
| } else if (Mode == InstructionBenchmark::InverseThroughput) { |
| assert(NumMeasurements == 1 && "Inverse Throughput is a single measure."); |
| BenchmarkMeasure &RThroughputMeasure = SchedClassPoint[0]; |
| |
| RThroughputMeasure.PerInstructionValue = |
| MCSchedModel::getReciprocalThroughput(STI, *SCDesc); |
| } else { |
| llvm_unreachable("unimplemented measurement matching mode"); |
| } |
| |
| return SchedClassPoint; |
| } |
| |
| } // namespace exegesis |
| } // namespace llvm |