|  | //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This transformation analyzes and transforms the induction variables (and | 
|  | // computations derived from them) into simpler forms suitable for subsequent | 
|  | // analysis and transformation. | 
|  | // | 
|  | // If the trip count of a loop is computable, this pass also makes the following | 
|  | // changes: | 
|  | //   1. The exit condition for the loop is canonicalized to compare the | 
|  | //      induction value against the exit value.  This turns loops like: | 
|  | //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' | 
|  | //   2. Any use outside of the loop of an expression derived from the indvar | 
|  | //      is changed to compute the derived value outside of the loop, eliminating | 
|  | //      the dependence on the exit value of the induction variable.  If the only | 
|  | //      purpose of the loop is to compute the exit value of some derived | 
|  | //      expression, this transformation will make the loop dead. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/IndVarSimplify.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/MemorySSA.h" | 
|  | #include "llvm/Analysis/MemorySSAUpdater.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionPatternMatch.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" | 
|  | #include "llvm/Transforms/Utils/SimplifyIndVar.h" | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  | using namespace SCEVPatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "indvars" | 
|  |  | 
|  | STATISTIC(NumWidened     , "Number of indvars widened"); | 
|  | STATISTIC(NumReplaced    , "Number of exit values replaced"); | 
|  | STATISTIC(NumLFTR        , "Number of loop exit tests replaced"); | 
|  | STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated"); | 
|  | STATISTIC(NumElimIV      , "Number of congruent IVs eliminated"); | 
|  |  | 
|  | static cl::opt<ReplaceExitVal> ReplaceExitValue( | 
|  | "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), | 
|  | cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), | 
|  | cl::values( | 
|  | clEnumValN(NeverRepl, "never", "never replace exit value"), | 
|  | clEnumValN(OnlyCheapRepl, "cheap", | 
|  | "only replace exit value when the cost is cheap"), | 
|  | clEnumValN( | 
|  | UnusedIndVarInLoop, "unusedindvarinloop", | 
|  | "only replace exit value when it is an unused " | 
|  | "induction variable in the loop and has cheap replacement cost"), | 
|  | clEnumValN(NoHardUse, "noharduse", | 
|  | "only replace exit values when loop def likely dead"), | 
|  | clEnumValN(AlwaysRepl, "always", | 
|  | "always replace exit value whenever possible"))); | 
|  |  | 
|  | static cl::opt<bool> UsePostIncrementRanges( | 
|  | "indvars-post-increment-ranges", cl::Hidden, | 
|  | cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), | 
|  | cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable Linear Function Test Replace optimization")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true), | 
|  | cl::desc("Predicate conditions in read only loops")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true), | 
|  | cl::desc("Allow widening of indvars to eliminate s/zext")); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class IndVarSimplify { | 
|  | LoopInfo *LI; | 
|  | ScalarEvolution *SE; | 
|  | DominatorTree *DT; | 
|  | const DataLayout &DL; | 
|  | TargetLibraryInfo *TLI; | 
|  | const TargetTransformInfo *TTI; | 
|  | std::unique_ptr<MemorySSAUpdater> MSSAU; | 
|  |  | 
|  | SmallVector<WeakTrackingVH, 16> DeadInsts; | 
|  | bool WidenIndVars; | 
|  |  | 
|  | bool RunUnswitching = false; | 
|  |  | 
|  | bool handleFloatingPointIV(Loop *L, PHINode *PH); | 
|  | bool rewriteNonIntegerIVs(Loop *L); | 
|  |  | 
|  | bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); | 
|  | /// Try to improve our exit conditions by converting condition from signed | 
|  | /// to unsigned or rotating computation out of the loop. | 
|  | /// (See inline comment about why this is duplicated from simplifyAndExtend) | 
|  | bool canonicalizeExitCondition(Loop *L); | 
|  | /// Try to eliminate loop exits based on analyzeable exit counts | 
|  | bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter); | 
|  | /// Try to form loop invariant tests for loop exits by changing how many | 
|  | /// iterations of the loop run when that is unobservable. | 
|  | bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); | 
|  |  | 
|  | bool rewriteFirstIterationLoopExitValues(Loop *L); | 
|  |  | 
|  | bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, | 
|  | const SCEV *ExitCount, | 
|  | PHINode *IndVar, SCEVExpander &Rewriter); | 
|  |  | 
|  | bool sinkUnusedInvariants(Loop *L); | 
|  |  | 
|  | public: | 
|  | IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, | 
|  | const DataLayout &DL, TargetLibraryInfo *TLI, | 
|  | TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars) | 
|  | : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI), | 
|  | WidenIndVars(WidenIndVars) { | 
|  | if (MSSA) | 
|  | MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); | 
|  | } | 
|  |  | 
|  | bool run(Loop *L); | 
|  |  | 
|  | bool runUnswitching() const { return RunUnswitching; } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // rewriteNonIntegerIVs and helpers. Prefer integer IVs. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Convert APF to an integer, if possible. | 
|  | static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { | 
|  | bool isExact = false; | 
|  | // See if we can convert this to an int64_t | 
|  | uint64_t UIntVal; | 
|  | if (APF.convertToInteger(MutableArrayRef(UIntVal), 64, true, | 
|  | APFloat::rmTowardZero, &isExact) != APFloat::opOK || | 
|  | !isExact) | 
|  | return false; | 
|  | IntVal = UIntVal; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// If the loop has floating induction variable then insert corresponding | 
|  | /// integer induction variable if possible. | 
|  | /// For example, | 
|  | /// for(double i = 0; i < 10000; ++i) | 
|  | ///   bar(i) | 
|  | /// is converted into | 
|  | /// for(int i = 0; i < 10000; ++i) | 
|  | ///   bar((double)i); | 
|  | bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { | 
|  | unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); | 
|  | unsigned BackEdge     = IncomingEdge^1; | 
|  |  | 
|  | // Check incoming value. | 
|  | auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); | 
|  |  | 
|  | int64_t InitValue; | 
|  | if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) | 
|  | return false; | 
|  |  | 
|  | // Check IV increment. Reject this PN if increment operation is not | 
|  | // an add or increment value can not be represented by an integer. | 
|  | auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); | 
|  | if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; | 
|  |  | 
|  | // If this is not an add of the PHI with a constantfp, or if the constant fp | 
|  | // is not an integer, bail out. | 
|  | ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); | 
|  | int64_t IncValue; | 
|  | if (IncValueVal == nullptr || Incr->getOperand(0) != PN || | 
|  | !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) | 
|  | return false; | 
|  |  | 
|  | // Check Incr uses. One user is PN and the other user is an exit condition | 
|  | // used by the conditional terminator. | 
|  | Value::user_iterator IncrUse = Incr->user_begin(); | 
|  | Instruction *U1 = cast<Instruction>(*IncrUse++); | 
|  | if (IncrUse == Incr->user_end()) return false; | 
|  | Instruction *U2 = cast<Instruction>(*IncrUse++); | 
|  | if (IncrUse != Incr->user_end()) return false; | 
|  |  | 
|  | // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't | 
|  | // only used by a branch, we can't transform it. | 
|  | FCmpInst *Compare = dyn_cast<FCmpInst>(U1); | 
|  | if (!Compare) | 
|  | Compare = dyn_cast<FCmpInst>(U2); | 
|  | if (!Compare || !Compare->hasOneUse() || | 
|  | !isa<BranchInst>(Compare->user_back())) | 
|  | return false; | 
|  |  | 
|  | BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); | 
|  |  | 
|  | // We need to verify that the branch actually controls the iteration count | 
|  | // of the loop.  If not, the new IV can overflow and no one will notice. | 
|  | // The branch block must be in the loop and one of the successors must be out | 
|  | // of the loop. | 
|  | assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); | 
|  | if (!L->contains(TheBr->getParent()) || | 
|  | (L->contains(TheBr->getSuccessor(0)) && | 
|  | L->contains(TheBr->getSuccessor(1)))) | 
|  | return false; | 
|  |  | 
|  | // If it isn't a comparison with an integer-as-fp (the exit value), we can't | 
|  | // transform it. | 
|  | ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); | 
|  | int64_t ExitValue; | 
|  | if (ExitValueVal == nullptr || | 
|  | !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) | 
|  | return false; | 
|  |  | 
|  | // Find new predicate for integer comparison. | 
|  | CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; | 
|  | switch (Compare->getPredicate()) { | 
|  | default: return false;  // Unknown comparison. | 
|  | case CmpInst::FCMP_OEQ: | 
|  | case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; | 
|  | case CmpInst::FCMP_ONE: | 
|  | case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; | 
|  | case CmpInst::FCMP_OGT: | 
|  | case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; | 
|  | case CmpInst::FCMP_OGE: | 
|  | case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; | 
|  | case CmpInst::FCMP_OLT: | 
|  | case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; | 
|  | case CmpInst::FCMP_OLE: | 
|  | case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; | 
|  | } | 
|  |  | 
|  | // We convert the floating point induction variable to a signed i32 value if | 
|  | // we can.  This is only safe if the comparison will not overflow in a way | 
|  | // that won't be trapped by the integer equivalent operations.  Check for this | 
|  | // now. | 
|  | // TODO: We could use i64 if it is native and the range requires it. | 
|  |  | 
|  | // The start/stride/exit values must all fit in signed i32. | 
|  | if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) | 
|  | return false; | 
|  |  | 
|  | // If not actually striding (add x, 0.0), avoid touching the code. | 
|  | if (IncValue == 0) | 
|  | return false; | 
|  |  | 
|  | // Positive and negative strides have different safety conditions. | 
|  | if (IncValue > 0) { | 
|  | // If we have a positive stride, we require the init to be less than the | 
|  | // exit value. | 
|  | if (InitValue >= ExitValue) | 
|  | return false; | 
|  |  | 
|  | uint32_t Range = uint32_t(ExitValue-InitValue); | 
|  | // Check for infinite loop, either: | 
|  | // while (i <= Exit) or until (i > Exit) | 
|  | if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { | 
|  | if (++Range == 0) return false;  // Range overflows. | 
|  | } | 
|  |  | 
|  | unsigned Leftover = Range % uint32_t(IncValue); | 
|  |  | 
|  | // If this is an equality comparison, we require that the strided value | 
|  | // exactly land on the exit value, otherwise the IV condition will wrap | 
|  | // around and do things the fp IV wouldn't. | 
|  | if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && | 
|  | Leftover != 0) | 
|  | return false; | 
|  |  | 
|  | // If the stride would wrap around the i32 before exiting, we can't | 
|  | // transform the IV. | 
|  | if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) | 
|  | return false; | 
|  | } else { | 
|  | // If we have a negative stride, we require the init to be greater than the | 
|  | // exit value. | 
|  | if (InitValue <= ExitValue) | 
|  | return false; | 
|  |  | 
|  | uint32_t Range = uint32_t(InitValue-ExitValue); | 
|  | // Check for infinite loop, either: | 
|  | // while (i >= Exit) or until (i < Exit) | 
|  | if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { | 
|  | if (++Range == 0) return false;  // Range overflows. | 
|  | } | 
|  |  | 
|  | unsigned Leftover = Range % uint32_t(-IncValue); | 
|  |  | 
|  | // If this is an equality comparison, we require that the strided value | 
|  | // exactly land on the exit value, otherwise the IV condition will wrap | 
|  | // around and do things the fp IV wouldn't. | 
|  | if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && | 
|  | Leftover != 0) | 
|  | return false; | 
|  |  | 
|  | // If the stride would wrap around the i32 before exiting, we can't | 
|  | // transform the IV. | 
|  | if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); | 
|  |  | 
|  | // Insert new integer induction variable. | 
|  | PHINode *NewPHI = | 
|  | PHINode::Create(Int32Ty, 2, PN->getName() + ".int", PN->getIterator()); | 
|  | NewPHI->addIncoming(ConstantInt::getSigned(Int32Ty, InitValue), | 
|  | PN->getIncomingBlock(IncomingEdge)); | 
|  | NewPHI->setDebugLoc(PN->getDebugLoc()); | 
|  |  | 
|  | Instruction *NewAdd = BinaryOperator::CreateAdd( | 
|  | NewPHI, ConstantInt::getSigned(Int32Ty, IncValue), | 
|  | Incr->getName() + ".int", Incr->getIterator()); | 
|  | NewAdd->setDebugLoc(Incr->getDebugLoc()); | 
|  | NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); | 
|  |  | 
|  | ICmpInst *NewCompare = new ICmpInst( | 
|  | TheBr->getIterator(), NewPred, NewAdd, | 
|  | ConstantInt::getSigned(Int32Ty, ExitValue), Compare->getName()); | 
|  | NewCompare->setDebugLoc(Compare->getDebugLoc()); | 
|  |  | 
|  | // In the following deletions, PN may become dead and may be deleted. | 
|  | // Use a WeakTrackingVH to observe whether this happens. | 
|  | WeakTrackingVH WeakPH = PN; | 
|  |  | 
|  | // Delete the old floating point exit comparison.  The branch starts using the | 
|  | // new comparison. | 
|  | NewCompare->takeName(Compare); | 
|  | Compare->replaceAllUsesWith(NewCompare); | 
|  | RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get()); | 
|  |  | 
|  | // Delete the old floating point increment. | 
|  | Incr->replaceAllUsesWith(PoisonValue::get(Incr->getType())); | 
|  | RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get()); | 
|  |  | 
|  | // If the FP induction variable still has uses, this is because something else | 
|  | // in the loop uses its value.  In order to canonicalize the induction | 
|  | // variable, we chose to eliminate the IV and rewrite it in terms of an | 
|  | // int->fp cast. | 
|  | // | 
|  | // We give preference to sitofp over uitofp because it is faster on most | 
|  | // platforms. | 
|  | if (WeakPH) { | 
|  | Instruction *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", | 
|  | PN->getParent()->getFirstInsertionPt()); | 
|  | Conv->setDebugLoc(PN->getDebugLoc()); | 
|  | PN->replaceAllUsesWith(Conv); | 
|  | RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get()); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { | 
|  | // First step.  Check to see if there are any floating-point recurrences. | 
|  | // If there are, change them into integer recurrences, permitting analysis by | 
|  | // the SCEV routines. | 
|  | BasicBlock *Header = L->getHeader(); | 
|  |  | 
|  | SmallVector<WeakTrackingVH, 8> PHIs(llvm::make_pointer_range(Header->phis())); | 
|  |  | 
|  | bool Changed = false; | 
|  | for (WeakTrackingVH &PHI : PHIs) | 
|  | if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHI)) | 
|  | Changed |= handleFloatingPointIV(L, PN); | 
|  |  | 
|  | // If the loop previously had floating-point IV, ScalarEvolution | 
|  | // may not have been able to compute a trip count. Now that we've done some | 
|  | // re-writing, the trip count may be computable. | 
|  | if (Changed) | 
|  | SE->forgetLoop(L); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | //===---------------------------------------------------------------------===// | 
|  | // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know | 
|  | // they will exit at the first iteration. | 
|  | //===---------------------------------------------------------------------===// | 
|  |  | 
|  | /// Check to see if this loop has loop invariant conditions which lead to loop | 
|  | /// exits. If so, we know that if the exit path is taken, it is at the first | 
|  | /// loop iteration. This lets us predict exit values of PHI nodes that live in | 
|  | /// loop header. | 
|  | bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { | 
|  | // Verify the input to the pass is already in LCSSA form. | 
|  | assert(L->isLCSSAForm(*DT)); | 
|  |  | 
|  | SmallVector<BasicBlock *, 8> ExitBlocks; | 
|  | L->getUniqueExitBlocks(ExitBlocks); | 
|  |  | 
|  | bool MadeAnyChanges = false; | 
|  | for (auto *ExitBB : ExitBlocks) { | 
|  | // If there are no more PHI nodes in this exit block, then no more | 
|  | // values defined inside the loop are used on this path. | 
|  | for (PHINode &PN : ExitBB->phis()) { | 
|  | for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); | 
|  | IncomingValIdx != E; ++IncomingValIdx) { | 
|  | auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); | 
|  |  | 
|  | // Can we prove that the exit must run on the first iteration if it | 
|  | // runs at all?  (i.e. early exits are fine for our purposes, but | 
|  | // traces which lead to this exit being taken on the 2nd iteration | 
|  | // aren't.)  Note that this is about whether the exit branch is | 
|  | // executed, not about whether it is taken. | 
|  | if (!L->getLoopLatch() || | 
|  | !DT->dominates(IncomingBB, L->getLoopLatch())) | 
|  | continue; | 
|  |  | 
|  | // Get condition that leads to the exit path. | 
|  | auto *TermInst = IncomingBB->getTerminator(); | 
|  |  | 
|  | Value *Cond = nullptr; | 
|  | if (auto *BI = dyn_cast<BranchInst>(TermInst)) { | 
|  | // Must be a conditional branch, otherwise the block | 
|  | // should not be in the loop. | 
|  | Cond = BI->getCondition(); | 
|  | } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) | 
|  | Cond = SI->getCondition(); | 
|  | else | 
|  | continue; | 
|  |  | 
|  | if (!L->isLoopInvariant(Cond)) | 
|  | continue; | 
|  |  | 
|  | auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); | 
|  |  | 
|  | // Only deal with PHIs in the loop header. | 
|  | if (!ExitVal || ExitVal->getParent() != L->getHeader()) | 
|  | continue; | 
|  |  | 
|  | // If ExitVal is a PHI on the loop header, then we know its | 
|  | // value along this exit because the exit can only be taken | 
|  | // on the first iteration. | 
|  | auto *LoopPreheader = L->getLoopPreheader(); | 
|  | assert(LoopPreheader && "Invalid loop"); | 
|  | int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); | 
|  | if (PreheaderIdx != -1) { | 
|  | assert(ExitVal->getParent() == L->getHeader() && | 
|  | "ExitVal must be in loop header"); | 
|  | MadeAnyChanges = true; | 
|  | PN.setIncomingValue(IncomingValIdx, | 
|  | ExitVal->getIncomingValue(PreheaderIdx)); | 
|  | SE->forgetValue(&PN); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return MadeAnyChanges; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  IV Widening - Extend the width of an IV to cover its widest uses. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Update information about the induction variable that is extended by this | 
|  | /// sign or zero extend operation. This is used to determine the final width of | 
|  | /// the IV before actually widening it. | 
|  | static void visitIVCast(CastInst *Cast, WideIVInfo &WI, | 
|  | ScalarEvolution *SE, | 
|  | const TargetTransformInfo *TTI) { | 
|  | bool IsSigned = Cast->getOpcode() == Instruction::SExt; | 
|  | if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) | 
|  | return; | 
|  |  | 
|  | Type *Ty = Cast->getType(); | 
|  | uint64_t Width = SE->getTypeSizeInBits(Ty); | 
|  | if (!Cast->getDataLayout().isLegalInteger(Width)) | 
|  | return; | 
|  |  | 
|  | // Check that `Cast` actually extends the induction variable (we rely on this | 
|  | // later).  This takes care of cases where `Cast` is extending a truncation of | 
|  | // the narrow induction variable, and thus can end up being narrower than the | 
|  | // "narrow" induction variable. | 
|  | uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); | 
|  | if (NarrowIVWidth >= Width) | 
|  | return; | 
|  |  | 
|  | // Cast is either an sext or zext up to this point. | 
|  | // We should not widen an indvar if arithmetics on the wider indvar are more | 
|  | // expensive than those on the narrower indvar. We check only the cost of ADD | 
|  | // because at least an ADD is required to increment the induction variable. We | 
|  | // could compute more comprehensively the cost of all instructions on the | 
|  | // induction variable when necessary. | 
|  | if (TTI && | 
|  | TTI->getArithmeticInstrCost(Instruction::Add, Ty) > | 
|  | TTI->getArithmeticInstrCost(Instruction::Add, | 
|  | Cast->getOperand(0)->getType())) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!WI.WidestNativeType || | 
|  | Width > SE->getTypeSizeInBits(WI.WidestNativeType)) { | 
|  | WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); | 
|  | WI.IsSigned = IsSigned; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We extend the IV to satisfy the sign of its user(s), or 'signed' | 
|  | // if there are multiple users with both sign- and zero extensions, | 
|  | // in order not to introduce nondeterministic behaviour based on the | 
|  | // unspecified order of a PHI nodes' users-iterator. | 
|  | WI.IsSigned |= IsSigned; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Live IV Reduction - Minimize IVs live across the loop. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Simplification of IV users based on SCEV evaluation. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class IndVarSimplifyVisitor : public IVVisitor { | 
|  | ScalarEvolution *SE; | 
|  | const TargetTransformInfo *TTI; | 
|  | PHINode *IVPhi; | 
|  |  | 
|  | public: | 
|  | WideIVInfo WI; | 
|  |  | 
|  | IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, | 
|  | const TargetTransformInfo *TTI, | 
|  | const DominatorTree *DTree) | 
|  | : SE(SCEV), TTI(TTI), IVPhi(IV) { | 
|  | DT = DTree; | 
|  | WI.NarrowIV = IVPhi; | 
|  | } | 
|  |  | 
|  | // Implement the interface used by simplifyUsersOfIV. | 
|  | void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Iteratively perform simplification on a worklist of IV users. Each | 
|  | /// successive simplification may push more users which may themselves be | 
|  | /// candidates for simplification. | 
|  | /// | 
|  | /// Sign/Zero extend elimination is interleaved with IV simplification. | 
|  | bool IndVarSimplify::simplifyAndExtend(Loop *L, | 
|  | SCEVExpander &Rewriter, | 
|  | LoopInfo *LI) { | 
|  | SmallVector<WideIVInfo, 8> WideIVs; | 
|  |  | 
|  | auto *GuardDecl = Intrinsic::getDeclarationIfExists( | 
|  | L->getBlocks()[0]->getModule(), Intrinsic::experimental_guard); | 
|  | bool HasGuards = GuardDecl && !GuardDecl->use_empty(); | 
|  |  | 
|  | SmallVector<PHINode *, 8> LoopPhis( | 
|  | llvm::make_pointer_range(L->getHeader()->phis())); | 
|  |  | 
|  | // Each round of simplification iterates through the SimplifyIVUsers worklist | 
|  | // for all current phis, then determines whether any IVs can be | 
|  | // widened. Widening adds new phis to LoopPhis, inducing another round of | 
|  | // simplification on the wide IVs. | 
|  | bool Changed = false; | 
|  | while (!LoopPhis.empty()) { | 
|  | // Evaluate as many IV expressions as possible before widening any IVs. This | 
|  | // forces SCEV to set no-wrap flags before evaluating sign/zero | 
|  | // extension. The first time SCEV attempts to normalize sign/zero extension, | 
|  | // the result becomes final. So for the most predictable results, we delay | 
|  | // evaluation of sign/zero extend evaluation until needed, and avoid running | 
|  | // other SCEV based analysis prior to simplifyAndExtend. | 
|  | do { | 
|  | PHINode *CurrIV = LoopPhis.pop_back_val(); | 
|  |  | 
|  | // Information about sign/zero extensions of CurrIV. | 
|  | IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); | 
|  |  | 
|  | const auto &[C, U] = simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, | 
|  | Rewriter, &Visitor); | 
|  |  | 
|  | Changed |= C; | 
|  | RunUnswitching |= U; | 
|  | if (Visitor.WI.WidestNativeType) { | 
|  | WideIVs.push_back(Visitor.WI); | 
|  | } | 
|  | } while(!LoopPhis.empty()); | 
|  |  | 
|  | // Continue if we disallowed widening. | 
|  | if (!WidenIndVars) | 
|  | continue; | 
|  |  | 
|  | for (; !WideIVs.empty(); WideIVs.pop_back()) { | 
|  | unsigned ElimExt; | 
|  | unsigned Widened; | 
|  | if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter, | 
|  | DT, DeadInsts, ElimExt, Widened, | 
|  | HasGuards, UsePostIncrementRanges)) { | 
|  | NumElimExt += ElimExt; | 
|  | NumWidened += Widened; | 
|  | Changed = true; | 
|  | LoopPhis.push_back(WidePhi); | 
|  | } | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Given an Value which is hoped to be part of an add recurance in the given | 
|  | /// loop, return the associated Phi node if so.  Otherwise, return null.  Note | 
|  | /// that this is less general than SCEVs AddRec checking. | 
|  | static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) { | 
|  | Instruction *IncI = dyn_cast<Instruction>(IncV); | 
|  | if (!IncI) | 
|  | return nullptr; | 
|  |  | 
|  | switch (IncI->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | break; | 
|  | case Instruction::GetElementPtr: | 
|  | // An IV counter must preserve its type. | 
|  | if (IncI->getNumOperands() == 2) | 
|  | break; | 
|  | [[fallthrough]]; | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); | 
|  | if (Phi && Phi->getParent() == L->getHeader()) { | 
|  | if (L->isLoopInvariant(IncI->getOperand(1))) | 
|  | return Phi; | 
|  | return nullptr; | 
|  | } | 
|  | if (IncI->getOpcode() == Instruction::GetElementPtr) | 
|  | return nullptr; | 
|  |  | 
|  | // Allow add/sub to be commuted. | 
|  | Phi = dyn_cast<PHINode>(IncI->getOperand(1)); | 
|  | if (Phi && Phi->getParent() == L->getHeader()) { | 
|  | if (L->isLoopInvariant(IncI->getOperand(0))) | 
|  | return Phi; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Whether the current loop exit test is based on this value.  Currently this | 
|  | /// is limited to a direct use in the loop condition. | 
|  | static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) { | 
|  | BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); | 
|  | ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); | 
|  | // TODO: Allow non-icmp loop test. | 
|  | if (!ICmp) | 
|  | return false; | 
|  |  | 
|  | // TODO: Allow indirect use. | 
|  | return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V; | 
|  | } | 
|  |  | 
|  | /// linearFunctionTestReplace policy. Return true unless we can show that the | 
|  | /// current exit test is already sufficiently canonical. | 
|  | static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) { | 
|  | assert(L->getLoopLatch() && "Must be in simplified form"); | 
|  |  | 
|  | // Avoid converting a constant or loop invariant test back to a runtime | 
|  | // test.  This is critical for when SCEV's cached ExitCount is less precise | 
|  | // than the current IR (such as after we've proven a particular exit is | 
|  | // actually dead and thus the BE count never reaches our ExitCount.) | 
|  | BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); | 
|  | if (L->isLoopInvariant(BI->getCondition())) | 
|  | return false; | 
|  |  | 
|  | // Do LFTR to simplify the exit condition to an ICMP. | 
|  | ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); | 
|  | if (!Cond) | 
|  | return true; | 
|  |  | 
|  | // Do LFTR to simplify the exit ICMP to EQ/NE | 
|  | ICmpInst::Predicate Pred = Cond->getPredicate(); | 
|  | if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) | 
|  | return true; | 
|  |  | 
|  | // Look for a loop invariant RHS | 
|  | Value *LHS = Cond->getOperand(0); | 
|  | Value *RHS = Cond->getOperand(1); | 
|  | if (!L->isLoopInvariant(RHS)) { | 
|  | if (!L->isLoopInvariant(LHS)) | 
|  | return true; | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  | // Look for a simple IV counter LHS | 
|  | PHINode *Phi = dyn_cast<PHINode>(LHS); | 
|  | if (!Phi) | 
|  | Phi = getLoopPhiForCounter(LHS, L); | 
|  |  | 
|  | if (!Phi) | 
|  | return true; | 
|  |  | 
|  | // Do LFTR if PHI node is defined in the loop, but is *not* a counter. | 
|  | int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); | 
|  | if (Idx < 0) | 
|  | return true; | 
|  |  | 
|  | // Do LFTR if the exit condition's IV is *not* a simple counter. | 
|  | Value *IncV = Phi->getIncomingValue(Idx); | 
|  | return Phi != getLoopPhiForCounter(IncV, L); | 
|  | } | 
|  |  | 
|  | /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils | 
|  | /// down to checking that all operands are constant and listing instructions | 
|  | /// that may hide undef. | 
|  | static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, | 
|  | unsigned Depth) { | 
|  | if (isa<Constant>(V)) | 
|  | return !isa<UndefValue>(V); | 
|  |  | 
|  | if (Depth >= 6) | 
|  | return false; | 
|  |  | 
|  | // Conservatively handle non-constant non-instructions. For example, Arguments | 
|  | // may be undef. | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) | 
|  | return false; | 
|  |  | 
|  | // Load and return values may be undef. | 
|  | if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) | 
|  | return false; | 
|  |  | 
|  | // Optimistically handle other instructions. | 
|  | for (Value *Op : I->operands()) { | 
|  | if (!Visited.insert(Op).second) | 
|  | continue; | 
|  | if (!hasConcreteDefImpl(Op, Visited, Depth+1)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if the given value is concrete. We must prove that undef can | 
|  | /// never reach it. | 
|  | /// | 
|  | /// TODO: If we decide that this is a good approach to checking for undef, we | 
|  | /// may factor it into a common location. | 
|  | static bool hasConcreteDef(Value *V) { | 
|  | SmallPtrSet<Value*, 8> Visited; | 
|  | Visited.insert(V); | 
|  | return hasConcreteDefImpl(V, Visited, 0); | 
|  | } | 
|  |  | 
|  | /// Return true if the given phi is a "counter" in L.  A counter is an | 
|  | /// add recurance (of integer or pointer type) with an arbitrary start, and a | 
|  | /// step of 1.  Note that L must have exactly one latch. | 
|  | static bool isLoopCounter(PHINode* Phi, Loop *L, | 
|  | ScalarEvolution *SE) { | 
|  | assert(Phi->getParent() == L->getHeader()); | 
|  | assert(L->getLoopLatch()); | 
|  |  | 
|  | if (!SE->isSCEVable(Phi->getType())) | 
|  | return false; | 
|  |  | 
|  | const SCEV *S = SE->getSCEV(Phi); | 
|  | if (!match(S, m_scev_AffineAddRec(m_SCEV(), m_scev_One(), m_SpecificLoop(L)))) | 
|  | return false; | 
|  |  | 
|  | int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch()); | 
|  | Value *IncV = Phi->getIncomingValue(LatchIdx); | 
|  | return (getLoopPhiForCounter(IncV, L) == Phi && | 
|  | isa<SCEVAddRecExpr>(SE->getSCEV(IncV))); | 
|  | } | 
|  |  | 
|  | /// Search the loop header for a loop counter (anadd rec w/step of one) | 
|  | /// suitable for use by LFTR.  If multiple counters are available, select the | 
|  | /// "best" one based profitable heuristics. | 
|  | /// | 
|  | /// BECount may be an i8* pointer type. The pointer difference is already | 
|  | /// valid count without scaling the address stride, so it remains a pointer | 
|  | /// expression as far as SCEV is concerned. | 
|  | static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB, | 
|  | const SCEV *BECount, | 
|  | ScalarEvolution *SE, DominatorTree *DT) { | 
|  | uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); | 
|  |  | 
|  | Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition(); | 
|  |  | 
|  | // Loop over all of the PHI nodes, looking for a simple counter. | 
|  | PHINode *BestPhi = nullptr; | 
|  | const SCEV *BestInit = nullptr; | 
|  | BasicBlock *LatchBlock = L->getLoopLatch(); | 
|  | assert(LatchBlock && "Must be in simplified form"); | 
|  | const DataLayout &DL = L->getHeader()->getDataLayout(); | 
|  |  | 
|  | for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { | 
|  | PHINode *Phi = cast<PHINode>(I); | 
|  | if (!isLoopCounter(Phi, L, SE)) | 
|  | continue; | 
|  |  | 
|  | const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); | 
|  |  | 
|  | // AR may be a pointer type, while BECount is an integer type. | 
|  | // AR may be wider than BECount. With eq/ne tests overflow is immaterial. | 
|  | // AR may not be a narrower type, or we may never exit. | 
|  | uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); | 
|  | if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) | 
|  | continue; | 
|  |  | 
|  | // Avoid reusing a potentially undef value to compute other values that may | 
|  | // have originally had a concrete definition. | 
|  | if (!hasConcreteDef(Phi)) { | 
|  | // We explicitly allow unknown phis as long as they are already used by | 
|  | // the loop exit test.  This is legal since performing LFTR could not | 
|  | // increase the number of undef users. | 
|  | Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock); | 
|  | if (!isLoopExitTestBasedOn(Phi, ExitingBB) && | 
|  | !isLoopExitTestBasedOn(IncPhi, ExitingBB)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Avoid introducing undefined behavior due to poison which didn't exist in | 
|  | // the original program.  (Annoyingly, the rules for poison and undef | 
|  | // propagation are distinct, so this does NOT cover the undef case above.) | 
|  | // We have to ensure that we don't introduce UB by introducing a use on an | 
|  | // iteration where said IV produces poison.  Our strategy here differs for | 
|  | // pointers and integer IVs.  For integers, we strip and reinfer as needed, | 
|  | // see code in linearFunctionTestReplace.  For pointers, we restrict | 
|  | // transforms as there is no good way to reinfer inbounds once lost. | 
|  | if (!Phi->getType()->isIntegerTy() && | 
|  | !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT)) | 
|  | continue; | 
|  |  | 
|  | const SCEV *Init = AR->getStart(); | 
|  |  | 
|  | if (BestPhi && !isAlmostDeadIV(BestPhi, LatchBlock, Cond)) { | 
|  | // Don't force a live loop counter if another IV can be used. | 
|  | if (isAlmostDeadIV(Phi, LatchBlock, Cond)) | 
|  | continue; | 
|  |  | 
|  | // Prefer to count-from-zero. This is a more "canonical" counter form. It | 
|  | // also prefers integer to pointer IVs. | 
|  | if (BestInit->isZero() != Init->isZero()) { | 
|  | if (BestInit->isZero()) | 
|  | continue; | 
|  | } | 
|  | // If two IVs both count from zero or both count from nonzero then the | 
|  | // narrower is likely a dead phi that has been widened. Use the wider phi | 
|  | // to allow the other to be eliminated. | 
|  | else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) | 
|  | continue; | 
|  | } | 
|  | BestPhi = Phi; | 
|  | BestInit = Init; | 
|  | } | 
|  | return BestPhi; | 
|  | } | 
|  |  | 
|  | /// Insert an IR expression which computes the value held by the IV IndVar | 
|  | /// (which must be an loop counter w/unit stride) after the backedge of loop L | 
|  | /// is taken ExitCount times. | 
|  | static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, | 
|  | const SCEV *ExitCount, bool UsePostInc, Loop *L, | 
|  | SCEVExpander &Rewriter, ScalarEvolution *SE) { | 
|  | assert(isLoopCounter(IndVar, L, SE)); | 
|  | assert(ExitCount->getType()->isIntegerTy() && "exit count must be integer"); | 
|  | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); | 
|  | assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); | 
|  |  | 
|  | // For integer IVs, truncate the IV before computing the limit unless we | 
|  | // know apriori that the limit must be a constant when evaluated in the | 
|  | // bitwidth of the IV.  We prefer (potentially) keeping a truncate of the | 
|  | // IV in the loop over a (potentially) expensive expansion of the widened | 
|  | // exit count add(zext(add)) expression. | 
|  | if (IndVar->getType()->isIntegerTy() && | 
|  | SE->getTypeSizeInBits(AR->getType()) > | 
|  | SE->getTypeSizeInBits(ExitCount->getType())) { | 
|  | const SCEV *IVInit = AR->getStart(); | 
|  | if (!isa<SCEVConstant>(IVInit) || !isa<SCEVConstant>(ExitCount)) | 
|  | AR = cast<SCEVAddRecExpr>(SE->getTruncateExpr(AR, ExitCount->getType())); | 
|  | } | 
|  |  | 
|  | const SCEVAddRecExpr *ARBase = UsePostInc ? AR->getPostIncExpr(*SE) : AR; | 
|  | const SCEV *IVLimit = ARBase->evaluateAtIteration(ExitCount, *SE); | 
|  | assert(SE->isLoopInvariant(IVLimit, L) && | 
|  | "Computed iteration count is not loop invariant!"); | 
|  | return Rewriter.expandCodeFor(IVLimit, ARBase->getType(), | 
|  | ExitingBB->getTerminator()); | 
|  | } | 
|  |  | 
|  | /// This method rewrites the exit condition of the loop to be a canonical != | 
|  | /// comparison against the incremented loop induction variable.  This pass is | 
|  | /// able to rewrite the exit tests of any loop where the SCEV analysis can | 
|  | /// determine a loop-invariant trip count of the loop, which is actually a much | 
|  | /// broader range than just linear tests. | 
|  | bool IndVarSimplify:: | 
|  | linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, | 
|  | const SCEV *ExitCount, | 
|  | PHINode *IndVar, SCEVExpander &Rewriter) { | 
|  | assert(L->getLoopLatch() && "Loop no longer in simplified form?"); | 
|  | assert(isLoopCounter(IndVar, L, SE)); | 
|  | Instruction * const IncVar = | 
|  | cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch())); | 
|  |  | 
|  | // Initialize CmpIndVar to the preincremented IV. | 
|  | Value *CmpIndVar = IndVar; | 
|  | bool UsePostInc = false; | 
|  |  | 
|  | // If the exiting block is the same as the backedge block, we prefer to | 
|  | // compare against the post-incremented value, otherwise we must compare | 
|  | // against the preincremented value. | 
|  | if (ExitingBB == L->getLoopLatch()) { | 
|  | // For pointer IVs, we chose to not strip inbounds which requires us not | 
|  | // to add a potentially UB introducing use.  We need to either a) show | 
|  | // the loop test we're modifying is already in post-inc form, or b) show | 
|  | // that adding a use must not introduce UB. | 
|  | bool SafeToPostInc = | 
|  | IndVar->getType()->isIntegerTy() || | 
|  | isLoopExitTestBasedOn(IncVar, ExitingBB) || | 
|  | mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT); | 
|  | if (SafeToPostInc) { | 
|  | UsePostInc = true; | 
|  | CmpIndVar = IncVar; | 
|  | } | 
|  | } | 
|  |  | 
|  | // It may be necessary to drop nowrap flags on the incrementing instruction | 
|  | // if either LFTR moves from a pre-inc check to a post-inc check (in which | 
|  | // case the increment might have previously been poison on the last iteration | 
|  | // only) or if LFTR switches to a different IV that was previously dynamically | 
|  | // dead (and as such may be arbitrarily poison). We remove any nowrap flags | 
|  | // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc | 
|  | // check), because the pre-inc addrec flags may be adopted from the original | 
|  | // instruction, while SCEV has to explicitly prove the post-inc nowrap flags. | 
|  | // TODO: This handling is inaccurate for one case: If we switch to a | 
|  | // dynamically dead IV that wraps on the first loop iteration only, which is | 
|  | // not covered by the post-inc addrec. (If the new IV was not dynamically | 
|  | // dead, it could not be poison on the first iteration in the first place.) | 
|  | if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) { | 
|  | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar)); | 
|  | if (BO->hasNoUnsignedWrap()) | 
|  | BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap()); | 
|  | if (BO->hasNoSignedWrap()) | 
|  | BO->setHasNoSignedWrap(AR->hasNoSignedWrap()); | 
|  | } | 
|  |  | 
|  | Value *ExitCnt = genLoopLimit( | 
|  | IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE); | 
|  | assert(ExitCnt->getType()->isPointerTy() == | 
|  | IndVar->getType()->isPointerTy() && | 
|  | "genLoopLimit missed a cast"); | 
|  |  | 
|  | // Insert a new icmp_ne or icmp_eq instruction before the branch. | 
|  | BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); | 
|  | ICmpInst::Predicate P; | 
|  | if (L->contains(BI->getSuccessor(0))) | 
|  | P = ICmpInst::ICMP_NE; | 
|  | else | 
|  | P = ICmpInst::ICMP_EQ; | 
|  |  | 
|  | IRBuilder<> Builder(BI); | 
|  |  | 
|  | // The new loop exit condition should reuse the debug location of the | 
|  | // original loop exit condition. | 
|  | if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) | 
|  | Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); | 
|  |  | 
|  | // For integer IVs, if we evaluated the limit in the narrower bitwidth to | 
|  | // avoid the expensive expansion of the limit expression in the wider type, | 
|  | // emit a truncate to narrow the IV to the ExitCount type.  This is safe | 
|  | // since we know (from the exit count bitwidth), that we can't self-wrap in | 
|  | // the narrower type. | 
|  | unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); | 
|  | unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); | 
|  | if (CmpIndVarSize > ExitCntSize) { | 
|  | assert(!CmpIndVar->getType()->isPointerTy() && | 
|  | !ExitCnt->getType()->isPointerTy()); | 
|  |  | 
|  | // Before resorting to actually inserting the truncate, use the same | 
|  | // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend | 
|  | // the other side of the comparison instead.  We still evaluate the limit | 
|  | // in the narrower bitwidth, we just prefer a zext/sext outside the loop to | 
|  | // a truncate within in. | 
|  | bool Extended = false; | 
|  | const SCEV *IV = SE->getSCEV(CmpIndVar); | 
|  | const SCEV *TruncatedIV = SE->getTruncateExpr(IV, ExitCnt->getType()); | 
|  | const SCEV *ZExtTrunc = | 
|  | SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType()); | 
|  |  | 
|  | if (ZExtTrunc == IV) { | 
|  | Extended = true; | 
|  | ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), | 
|  | "wide.trip.count"); | 
|  | } else { | 
|  | const SCEV *SExtTrunc = | 
|  | SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType()); | 
|  | if (SExtTrunc == IV) { | 
|  | Extended = true; | 
|  | ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), | 
|  | "wide.trip.count"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Extended) { | 
|  | bool Discard; | 
|  | L->makeLoopInvariant(ExitCnt, Discard); | 
|  | } else | 
|  | CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), | 
|  | "lftr.wideiv"); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" | 
|  | << "      LHS:" << *CmpIndVar << '\n' | 
|  | << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") | 
|  | << "\n" | 
|  | << "      RHS:\t" << *ExitCnt << "\n" | 
|  | << "ExitCount:\t" << *ExitCount << "\n" | 
|  | << "  was: " << *BI->getCondition() << "\n"); | 
|  |  | 
|  | Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); | 
|  | Value *OrigCond = BI->getCondition(); | 
|  | // It's tempting to use replaceAllUsesWith here to fully replace the old | 
|  | // comparison, but that's not immediately safe, since users of the old | 
|  | // comparison may not be dominated by the new comparison. Instead, just | 
|  | // update the branch to use the new comparison; in the common case this | 
|  | // will make old comparison dead. | 
|  | BI->setCondition(Cond); | 
|  | DeadInsts.emplace_back(OrigCond); | 
|  |  | 
|  | ++NumLFTR; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// If there's a single exit block, sink any loop-invariant values that | 
|  | /// were defined in the preheader but not used inside the loop into the | 
|  | /// exit block to reduce register pressure in the loop. | 
|  | bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { | 
|  | BasicBlock *ExitBlock = L->getExitBlock(); | 
|  | if (!ExitBlock) return false; | 
|  |  | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  | if (!Preheader) return false; | 
|  |  | 
|  | bool MadeAnyChanges = false; | 
|  | for (Instruction &I : llvm::make_early_inc_range(llvm::reverse(*Preheader))) { | 
|  |  | 
|  | // Skip BB Terminator. | 
|  | if (Preheader->getTerminator() == &I) | 
|  | continue; | 
|  |  | 
|  | // New instructions were inserted at the end of the preheader. | 
|  | if (isa<PHINode>(I)) | 
|  | break; | 
|  |  | 
|  | // Don't move instructions which might have side effects, since the side | 
|  | // effects need to complete before instructions inside the loop.  Also don't | 
|  | // move instructions which might read memory, since the loop may modify | 
|  | // memory. Note that it's okay if the instruction might have undefined | 
|  | // behavior: LoopSimplify guarantees that the preheader dominates the exit | 
|  | // block. | 
|  | if (I.mayHaveSideEffects() || I.mayReadFromMemory()) | 
|  | continue; | 
|  |  | 
|  | // Skip debug or pseudo instructions. | 
|  | if (I.isDebugOrPseudoInst()) | 
|  | continue; | 
|  |  | 
|  | // Skip eh pad instructions. | 
|  | if (I.isEHPad()) | 
|  | continue; | 
|  |  | 
|  | // Don't sink alloca: we never want to sink static alloca's out of the | 
|  | // entry block, and correctly sinking dynamic alloca's requires | 
|  | // checks for stacksave/stackrestore intrinsics. | 
|  | // FIXME: Refactor this check somehow? | 
|  | if (isa<AllocaInst>(&I)) | 
|  | continue; | 
|  |  | 
|  | // Determine if there is a use in or before the loop (direct or | 
|  | // otherwise). | 
|  | bool UsedInLoop = false; | 
|  | for (Use &U : I.uses()) { | 
|  | Instruction *User = cast<Instruction>(U.getUser()); | 
|  | BasicBlock *UseBB = User->getParent(); | 
|  | if (PHINode *P = dyn_cast<PHINode>(User)) { | 
|  | unsigned i = | 
|  | PHINode::getIncomingValueNumForOperand(U.getOperandNo()); | 
|  | UseBB = P->getIncomingBlock(i); | 
|  | } | 
|  | if (UseBB == Preheader || L->contains(UseBB)) { | 
|  | UsedInLoop = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there is, the def must remain in the preheader. | 
|  | if (UsedInLoop) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, sink it to the exit block. | 
|  | I.moveBefore(ExitBlock->getFirstInsertionPt()); | 
|  | SE->forgetValue(&I); | 
|  | MadeAnyChanges = true; | 
|  | } | 
|  |  | 
|  | return MadeAnyChanges; | 
|  | } | 
|  |  | 
|  | static void replaceExitCond(BranchInst *BI, Value *NewCond, | 
|  | SmallVectorImpl<WeakTrackingVH> &DeadInsts) { | 
|  | auto *OldCond = BI->getCondition(); | 
|  | LLVM_DEBUG(dbgs() << "Replacing condition of loop-exiting branch " << *BI | 
|  | << " with " << *NewCond << "\n"); | 
|  | BI->setCondition(NewCond); | 
|  | if (OldCond->use_empty()) | 
|  | DeadInsts.emplace_back(OldCond); | 
|  | } | 
|  |  | 
|  | static Constant *createFoldedExitCond(const Loop *L, BasicBlock *ExitingBB, | 
|  | bool IsTaken) { | 
|  | BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); | 
|  | bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); | 
|  | auto *OldCond = BI->getCondition(); | 
|  | return ConstantInt::get(OldCond->getType(), | 
|  | IsTaken ? ExitIfTrue : !ExitIfTrue); | 
|  | } | 
|  |  | 
|  | static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken, | 
|  | SmallVectorImpl<WeakTrackingVH> &DeadInsts) { | 
|  | BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); | 
|  | auto *NewCond = createFoldedExitCond(L, ExitingBB, IsTaken); | 
|  | replaceExitCond(BI, NewCond, DeadInsts); | 
|  | } | 
|  |  | 
|  | static void replaceLoopPHINodesWithPreheaderValues( | 
|  | LoopInfo *LI, Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts, | 
|  | ScalarEvolution &SE) { | 
|  | assert(L->isLoopSimplifyForm() && "Should only do it in simplify form!"); | 
|  | auto *LoopPreheader = L->getLoopPreheader(); | 
|  | auto *LoopHeader = L->getHeader(); | 
|  | SmallVector<Instruction *> Worklist; | 
|  | for (auto &PN : LoopHeader->phis()) { | 
|  | auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader); | 
|  | for (User *U : PN.users()) | 
|  | Worklist.push_back(cast<Instruction>(U)); | 
|  | SE.forgetValue(&PN); | 
|  | PN.replaceAllUsesWith(PreheaderIncoming); | 
|  | DeadInsts.emplace_back(&PN); | 
|  | } | 
|  |  | 
|  | // Replacing with the preheader value will often allow IV users to simplify | 
|  | // (especially if the preheader value is a constant). | 
|  | SmallPtrSet<Instruction *, 16> Visited; | 
|  | while (!Worklist.empty()) { | 
|  | auto *I = cast<Instruction>(Worklist.pop_back_val()); | 
|  | if (!Visited.insert(I).second) | 
|  | continue; | 
|  |  | 
|  | // Don't simplify instructions outside the loop. | 
|  | if (!L->contains(I)) | 
|  | continue; | 
|  |  | 
|  | Value *Res = simplifyInstruction(I, I->getDataLayout()); | 
|  | if (Res && LI->replacementPreservesLCSSAForm(I, Res)) { | 
|  | for (User *U : I->users()) | 
|  | Worklist.push_back(cast<Instruction>(U)); | 
|  | I->replaceAllUsesWith(Res); | 
|  | DeadInsts.emplace_back(I); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static Value * | 
|  | createInvariantCond(const Loop *L, BasicBlock *ExitingBB, | 
|  | const ScalarEvolution::LoopInvariantPredicate &LIP, | 
|  | SCEVExpander &Rewriter) { | 
|  | ICmpInst::Predicate InvariantPred = LIP.Pred; | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  | assert(Preheader && "Preheader doesn't exist"); | 
|  | Rewriter.setInsertPoint(Preheader->getTerminator()); | 
|  | auto *LHSV = Rewriter.expandCodeFor(LIP.LHS); | 
|  | auto *RHSV = Rewriter.expandCodeFor(LIP.RHS); | 
|  | bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); | 
|  | if (ExitIfTrue) | 
|  | InvariantPred = ICmpInst::getInversePredicate(InvariantPred); | 
|  | IRBuilder<> Builder(Preheader->getTerminator()); | 
|  | BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); | 
|  | return Builder.CreateICmp(InvariantPred, LHSV, RHSV, | 
|  | BI->getCondition()->getName()); | 
|  | } | 
|  |  | 
|  | static std::optional<Value *> | 
|  | createReplacement(ICmpInst *ICmp, const Loop *L, BasicBlock *ExitingBB, | 
|  | const SCEV *MaxIter, bool Inverted, bool SkipLastIter, | 
|  | ScalarEvolution *SE, SCEVExpander &Rewriter) { | 
|  | CmpPredicate Pred = ICmp->getCmpPredicate(); | 
|  | Value *LHS = ICmp->getOperand(0); | 
|  | Value *RHS = ICmp->getOperand(1); | 
|  |  | 
|  | // 'LHS pred RHS' should now mean that we stay in loop. | 
|  | auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); | 
|  | if (Inverted) | 
|  | Pred = ICmpInst::getInverseCmpPredicate(Pred); | 
|  |  | 
|  | const SCEV *LHSS = SE->getSCEVAtScope(LHS, L); | 
|  | const SCEV *RHSS = SE->getSCEVAtScope(RHS, L); | 
|  | // Can we prove it to be trivially true or false? | 
|  | if (auto EV = SE->evaluatePredicateAt(Pred, LHSS, RHSS, BI)) | 
|  | return createFoldedExitCond(L, ExitingBB, /*IsTaken*/ !*EV); | 
|  |  | 
|  | auto *ARTy = LHSS->getType(); | 
|  | auto *MaxIterTy = MaxIter->getType(); | 
|  | // If possible, adjust types. | 
|  | if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy)) | 
|  | MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy); | 
|  | else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) { | 
|  | const SCEV *MinusOne = SE->getMinusOne(ARTy); | 
|  | const SCEV *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy); | 
|  | if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI)) | 
|  | MaxIter = SE->getTruncateExpr(MaxIter, ARTy); | 
|  | } | 
|  |  | 
|  | if (SkipLastIter) { | 
|  | // Semantically skip last iter is "subtract 1, do not bother about unsigned | 
|  | // wrap". getLoopInvariantExitCondDuringFirstIterations knows how to deal | 
|  | // with umin in a smart way, but umin(a, b) - 1 will likely not simplify. | 
|  | // So we manually construct umin(a - 1, b - 1). | 
|  | SmallVector<const SCEV *, 4> Elements; | 
|  | if (auto *UMin = dyn_cast<SCEVUMinExpr>(MaxIter)) { | 
|  | for (const SCEV *Op : UMin->operands()) | 
|  | Elements.push_back(SE->getMinusSCEV(Op, SE->getOne(Op->getType()))); | 
|  | MaxIter = SE->getUMinFromMismatchedTypes(Elements); | 
|  | } else | 
|  | MaxIter = SE->getMinusSCEV(MaxIter, SE->getOne(MaxIter->getType())); | 
|  | } | 
|  |  | 
|  | // Check if there is a loop-invariant predicate equivalent to our check. | 
|  | auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS, | 
|  | L, BI, MaxIter); | 
|  | if (!LIP) | 
|  | return std::nullopt; | 
|  |  | 
|  | // Can we prove it to be trivially true? | 
|  | if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI)) | 
|  | return createFoldedExitCond(L, ExitingBB, /*IsTaken*/ false); | 
|  | else | 
|  | return createInvariantCond(L, ExitingBB, *LIP, Rewriter); | 
|  | } | 
|  |  | 
|  | static bool optimizeLoopExitWithUnknownExitCount( | 
|  | const Loop *L, BranchInst *BI, BasicBlock *ExitingBB, const SCEV *MaxIter, | 
|  | bool SkipLastIter, ScalarEvolution *SE, SCEVExpander &Rewriter, | 
|  | SmallVectorImpl<WeakTrackingVH> &DeadInsts) { | 
|  | assert( | 
|  | (L->contains(BI->getSuccessor(0)) != L->contains(BI->getSuccessor(1))) && | 
|  | "Not a loop exit!"); | 
|  |  | 
|  | // For branch that stays in loop by TRUE condition, go through AND. For branch | 
|  | // that stays in loop by FALSE condition, go through OR. Both gives the | 
|  | // similar logic: "stay in loop iff all conditions are true(false)". | 
|  | bool Inverted = L->contains(BI->getSuccessor(1)); | 
|  | SmallVector<ICmpInst *, 4> LeafConditions; | 
|  | SmallVector<Value *, 4> Worklist; | 
|  | SmallPtrSet<Value *, 4> Visited; | 
|  | Value *OldCond = BI->getCondition(); | 
|  | Visited.insert(OldCond); | 
|  | Worklist.push_back(OldCond); | 
|  |  | 
|  | auto GoThrough = [&](Value *V) { | 
|  | Value *LHS = nullptr, *RHS = nullptr; | 
|  | if (Inverted) { | 
|  | if (!match(V, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) | 
|  | return false; | 
|  | } else { | 
|  | if (!match(V, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) | 
|  | return false; | 
|  | } | 
|  | if (Visited.insert(LHS).second) | 
|  | Worklist.push_back(LHS); | 
|  | if (Visited.insert(RHS).second) | 
|  | Worklist.push_back(RHS); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | do { | 
|  | Value *Curr = Worklist.pop_back_val(); | 
|  | // Go through AND/OR conditions. Collect leaf ICMPs. We only care about | 
|  | // those with one use, to avoid instruction duplication. | 
|  | if (Curr->hasOneUse()) | 
|  | if (!GoThrough(Curr)) | 
|  | if (auto *ICmp = dyn_cast<ICmpInst>(Curr)) | 
|  | LeafConditions.push_back(ICmp); | 
|  | } while (!Worklist.empty()); | 
|  |  | 
|  | // If the current basic block has the same exit count as the whole loop, and | 
|  | // it consists of multiple icmp's, try to collect all icmp's that give exact | 
|  | // same exit count. For all other icmp's, we could use one less iteration, | 
|  | // because their value on the last iteration doesn't really matter. | 
|  | SmallPtrSet<ICmpInst *, 4> ICmpsFailingOnLastIter; | 
|  | if (!SkipLastIter && LeafConditions.size() > 1 && | 
|  | SE->getExitCount(L, ExitingBB, | 
|  | ScalarEvolution::ExitCountKind::SymbolicMaximum) == | 
|  | MaxIter) | 
|  | for (auto *ICmp : LeafConditions) { | 
|  | auto EL = SE->computeExitLimitFromCond(L, ICmp, Inverted, | 
|  | /*ControlsExit*/ false); | 
|  | const SCEV *ExitMax = EL.SymbolicMaxNotTaken; | 
|  | if (isa<SCEVCouldNotCompute>(ExitMax)) | 
|  | continue; | 
|  | // They could be of different types (specifically this happens after | 
|  | // IV widening). | 
|  | auto *WiderType = | 
|  | SE->getWiderType(ExitMax->getType(), MaxIter->getType()); | 
|  | const SCEV *WideExitMax = SE->getNoopOrZeroExtend(ExitMax, WiderType); | 
|  | const SCEV *WideMaxIter = SE->getNoopOrZeroExtend(MaxIter, WiderType); | 
|  | if (WideExitMax == WideMaxIter) | 
|  | ICmpsFailingOnLastIter.insert(ICmp); | 
|  | } | 
|  |  | 
|  | bool Changed = false; | 
|  | for (auto *OldCond : LeafConditions) { | 
|  | // Skip last iteration for this icmp under one of two conditions: | 
|  | // - We do it for all conditions; | 
|  | // - There is another ICmp that would fail on last iter, so this one doesn't | 
|  | // really matter. | 
|  | bool OptimisticSkipLastIter = SkipLastIter; | 
|  | if (!OptimisticSkipLastIter) { | 
|  | if (ICmpsFailingOnLastIter.size() > 1) | 
|  | OptimisticSkipLastIter = true; | 
|  | else if (ICmpsFailingOnLastIter.size() == 1) | 
|  | OptimisticSkipLastIter = !ICmpsFailingOnLastIter.count(OldCond); | 
|  | } | 
|  | if (auto Replaced = | 
|  | createReplacement(OldCond, L, ExitingBB, MaxIter, Inverted, | 
|  | OptimisticSkipLastIter, SE, Rewriter)) { | 
|  | Changed = true; | 
|  | auto *NewCond = *Replaced; | 
|  | if (auto *NCI = dyn_cast<Instruction>(NewCond)) { | 
|  | NCI->setName(OldCond->getName() + ".first_iter"); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "Unknown exit count: Replacing " << *OldCond | 
|  | << " with " << *NewCond << "\n"); | 
|  | assert(OldCond->hasOneUse() && "Must be!"); | 
|  | OldCond->replaceAllUsesWith(NewCond); | 
|  | DeadInsts.push_back(OldCond); | 
|  | // Make sure we no longer consider this condition as failing on last | 
|  | // iteration. | 
|  | ICmpsFailingOnLastIter.erase(OldCond); | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool IndVarSimplify::canonicalizeExitCondition(Loop *L) { | 
|  | // Note: This is duplicating a particular part on SimplifyIndVars reasoning. | 
|  | // We need to duplicate it because given icmp zext(small-iv), C, IVUsers | 
|  | // never reaches the icmp since the zext doesn't fold to an AddRec unless | 
|  | // it already has flags.  The alternative to this would be to extending the | 
|  | // set of "interesting" IV users to include the icmp, but doing that | 
|  | // regresses results in practice by querying SCEVs before trip counts which | 
|  | // rely on them which results in SCEV caching sub-optimal answers.  The | 
|  | // concern about caching sub-optimal results is why we only query SCEVs of | 
|  | // the loop invariant RHS here. | 
|  | SmallVector<BasicBlock*, 16> ExitingBlocks; | 
|  | L->getExitingBlocks(ExitingBlocks); | 
|  | bool Changed = false; | 
|  | for (auto *ExitingBB : ExitingBlocks) { | 
|  | auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); | 
|  | if (!BI) | 
|  | continue; | 
|  | assert(BI->isConditional() && "exit branch must be conditional"); | 
|  |  | 
|  | auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); | 
|  | if (!ICmp || !ICmp->hasOneUse()) | 
|  | continue; | 
|  |  | 
|  | auto *LHS = ICmp->getOperand(0); | 
|  | auto *RHS = ICmp->getOperand(1); | 
|  | // For the range reasoning, avoid computing SCEVs in the loop to avoid | 
|  | // poisoning cache with sub-optimal results.  For the must-execute case, | 
|  | // this is a neccessary precondition for correctness. | 
|  | if (!L->isLoopInvariant(RHS)) { | 
|  | if (!L->isLoopInvariant(LHS)) | 
|  | continue; | 
|  | // Same logic applies for the inverse case | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  |  | 
|  | // Match (icmp signed-cond zext, RHS) | 
|  | Value *LHSOp = nullptr; | 
|  | if (!match(LHS, m_ZExt(m_Value(LHSOp))) || !ICmp->isSigned()) | 
|  | continue; | 
|  |  | 
|  | const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType()); | 
|  | const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType()); | 
|  | auto FullCR = ConstantRange::getFull(InnerBitWidth); | 
|  | FullCR = FullCR.zeroExtend(OuterBitWidth); | 
|  | auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L)); | 
|  | if (FullCR.contains(RHSCR)) { | 
|  | // We have now matched icmp signed-cond zext(X), zext(Y'), and can thus | 
|  | // replace the signed condition with the unsigned version. | 
|  | ICmp->setPredicate(ICmp->getUnsignedPredicate()); | 
|  | Changed = true; | 
|  | // Note: No SCEV invalidation needed.  We've changed the predicate, but | 
|  | // have not changed exit counts, or the values produced by the compare. | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we've canonicalized the condition to match the extend, | 
|  | // see if we can rotate the extend out of the loop. | 
|  | for (auto *ExitingBB : ExitingBlocks) { | 
|  | auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); | 
|  | if (!BI) | 
|  | continue; | 
|  | assert(BI->isConditional() && "exit branch must be conditional"); | 
|  |  | 
|  | auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); | 
|  | if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned()) | 
|  | continue; | 
|  |  | 
|  | bool Swapped = false; | 
|  | auto *LHS = ICmp->getOperand(0); | 
|  | auto *RHS = ICmp->getOperand(1); | 
|  | if (L->isLoopInvariant(LHS) == L->isLoopInvariant(RHS)) | 
|  | // Nothing to rotate | 
|  | continue; | 
|  | if (L->isLoopInvariant(LHS)) { | 
|  | // Same logic applies for the inverse case until we actually pick | 
|  | // which operand of the compare to update. | 
|  | Swapped = true; | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  | assert(!L->isLoopInvariant(LHS) && L->isLoopInvariant(RHS)); | 
|  |  | 
|  | // Match (icmp unsigned-cond zext, RHS) | 
|  | // TODO: Extend to handle corresponding sext/signed-cmp case | 
|  | // TODO: Extend to other invertible functions | 
|  | Value *LHSOp = nullptr; | 
|  | if (!match(LHS, m_ZExt(m_Value(LHSOp)))) | 
|  | continue; | 
|  |  | 
|  | // In general, we only rotate if we can do so without increasing the number | 
|  | // of instructions.  The exception is when we have an zext(add-rec).  The | 
|  | // reason for allowing this exception is that we know we need to get rid | 
|  | // of the zext for SCEV to be able to compute a trip count for said loops; | 
|  | // we consider the new trip count valuable enough to increase instruction | 
|  | // count by one. | 
|  | if (!LHS->hasOneUse() && !isa<SCEVAddRecExpr>(SE->getSCEV(LHSOp))) | 
|  | continue; | 
|  |  | 
|  | // Given a icmp unsigned-cond zext(Op) where zext(trunc(RHS)) == RHS | 
|  | // replace with an icmp of the form icmp unsigned-cond Op, trunc(RHS) | 
|  | // when zext is loop varying and RHS is loop invariant.  This converts | 
|  | // loop varying work to loop-invariant work. | 
|  | auto doRotateTransform = [&]() { | 
|  | assert(ICmp->isUnsigned() && "must have proven unsigned already"); | 
|  | auto *NewRHS = CastInst::Create( | 
|  | Instruction::Trunc, RHS, LHSOp->getType(), "", | 
|  | L->getLoopPreheader()->getTerminator()->getIterator()); | 
|  | // NewRHS is an operation that has been hoisted out of the loop, and | 
|  | // therefore should have a dropped location. | 
|  | NewRHS->setDebugLoc(DebugLoc::getDropped()); | 
|  | ICmp->setOperand(Swapped ? 1 : 0, LHSOp); | 
|  | ICmp->setOperand(Swapped ? 0 : 1, NewRHS); | 
|  | // Samesign flag cannot be preserved after narrowing the compare. | 
|  | ICmp->setSameSign(false); | 
|  | if (LHS->use_empty()) | 
|  | DeadInsts.push_back(LHS); | 
|  | }; | 
|  |  | 
|  | const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType()); | 
|  | const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType()); | 
|  | auto FullCR = ConstantRange::getFull(InnerBitWidth); | 
|  | FullCR = FullCR.zeroExtend(OuterBitWidth); | 
|  | auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L)); | 
|  | if (FullCR.contains(RHSCR)) { | 
|  | doRotateTransform(); | 
|  | Changed = true; | 
|  | // Note, we are leaving SCEV in an unfortunately imprecise case here | 
|  | // as rotation tends to reveal information about trip counts not | 
|  | // previously visible. | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) { | 
|  | SmallVector<BasicBlock*, 16> ExitingBlocks; | 
|  | L->getExitingBlocks(ExitingBlocks); | 
|  |  | 
|  | // Remove all exits which aren't both rewriteable and execute on every | 
|  | // iteration. | 
|  | llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) { | 
|  | // If our exitting block exits multiple loops, we can only rewrite the | 
|  | // innermost one.  Otherwise, we're changing how many times the innermost | 
|  | // loop runs before it exits. | 
|  | if (LI->getLoopFor(ExitingBB) != L) | 
|  | return true; | 
|  |  | 
|  | // Can't rewrite non-branch yet. | 
|  | BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); | 
|  | if (!BI) | 
|  | return true; | 
|  |  | 
|  | // Likewise, the loop latch must be dominated by the exiting BB. | 
|  | if (!DT->dominates(ExitingBB, L->getLoopLatch())) | 
|  | return true; | 
|  |  | 
|  | if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { | 
|  | // If already constant, nothing to do. However, if this is an | 
|  | // unconditional exit, we can still replace header phis with their | 
|  | // preheader value. | 
|  | if (!L->contains(BI->getSuccessor(CI->isNullValue()))) | 
|  | replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts, *SE); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | }); | 
|  |  | 
|  | if (ExitingBlocks.empty()) | 
|  | return false; | 
|  |  | 
|  | // Get a symbolic upper bound on the loop backedge taken count. | 
|  | const SCEV *MaxBECount = SE->getSymbolicMaxBackedgeTakenCount(L); | 
|  | if (isa<SCEVCouldNotCompute>(MaxBECount)) | 
|  | return false; | 
|  |  | 
|  | // Visit our exit blocks in order of dominance. We know from the fact that | 
|  | // all exits must dominate the latch, so there is a total dominance order | 
|  | // between them. | 
|  | llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) { | 
|  | // std::sort sorts in ascending order, so we want the inverse of | 
|  | // the normal dominance relation. | 
|  | if (A == B) return false; | 
|  | if (DT->properlyDominates(A, B)) | 
|  | return true; | 
|  | else { | 
|  | assert(DT->properlyDominates(B, A) && | 
|  | "expected total dominance order!"); | 
|  | return false; | 
|  | } | 
|  | }); | 
|  | #ifdef ASSERT | 
|  | for (unsigned i = 1; i < ExitingBlocks.size(); i++) { | 
|  | assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bool Changed = false; | 
|  | bool SkipLastIter = false; | 
|  | const SCEV *CurrMaxExit = SE->getCouldNotCompute(); | 
|  | auto UpdateSkipLastIter = [&](const SCEV *MaxExitCount) { | 
|  | if (SkipLastIter || isa<SCEVCouldNotCompute>(MaxExitCount)) | 
|  | return; | 
|  | if (isa<SCEVCouldNotCompute>(CurrMaxExit)) | 
|  | CurrMaxExit = MaxExitCount; | 
|  | else | 
|  | CurrMaxExit = SE->getUMinFromMismatchedTypes(CurrMaxExit, MaxExitCount); | 
|  | // If the loop has more than 1 iteration, all further checks will be | 
|  | // executed 1 iteration less. | 
|  | if (CurrMaxExit == MaxBECount) | 
|  | SkipLastIter = true; | 
|  | }; | 
|  | SmallSet<const SCEV *, 8> DominatingExactExitCounts; | 
|  | for (BasicBlock *ExitingBB : ExitingBlocks) { | 
|  | const SCEV *ExactExitCount = SE->getExitCount(L, ExitingBB); | 
|  | const SCEV *MaxExitCount = SE->getExitCount( | 
|  | L, ExitingBB, ScalarEvolution::ExitCountKind::SymbolicMaximum); | 
|  | if (isa<SCEVCouldNotCompute>(ExactExitCount)) { | 
|  | // Okay, we do not know the exit count here. Can we at least prove that it | 
|  | // will remain the same within iteration space? | 
|  | auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); | 
|  | auto OptimizeCond = [&](bool SkipLastIter) { | 
|  | return optimizeLoopExitWithUnknownExitCount(L, BI, ExitingBB, | 
|  | MaxBECount, SkipLastIter, | 
|  | SE, Rewriter, DeadInsts); | 
|  | }; | 
|  |  | 
|  | // TODO: We might have proved that we can skip the last iteration for | 
|  | // this check. In this case, we only want to check the condition on the | 
|  | // pre-last iteration (MaxBECount - 1). However, there is a nasty | 
|  | // corner case: | 
|  | // | 
|  | //   for (i = len; i != 0; i--) { ... check (i ult X) ... } | 
|  | // | 
|  | // If we could not prove that len != 0, then we also could not prove that | 
|  | // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then | 
|  | // OptimizeCond will likely not prove anything for it, even if it could | 
|  | // prove the same fact for len. | 
|  | // | 
|  | // As a temporary solution, we query both last and pre-last iterations in | 
|  | // hope that we will be able to prove triviality for at least one of | 
|  | // them. We can stop querying MaxBECount for this case once SCEV | 
|  | // understands that (MaxBECount - 1) will not overflow here. | 
|  | if (OptimizeCond(false)) | 
|  | Changed = true; | 
|  | else if (SkipLastIter && OptimizeCond(true)) | 
|  | Changed = true; | 
|  | UpdateSkipLastIter(MaxExitCount); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | UpdateSkipLastIter(ExactExitCount); | 
|  |  | 
|  | // If we know we'd exit on the first iteration, rewrite the exit to | 
|  | // reflect this.  This does not imply the loop must exit through this | 
|  | // exit; there may be an earlier one taken on the first iteration. | 
|  | // We know that the backedge can't be taken, so we replace all | 
|  | // the header PHIs with values coming from the preheader. | 
|  | if (ExactExitCount->isZero()) { | 
|  | foldExit(L, ExitingBB, true, DeadInsts); | 
|  | replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts, *SE); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(ExactExitCount->getType()->isIntegerTy() && | 
|  | MaxBECount->getType()->isIntegerTy() && | 
|  | "Exit counts must be integers"); | 
|  |  | 
|  | Type *WiderType = | 
|  | SE->getWiderType(MaxBECount->getType(), ExactExitCount->getType()); | 
|  | ExactExitCount = SE->getNoopOrZeroExtend(ExactExitCount, WiderType); | 
|  | MaxBECount = SE->getNoopOrZeroExtend(MaxBECount, WiderType); | 
|  | assert(MaxBECount->getType() == ExactExitCount->getType()); | 
|  |  | 
|  | // Can we prove that some other exit must be taken strictly before this | 
|  | // one? | 
|  | if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT, MaxBECount, | 
|  | ExactExitCount)) { | 
|  | foldExit(L, ExitingBB, false, DeadInsts); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // As we run, keep track of which exit counts we've encountered.  If we | 
|  | // find a duplicate, we've found an exit which would have exited on the | 
|  | // exiting iteration, but (from the visit order) strictly follows another | 
|  | // which does the same and is thus dead. | 
|  | if (!DominatingExactExitCounts.insert(ExactExitCount).second) { | 
|  | foldExit(L, ExitingBB, false, DeadInsts); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // TODO: There might be another oppurtunity to leverage SCEV's reasoning | 
|  | // here.  If we kept track of the min of dominanting exits so far, we could | 
|  | // discharge exits with EC >= MDEC. This is less powerful than the existing | 
|  | // transform (since later exits aren't considered), but potentially more | 
|  | // powerful for any case where SCEV can prove a >=u b, but neither a == b | 
|  | // or a >u b.  Such a case is not currently known. | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { | 
|  | SmallVector<BasicBlock*, 16> ExitingBlocks; | 
|  | L->getExitingBlocks(ExitingBlocks); | 
|  |  | 
|  | // Finally, see if we can rewrite our exit conditions into a loop invariant | 
|  | // form. If we have a read-only loop, and we can tell that we must exit down | 
|  | // a path which does not need any of the values computed within the loop, we | 
|  | // can rewrite the loop to exit on the first iteration.  Note that this | 
|  | // doesn't either a) tell us the loop exits on the first iteration (unless | 
|  | // *all* exits are predicateable) or b) tell us *which* exit might be taken. | 
|  | // This transformation looks a lot like a restricted form of dead loop | 
|  | // elimination, but restricted to read-only loops and without neccesssarily | 
|  | // needing to kill the loop entirely. | 
|  | if (!LoopPredication) | 
|  | return false; | 
|  |  | 
|  | // Note: ExactBTC is the exact backedge taken count *iff* the loop exits | 
|  | // through *explicit* control flow.  We have to eliminate the possibility of | 
|  | // implicit exits (see below) before we know it's truly exact. | 
|  | const SCEV *ExactBTC = SE->getBackedgeTakenCount(L); | 
|  | if (isa<SCEVCouldNotCompute>(ExactBTC) || !Rewriter.isSafeToExpand(ExactBTC)) | 
|  | return false; | 
|  |  | 
|  | assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant"); | 
|  | assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer"); | 
|  |  | 
|  | auto BadExit = [&](BasicBlock *ExitingBB) { | 
|  | // If our exiting block exits multiple loops, we can only rewrite the | 
|  | // innermost one.  Otherwise, we're changing how many times the innermost | 
|  | // loop runs before it exits. | 
|  | if (LI->getLoopFor(ExitingBB) != L) | 
|  | return true; | 
|  |  | 
|  | // Can't rewrite non-branch yet. | 
|  | BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); | 
|  | if (!BI) | 
|  | return true; | 
|  |  | 
|  | // If already constant, nothing to do. | 
|  | if (isa<Constant>(BI->getCondition())) | 
|  | return true; | 
|  |  | 
|  | // If the exit block has phis, we need to be able to compute the values | 
|  | // within the loop which contains them.  This assumes trivially lcssa phis | 
|  | // have already been removed; TODO: generalize | 
|  | BasicBlock *ExitBlock = | 
|  | BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0); | 
|  | if (!ExitBlock->phis().empty()) | 
|  | return true; | 
|  |  | 
|  | const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); | 
|  | if (isa<SCEVCouldNotCompute>(ExitCount) || | 
|  | !Rewriter.isSafeToExpand(ExitCount)) | 
|  | return true; | 
|  |  | 
|  | assert(SE->isLoopInvariant(ExitCount, L) && | 
|  | "Exit count must be loop invariant"); | 
|  | assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer"); | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | // Make sure all exits dominate the latch. This means there is a linear chain | 
|  | // of exits. We check this before sorting so we have a total order. | 
|  | BasicBlock *Latch = L->getLoopLatch(); | 
|  | for (BasicBlock *ExitingBB : ExitingBlocks) | 
|  | if (!DT->dominates(ExitingBB, Latch)) | 
|  | return false; | 
|  |  | 
|  | // If we have any exits which can't be predicated themselves, than we can't | 
|  | // predicate any exit which isn't guaranteed to execute before it.  Consider | 
|  | // two exits (a) and (b) which would both exit on the same iteration.  If we | 
|  | // can predicate (b), but not (a), and (a) preceeds (b) along some path, then | 
|  | // we could convert a loop from exiting through (a) to one exiting through | 
|  | // (b).  Note that this problem exists only for exits with the same exit | 
|  | // count, and we could be more aggressive when exit counts are known inequal. | 
|  | llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) { | 
|  | // llvm::sort sorts in ascending order, so we want the inverse of | 
|  | // the normal dominance relation. | 
|  | if (A == B) | 
|  | return false; | 
|  | if (DT->properlyDominates(A, B)) | 
|  | return true; | 
|  | if (DT->properlyDominates(B, A)) | 
|  | return false; | 
|  | llvm_unreachable("Should have total dominance order"); | 
|  | }); | 
|  |  | 
|  | // Make sure our exit blocks are really a total order (i.e. a linear chain of | 
|  | // exits before the backedge). | 
|  | for (unsigned i = 1; i < ExitingBlocks.size(); i++) | 
|  | assert(DT->dominates(ExitingBlocks[i - 1], ExitingBlocks[i]) && | 
|  | "Not sorted by dominance"); | 
|  |  | 
|  | // Given our sorted total order, we know that exit[j] must be evaluated | 
|  | // after all exit[i] such j > i. | 
|  | for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++) | 
|  | if (BadExit(ExitingBlocks[i])) { | 
|  | ExitingBlocks.resize(i); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ExitingBlocks.empty()) | 
|  | return false; | 
|  |  | 
|  | // At this point, ExitingBlocks consists of only those blocks which are | 
|  | // predicatable.  Given that, we know we have at least one exit we can | 
|  | // predicate if the loop is doesn't have side effects and doesn't have any | 
|  | // implicit exits (because then our exact BTC isn't actually exact). | 
|  | // @Reviewers - As structured, this is O(I^2) for loop nests.  Any | 
|  | // suggestions on how to improve this?  I can obviously bail out for outer | 
|  | // loops, but that seems less than ideal.  MemorySSA can find memory writes, | 
|  | // is that enough for *all* side effects? | 
|  | for (BasicBlock *BB : L->blocks()) | 
|  | for (auto &I : *BB) | 
|  | // TODO:isGuaranteedToTransfer | 
|  | if (I.mayHaveSideEffects()) | 
|  | return false; | 
|  |  | 
|  | bool Changed = false; | 
|  | // Finally, do the actual predication for all predicatable blocks.  A couple | 
|  | // of notes here: | 
|  | // 1) We don't bother to constant fold dominated exits with identical exit | 
|  | //    counts; that's simply a form of CSE/equality propagation and we leave | 
|  | //    it for dedicated passes. | 
|  | // 2) We insert the comparison at the branch.  Hoisting introduces additional | 
|  | //    legality constraints and we leave that to dedicated logic.  We want to | 
|  | //    predicate even if we can't insert a loop invariant expression as | 
|  | //    peeling or unrolling will likely reduce the cost of the otherwise loop | 
|  | //    varying check. | 
|  | Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator()); | 
|  | IRBuilder<> B(L->getLoopPreheader()->getTerminator()); | 
|  | Value *ExactBTCV = nullptr; // Lazily generated if needed. | 
|  | for (BasicBlock *ExitingBB : ExitingBlocks) { | 
|  | const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); | 
|  |  | 
|  | auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); | 
|  | Value *NewCond; | 
|  | if (ExitCount == ExactBTC) { | 
|  | NewCond = L->contains(BI->getSuccessor(0)) ? | 
|  | B.getFalse() : B.getTrue(); | 
|  | } else { | 
|  | Value *ECV = Rewriter.expandCodeFor(ExitCount); | 
|  | if (!ExactBTCV) | 
|  | ExactBTCV = Rewriter.expandCodeFor(ExactBTC); | 
|  | Value *RHS = ExactBTCV; | 
|  | if (ECV->getType() != RHS->getType()) { | 
|  | Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); | 
|  | ECV = B.CreateZExt(ECV, WiderTy); | 
|  | RHS = B.CreateZExt(RHS, WiderTy); | 
|  | } | 
|  | auto Pred = L->contains(BI->getSuccessor(0)) ? | 
|  | ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; | 
|  | NewCond = B.CreateICmp(Pred, ECV, RHS); | 
|  | } | 
|  | Value *OldCond = BI->getCondition(); | 
|  | BI->setCondition(NewCond); | 
|  | if (OldCond->use_empty()) | 
|  | DeadInsts.emplace_back(OldCond); | 
|  | Changed = true; | 
|  | RunUnswitching = true; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  IndVarSimplify driver. Manage several subpasses of IV simplification. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool IndVarSimplify::run(Loop *L) { | 
|  | // We need (and expect!) the incoming loop to be in LCSSA. | 
|  | assert(L->isRecursivelyLCSSAForm(*DT, *LI) && | 
|  | "LCSSA required to run indvars!"); | 
|  |  | 
|  | // If LoopSimplify form is not available, stay out of trouble. Some notes: | 
|  | //  - LSR currently only supports LoopSimplify-form loops. Indvars' | 
|  | //    canonicalization can be a pessimization without LSR to "clean up" | 
|  | //    afterwards. | 
|  | //  - We depend on having a preheader; in particular, | 
|  | //    Loop::getCanonicalInductionVariable only supports loops with preheaders, | 
|  | //    and we're in trouble if we can't find the induction variable even when | 
|  | //    we've manually inserted one. | 
|  | //  - LFTR relies on having a single backedge. | 
|  | if (!L->isLoopSimplifyForm()) | 
|  | return false; | 
|  |  | 
|  | bool Changed = false; | 
|  | // If there are any floating-point recurrences, attempt to | 
|  | // transform them to use integer recurrences. | 
|  | Changed |= rewriteNonIntegerIVs(L); | 
|  |  | 
|  | // Create a rewriter object which we'll use to transform the code with. | 
|  | SCEVExpander Rewriter(*SE, DL, "indvars"); | 
|  | #if LLVM_ENABLE_ABI_BREAKING_CHECKS | 
|  | Rewriter.setDebugType(DEBUG_TYPE); | 
|  | #endif | 
|  |  | 
|  | // Eliminate redundant IV users. | 
|  | // | 
|  | // Simplification works best when run before other consumers of SCEV. We | 
|  | // attempt to avoid evaluating SCEVs for sign/zero extend operations until | 
|  | // other expressions involving loop IVs have been evaluated. This helps SCEV | 
|  | // set no-wrap flags before normalizing sign/zero extension. | 
|  | Rewriter.disableCanonicalMode(); | 
|  | Changed |= simplifyAndExtend(L, Rewriter, LI); | 
|  |  | 
|  | // Check to see if we can compute the final value of any expressions | 
|  | // that are recurrent in the loop, and substitute the exit values from the | 
|  | // loop into any instructions outside of the loop that use the final values | 
|  | // of the current expressions. | 
|  | if (ReplaceExitValue != NeverRepl) { | 
|  | if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT, | 
|  | ReplaceExitValue, DeadInsts)) { | 
|  | NumReplaced += Rewrites; | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Eliminate redundant IV cycles. | 
|  | NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts, TTI); | 
|  |  | 
|  | // Try to convert exit conditions to unsigned and rotate computation | 
|  | // out of the loop.  Note: Handles invalidation internally if needed. | 
|  | Changed |= canonicalizeExitCondition(L); | 
|  |  | 
|  | // Try to eliminate loop exits based on analyzeable exit counts | 
|  | if (optimizeLoopExits(L, Rewriter))  { | 
|  | Changed = true; | 
|  | // Given we've changed exit counts, notify SCEV | 
|  | // Some nested loops may share same folded exit basic block, | 
|  | // thus we need to notify top most loop. | 
|  | SE->forgetTopmostLoop(L); | 
|  | } | 
|  |  | 
|  | // Try to form loop invariant tests for loop exits by changing how many | 
|  | // iterations of the loop run when that is unobservable. | 
|  | if (predicateLoopExits(L, Rewriter)) { | 
|  | Changed = true; | 
|  | // Given we've changed exit counts, notify SCEV | 
|  | SE->forgetLoop(L); | 
|  | } | 
|  |  | 
|  | // If we have a trip count expression, rewrite the loop's exit condition | 
|  | // using it. | 
|  | if (!DisableLFTR) { | 
|  | BasicBlock *PreHeader = L->getLoopPreheader(); | 
|  |  | 
|  | SmallVector<BasicBlock*, 16> ExitingBlocks; | 
|  | L->getExitingBlocks(ExitingBlocks); | 
|  | for (BasicBlock *ExitingBB : ExitingBlocks) { | 
|  | // Can't rewrite non-branch yet. | 
|  | if (!isa<BranchInst>(ExitingBB->getTerminator())) | 
|  | continue; | 
|  |  | 
|  | // If our exitting block exits multiple loops, we can only rewrite the | 
|  | // innermost one.  Otherwise, we're changing how many times the innermost | 
|  | // loop runs before it exits. | 
|  | if (LI->getLoopFor(ExitingBB) != L) | 
|  | continue; | 
|  |  | 
|  | if (!needsLFTR(L, ExitingBB)) | 
|  | continue; | 
|  |  | 
|  | const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); | 
|  | if (isa<SCEVCouldNotCompute>(ExitCount)) | 
|  | continue; | 
|  |  | 
|  | // This was handled above, but as we form SCEVs, we can sometimes refine | 
|  | // existing ones; this allows exit counts to be folded to zero which | 
|  | // weren't when optimizeLoopExits saw them.  Arguably, we should iterate | 
|  | // until stable to handle cases like this better. | 
|  | if (ExitCount->isZero()) | 
|  | continue; | 
|  |  | 
|  | PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT); | 
|  | if (!IndVar) | 
|  | continue; | 
|  |  | 
|  | // Avoid high cost expansions.  Note: This heuristic is questionable in | 
|  | // that our definition of "high cost" is not exactly principled. | 
|  | if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget, | 
|  | TTI, PreHeader->getTerminator())) | 
|  | continue; | 
|  |  | 
|  | if (!Rewriter.isSafeToExpand(ExitCount)) | 
|  | continue; | 
|  |  | 
|  | Changed |= linearFunctionTestReplace(L, ExitingBB, | 
|  | ExitCount, IndVar, | 
|  | Rewriter); | 
|  | } | 
|  | } | 
|  | // Clear the rewriter cache, because values that are in the rewriter's cache | 
|  | // can be deleted in the loop below, causing the AssertingVH in the cache to | 
|  | // trigger. | 
|  | Rewriter.clear(); | 
|  |  | 
|  | // Now that we're done iterating through lists, clean up any instructions | 
|  | // which are now dead. | 
|  | while (!DeadInsts.empty()) { | 
|  | Value *V = DeadInsts.pop_back_val(); | 
|  |  | 
|  | if (PHINode *PHI = dyn_cast_or_null<PHINode>(V)) | 
|  | Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get()); | 
|  | else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) | 
|  | Changed |= | 
|  | RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get()); | 
|  | } | 
|  |  | 
|  | // The Rewriter may not be used from this point on. | 
|  |  | 
|  | // Loop-invariant instructions in the preheader that aren't used in the | 
|  | // loop may be sunk below the loop to reduce register pressure. | 
|  | Changed |= sinkUnusedInvariants(L); | 
|  |  | 
|  | // rewriteFirstIterationLoopExitValues does not rely on the computation of | 
|  | // trip count and therefore can further simplify exit values in addition to | 
|  | // rewriteLoopExitValues. | 
|  | Changed |= rewriteFirstIterationLoopExitValues(L); | 
|  |  | 
|  | // Clean up dead instructions. | 
|  | Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get()); | 
|  |  | 
|  | // Check a post-condition. | 
|  | assert(L->isRecursivelyLCSSAForm(*DT, *LI) && | 
|  | "Indvars did not preserve LCSSA!"); | 
|  | if (VerifyMemorySSA && MSSAU) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, | 
|  | LoopStandardAnalysisResults &AR, | 
|  | LPMUpdater &) { | 
|  | Function *F = L.getHeader()->getParent(); | 
|  | const DataLayout &DL = F->getDataLayout(); | 
|  |  | 
|  | IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA, | 
|  | WidenIndVars && AllowIVWidening); | 
|  | if (!IVS.run(&L)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | auto PA = getLoopPassPreservedAnalyses(); | 
|  | PA.preserveSet<CFGAnalyses>(); | 
|  | if (IVS.runUnswitching()) { | 
|  | AM.getResult<ShouldRunExtraSimpleLoopUnswitch>(L, AR); | 
|  | PA.preserve<ShouldRunExtraSimpleLoopUnswitch>(); | 
|  | } | 
|  |  | 
|  | if (AR.MSSA) | 
|  | PA.preserve<MemorySSAAnalysis>(); | 
|  | return PA; | 
|  | } |